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and a detailed Commentary that provides insights into the source and application of the 
provisions. The reader interested in additional background on the provisions discussed in this 
book is encouraged to investigate the materials cited in the appropriate sections of the 
Commentary. The Specification contains 14 chapters and 8 appendices. To provide a concise 
guide to the use of the Specification, a brief description is given here. 

 
Chapter A: General Provision. This chapter provides the scope of the Specification and 
summarizes all referenced specifications, codes, and standards. It also provides the requirements 
for materials to be used in structural steel design and the design documents necessary to 
communicate that design. 
  
Chapter B: Design Requirements. This chapter gives the general requirements for analysis and 
design that are applicable throughout the entire Specification. It provides the charging language 
needed for application of the subsequent chapters. 
 
Chapter C: Design for Stability. This chapter, along with Appendix 7, addresses the requirements 
for the design of structures to ensure stability. It details those factors that must be taken into 
consideration in any analysis and design. 
 
Chapter D: Design of Members for Tension. This chapter applies to the design of members 
subjected to axial tension resulting from forces acting through the centroidal axis. 
 
Chapter E: Design of Members for Compression. This chapter addresses members subjected to 
axial compression resulting from forces applied at the centroidal axis. 
 
Chapter F: Design of Members for Flexure. This chapter applies to members loaded in a plane 
parallel to a principal axis that passes through the shear center or is restrained against twisting. 
This is referred to as simple bending about one axis. 
 
Chapter G: Design of Members for Shear. This chapter addresses webs of singly or doubly 
symmetric members subject to shear in the plane of the web. It also addresses other shapes such 
as single angles and hollow structural sections. 
 
Chapter H: Design of Members for Combined Forces and Torsion. This chapter addresses 
design of members subject to an axial force in combination with flexure about one or both axes, 
with or without torsion. It also applies to members subjected to torsion only. 
 
Chapter I: Design of Composite Members. This chapter addresses the design of members 
composed of steel shapes and concrete working together as a member. It addresses compression, 
flexure, and combined forces. 
 
Chapter J: Design of Connections. This chapter addresses the design of connections, including 
the connecting elements, the connectors, and the connected portions of members. 
 
Chapter K: Additional Requirements for HSS and Box Section Connections. This chapter 
addresses requirements in addition to those given in Chapter J for the design of connections to 
hollow structural sections and built-up box sections of uniform thickness and connections 
between HSS and box members. 
 
Chapter L: Design for Serviceability. This chapter summarizes the performance requirements for 
the design of a serviceable structure. 
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Chapter M: Fabrication and Erection. This chapter addresses the requirements for shop 
drawings, fabrication, shop painting, and erection. 
 
Chapter N: Quality Control and Quality Assurance. This chapter addresses the requirements for 
ensuring quality of the constructed project. 
 
Appendix 1: Design by Advanced Analysis. The body of the Specification addresses design based 
on an elastic analysis. This appendix addresses design by alternative methods generally referred 
to as advanced methods. It includes the classical plastic design method and design by direct 
modeling of imperfections. 
 
Appendix 2: Design for Ponding. This appendix provides methods for determining whether a 
roof system has sufficient strength and stiffness to resist the influence of water collecting on the 
surface and forming a pond. 
 
Appendix 3: Fatigue. This appendix provides requirements for addressing the influence of high 
cycle loading on members and connections that could lead to cracking and progressive failure. 
For most building structures, fatigue is not an issue of concern. 
 
Appendix 4: Structural Design for Fire Conditions. This appendix provides the criteria for 
evaluation of structural steel subjected to fire conditions, including (1) the prescriptive approach 
provided for in the model building code and most commonly used in current practice and (2) the 
engineered approach. 
 
Appendix 5: Evaluation of Existing Structures. This appendix provides guidance on the 
determination of the strength and stiffness of existing structures by load tests or a combination of 
tests and analysis. 
  
Appendix 6: Member Stability Bracing. This appendix details the criteria for ensuring that 
column, beam and beam-column bracing has sufficient strength and stiffness to meet the 
requirements for member bracing assumed in the provisions of the Specification for design of 
those members. 
 
Appendix 7: Alternative Methods of Design for Stability. This appendix, along with Chapter C, 
provides methods of designing structures to ensure stability. Two alternative methods are 
provided here, including the method most commonly used in past practice.  
 
Appendix 8: Approximate Second-Order Analysis. This appendix provides a method for 
obtaining second-order effects by an amplified first-order analysis. The provisions are limited to 
structures supporting load primarily through vertical columns. 

 
Each chapter of this book will identify those chapters of the Specification that are 

pertinent to that chapter. The reader is encouraged to become familiar with the organization of the 
Specification. 

 
1.3  THE MANUAL 

 
The AISC Steel Construction Manual, 15th edition, is the latest in a series of manuals published 
to assist the building industry in designing safe and economical steel building structures. The first 
edition was published in 1928 and the ninth edition in 1989. These manuals addressed design by 
the allowable stress method. In 1986 the first edition of the load and resistance factor design 
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method manual was published, with the third edition published in 1999. The next in this unbroken 
string of manuals published in support of steel design and construction was the first manual to 
unify these two design methods and was published in 2005 as the 13th edition. The current 
edition of the Manual is the 15th. Students who purchase the Manual through the AISC Student 
Discount Program also have an opportunity to apply for a free AISC Student Membership at the 
same time. Students are encouraged to become AISC Student Members in order to take full 
advantage of all free member benefits. 

As is the case for the Specification, AISC has two resources to assist in addressing the 
historic aspects of steel design and construction. The first is, again, AISC Design Guide 15, AISC 
Rehabilitation and Retrofit Guide: A Reference for Historic Shapes and Specifications. This 
Guide provides properties of beam and column sections as old as the wrought iron shapes 
produced as early as 1873. The second resource is the electronic AISC Shapes Database. This 
database is available through the AISC web site www.aisc.org. It is a searchable database with 
properties for all shapes produced since 1873, consistent with the printed data in Design Guide 
15. Access to the electronic shapes database is free to AISC members. 

The Manual is presented in 17 parts as follows: 
 
Part 1: Dimensions and Properties 
 
Part 2: General Design Considerations 
 
Part 3: Design of Flexural Members 
 
Part 4: Design of Compression Members 
 
Part 5: Design of Tension Members 
 
Part 6: Design of Members Subject to Combined Forces 
 
Part 7: Design Considerations for Bolts 
 
Part 8: Design Considerations for Welds 
 
Part 9: Design of Connecting Elements 
 
Part 10: Design of Simple Shear Connections 
 
Part 11: Design of Partially Restrained Moment Connections 
 
Part 12: Design of Fully Restrained Moment Connections 
 
Part 13: Design of Bracing Connections and Truss Connections 
 
Part 14: Design of Beam Bearing Plates, Column Base Plates, Anchor Rods, and Column Splices 
 
Part 15: Design of Hanger Connections, Bracket Plates, and Crane-Rail Connections 
 
Part 16: Specifications and Codes 
 
Part 17: Miscellaneous Data and Mathematical Information 
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Each chapter of this book identifies those parts of the Manual that will be used with the 
material to be addressed. In many instances, the user will need to look in several parts of the 
Manual to fully understand the topics or solve the problems presented. 
 

1.4  AISC WEB SITE RESOURCES 
 

Another primary resource is the AISC web site, where there is information that is free to all 
visitors and additional electronic resources that are free to members only. Students will find a 
great deal of useful information on the AISC publications web site, www.aisc.org/epubs. The 
primary resources include electronic versions of the Specification, the Shapes Database, the Steel 
Construction Manual References, and the Steel Construction Manual Design Examples. The 
Specification, as described in Section 1.2 and the historic Shapes Database, as mentioned in 
Section 1.3, are available free to all through the web site. The 15th edition Steel Construction 
Manual Shapes Database is also available free to all. The AISC web site also includes an 
extensive array of journal and proceedings papers. All of the references cited in the Commentary 
and the Manual, for which AISC owns the copyright, are accessible under Steel Construction 
Manual Resources; Interactive Reference List. 

Probably the most valuable aspect of the AISC web site for readers of this book is the 
complete set of the 15th edition Steel Construction Manual Design Examples. These examples are 
presented in four sections.  

 
Section I: Examples Based on the AISC Specification. This section contains examples 
demonstrating the use of the specific provisions of the Specification, organized by Specification 
chapter. 
 
Section II: Examples Based on the AISC Steel Construction Manual. This section contains 
examples of connection design using the Specification and the tables found in the Manual. 
 
Section III: System Design Examples. This section contains examples associated with the design 
of a specific building and the application of the system-wide requirements. 
 
Section IV: Additional Resources. This section provides design tables for higher-strength steels 
than published in the printed Manual. 

 
Although the topics covered in this book are supported by calculated example problems, 

the reader might find the electronic Steel Construction Manual Design Examples helpful for 
further understanding of some of the specific provisions or design aids described in the book. In 
addition, some of the Design Examples go beyond the coverage in this book and provide 
additional useful information regarding typical design or detailing. The reader is encouraged to 
investigate what the AISC web site has to offer through both free and member only publications. 

 
1.5 PRINCIPLES OF STRUCTURAL DESIGN 

 
From the time an owner determines a need to build a building, through the development of 
conceptual and detailed plans, to completion and occupancy, a building project is a multi-faceted 
task that involves many professionals. The owner and the financial analysis team evaluate the 
basic economic criteria for the building. The architects and engineers form the design team and 
prepare the initial proposals for the building, demonstrating how the users’ needs will be met. 
This teamwork continues through the final planning and design stages, where the design 
drawings, specifications, and contract documents are readied for the construction phase. During 
this process, input may also be provided by the individuals who will transform the plans into a 



6   Chapter 1     Introduction 
 

 

real-life structure. The steel detailer, fabricator and erector all have a role in that process, and add 
their respective expertise to make the design constructible. Thus, those responsible for the 
construction phase of the project often help improve the design by taking into account the actual 
on-site requirements for efficient construction. 

Once a project is completed and turned over to the owner, the work of the design teams is 
normally over. The operation and maintenance of the building, although major factors in the life 
of the structure, are not usually within the scope of the designer’s responsibilities, except when 
significant changes in building use are anticipated. In such cases, a design team should verify that 
the proposed changes can be accommodated. 

The basic goals of the design team can be summarized by the words safety, function, and 
economy. The building must be safe for its occupants and all others who may come in contact 
with it. It must neither fail locally nor overall, nor exhibit behavioral characteristics that test the 
confidence of rational human beings. To help achieve that level of safety, building codes and 
design specifications are published that outline the minimum criteria that any structure must meet. 

The building must also serve its owner in the best possible way to ensure that the 
functional criteria are met. Although structural safety and integrity are of paramount importance, 
a building that does not serve its intended purpose will not have met the goals of the owner. 

Last, but not least, the design, construction, and long-term use of the building should be 
economical. The degree of financial success of any structure will depend on a wide range of 
factors. Some are established prior to the work of the design team, whereas others are determined 
after the building is in operation. Nevertheless, the final design should, within all reasonable 
constraints, produce the lowest combined short- and long-term expenditures. 

The AISC Specification follows the same principles. The mission of the AISC Committee 
on Specifications is to “develop the practice-oriented specification for structural steel buildings 
that provide for life safety, economical building systems, predictable behavior and response, and 
efficient use.” Thus, this book emphasizes the practical orientation of this Specification. 

 
1.6 PARTS OF THE STEEL STRUCTURE 

 
All structures incorporate some or all of the following basic types of structural components: 
 

1. Tension members 
 
2. Compression members 
 
3. Bending members 
 
4. Combined force members 
 
5. Connections 
 
The first four items represent structural members. The fifth, connections, represents the 

contact regions between the structural members, which ensure that all components work together 
as a structure. 

Detailed evaluations of the strength, behavior, and design criteria for these members are 
presented in the following chapters: 

 
Tension members:  Chapter 4 
 
Compression members:  Chapter 5 
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reflect the limits of acceptable behavior of the structure. Based on these criteria, the structure is 
said to have reached a specific limit state. A strength failure is termed an ultimate limit state, 
whereas a failure to meet operational requirements, such as deflection, is termed a serviceability 
limit state. 

Regardless of the approach to the design problem, the goal of the designer is to ensure 
that the load on the structure and its resulting load effect, such as bending moment, shear force, 
and axial force, in all cases are sufficiently below each of the applicable limit states. This ensures 
that the structure meets the required level of safety or reliability. 

Three approaches to the design of steel structures are permitted by the AISC 
Specification: 

 
1. Allowable strength design (ASD) 
 
2. Load and resistance factor design (LRFD) 
 
3. Design by inelastic analysis 
 

The design approaches represent alternative ways of formulating the same problem, and all 
have the same goal. All three are based on the nominal strength of the element or structure. The 
nominal strength, most generally expressed as Rn, is determined in exactly the same way, from 
the exact same equations, whether used in ASD or LRFD. Some formulations of design by 
inelastic analysis, such as plastic design, also use these same nominal strength equations whereas 
other approaches to inelastic design model in detail every aspect of the structural behavior and do 
not rely on the equations provided through the Specification. The use of a single nominal strength 
expression for both ASD and LRFD permits the unification of these two design approaches. It 
will become clear throughout this book how this approach has simplified steel design for those 
who have struggled in the past with comparing the two available philosophies. The following 
sections describe these three design approaches, any one of which is an acceptable approach to 
structural steel design according to the AISC Specification. 

 
1.9 FUNDAMENTALS OF ALLOWABLE STRENGTH DESIGN (ASD) 
 

Prior to 2005, allowable strength design was referred to as allowable stress design. It is the oldest 
approach to structural design in use today and has been the foundation of AISC Specifications 
since the original provisions of 1923. Allowable stress design was based on the assumption that 
under actual load, stresses in all members and elements would remain elastic. To meet this 
requirement, a safety factor was established for each potential stress-producing state. Although 
historically ASD was thought of as a stress-based design approach, the allowable strength was 
always obtained by using the proper combination of the allowable stress and the corresponding 
section property, such as area or elastic section modulus. 

The current allowable strength design approach is based on the concept that the required 
strength of a component is not to exceed a certain permitted or allowable strength under normal 
in-service conditions. The required strength is determined on the basis of specific ASD load 
combinations and an elastic analysis of the structure. The allowable strength incorporates a factor 
of safety, Ω, and uses the nominal strength of the element under consideration. This strength 
could be presented in the form of a stress if the appropriate section property is used. As a result of 
doing this, the resulting stresses will most likely again be within the elastic range, although this is 
not a preset requirement of the Specification. 

The magnitude of the factor of safety and the resulting allowable strength depend on the 
particular governing limit state against which the design must produce a certain margin of safety. 
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Safety factors are obtained from the Specification. This requirement for ASD is provided in 
Section B3.2 of the Specification as 

 

 n
a

RR ≤
Ω

 (AISC B3-2) 

 
which can be stated as 

Nominal StrengthRequired Strength (ASD) Allowable Strength
Safety Factor

≤ =  

 
The governing strength depends on the type of structural element and the limit states 

being considered. Any single element can have multiple limit states that must be assessed. The 
safety factor specified for each limit state is a function of material behavior and the limit state 
being considered. Thus, it is possible for each limit state to have its own unique safety factor. For 
example, the limit state of yielding of a tension member is given by 

 
n y gP F A=  

 
where Fy is the steel yield strength and Ag is the gross area of the member. The safety factor is 

1.67.Ω=  Thus, for steel with a yield strength of 50 ksi, the allowable strength is 
 

50.0
30

1.67
gn

g
AP A= =

Ω
 

 
Design by ASD requires that the allowable stress load combinations of the building code 

be used. Loads and load combinations are discussed in detail in Chapter 2. 
 

1.10 FUNDAMENTALS OF LOAD AND RESISTANCE FACTOR DESIGN (LRFD) 
 

Load and resistance factor design explicitly incorporates the effects of the random variability of 
both strength and load. Because the method includes the effects of these random variations and 
formulates the safety criteria on that basis, it is expected that a more uniform level of reliability, 
and thus safety, for the structure and all of its components will be attained. 

LRFD is based on the concept that the required strength of a component under LRFD 
load combinations is not to exceed the design strength. The required strength is obtained by 
increasing the load magnitude by load factors that account for load variability and load 
combinations. The design strength is obtained by reducing the nominal strength by a resistance 
factor that accounts for the many variables that impact the determination of member strength. 
Load factors for LRFD are obtained from the building codes for strength design and will be 
discussed in Chapter 2. As for ASD safety factors, the resistance factors are obtained from the 
Specification. 

The basic LRFD provision is provided in Section B3.1 of the Specification as 
 

 u nR R≤ φ                                                      (AISC B3-1) 

which can be stated as 
 

Required Strength (LRFD) Resistance Factor Nominal Strength=Design Strength≤ ×  
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Again considering the limit state of yielding of a tension member, 
n y gP F A=  

 
and the resistance factor is 0.90φ = . For steel with a yield strength of 50 ksi, the design strength 
is 

0.90(50) 45n g gP A Aφ = =  
 

LRFD has been a part of the AISC Specifications since it was first issued in 1986. 
 

1.11 INELASTIC DESIGN 
 

The Specification permits a wide variety of formulations for the inelastic analysis of steel 
structures through the use of Appendix 1. Any inelastic analysis method will require that the 
structure and its elements be modeled in sufficient detail to account for all types of behavior. An 
analysis of this type must be able to track the structure’s behavior from the unloaded condition 
through every load increment to complete structural failure. The only inelastic design approach 
that will be discussed in this book is plastic design (PD). 

Plastic design is an approach that has been available as an optional method for steel 
design since 1961, when it was introduced as Part 2 of the then current Specification. The limiting 
condition for the structure and its members is attainment of the load that would cause the 
structure to collapse, usually called the ultimate strength or the plastic collapse load. For an 
individual structural member this means that its plastic moment capacity has been reached. In 
most cases, due to the ductility of the material and the member, the ultimate strength of the entire 
structure will not have been reached at this stage. The less stressed members can take additional 
load until a sufficient number of members have exhausted their individual capacities so that no 
further redistribution or load sharing is possible. At the point where the structure can take no 
additional load, the structure is said to have collapsed. This load magnitude is called the collapse 
load and is associated with a particular collapse mechanism. 

The collapse load for plastic design is the service load times a certain load factor. The 
limit state for a structure that is designed according to the principles of plastic design is therefore 
the attainment of a mechanism. For this to occur, all of the structural members must be able to 
develop the yield stress in all fibers at the most highly loaded locations. 

There is a fine line of distinction between the load factor of PD and the safety factor of 
ASD. The former is the ratio between the plastic collapse load and the service or specified load 
for the structure as a whole, whereas the latter is an empirically developed, experience-based term 
that represents the relationship between the elastic strength of the elements of the structure and 
the various limiting conditions for those components. Although numerically close, the load factor 
of plastic design and the factor of safety of allowable stress design are not the same parameter. 

 
1.12 STRUCTURAL SAFETY AND INTEGRITY 
 

The preceding discussions of design philosophies indicate that although the basic goal of any 
design process is to ensure that the end product is a safe and reliable structure, the ways in which 
this is achieved may vary substantially. 

In the past, the primary goal for safety was to provide an adequate margin against the 
consequences of overload. Load factor design and its offshoots were developed to take these 
considerations into account. In real life, however, many other factors also play a role. These 
include, but are not limited to the following: 

 
1. Variations of material strength 
 



 

2. 
 
3. 
 
4. 
 
5. 
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Since the load combinations and resistance and safety factors have been established, the 

reliability can be determined for specific design situations. The reliability index, β, is given in the 
Specification Commentary as 

          
( )

2 2

ln m m

R Q

R Q

V V
β =

+
                                             (AISC C-B3-2) 

 
where Rm is the mean resistance, Qm is the mean load effect, as discussed earlier, and VR and VQ 
are the coefficients of variation of resistance and load effect respectively. Design according to 
LRFD is given by         

u nR R≤ φ                                                     (AISC B3-1) 
 
where the required strength, Ru is another term for the load effect, Q, Rn is the nominal strength 
and ϕ is the resistance factor. The reliability of design is determined when the required strength is 
exactly equal to the available strength. Thus, Equation B3-1 can be rewritten as nQ R= φ . The 
load effect will depend on the load combination being considered. Thus, for the LRFD live load 
plus dead load combination, written in terms of the live-to-dead load ratio, L/D, 
 

 ( )( )1.2 1.6 1.2 1.6 nQ D L L D D R= + = + = φ                                      (1) 
 
From Ravindra and Galambos1 the mean resistance is given by 
 

 m n m m mR R M F P=                                                               (2) 
 

and the coefficient of variation of the resistance is given by 
 

 2 2 2
R m F PV V V V= + +                                                             (3) 

 
Mm is the mean of the ratio of the actual yield stress to the specified yield stress and VM is 

the coefficient of variation; Fm is the mean of the ratio of the actual section property to the 
Manual value and VF is the coefficient of variation; and Pm is the mean of the ratio of the test 
specimen strength to the predicted strength using the Specification equations and the actual 
material and geometric properties and VP is the coefficient of variation. 

 
Solving Equation 1 for Rn and substituting into Equation 2 yields 
         

( )( )1.2 1.6
m m m m

L D D
R M F P

+
=

φ
                   (4) 

 
Rearranging Equation 2 yields 

m
m m m

n

RM F P
R

=                                                              (5) 

                                                                                                                                                                                                         
1 Ravindra, M.K. and Galambos, T.V. (1978), “Load and Resistance Factor Design for Steel,” Journal of the Structural 

Division, American Society of Civil Engineers, Vol. 104, No. ST9, September, pp. 1,337–1,353. 
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Thus, combining Equations 4 and 5 gives  

( )( )1.2 1.6 m
m

n

RR D L D
R

⎛ ⎞
= + ⎜ ⎟φ⎝ ⎠

                                              (6) 

 
From Ravindra and Galambos the mean load effect for dead load plus live load is 
 

m m mQ D L= +                         (7) 
 

which can, with some manipulation, be rewritten as 
     

( )( )( )m m m m mQ D L D D L L L D D= + = +                 (8) 
 
They also give the coefficient of variation of the load effect which can be written as a 

function of the live-to-dead load ratio as 
 

( )( ) ( )( )( )2 2
m D m L

Q
m

D D V L L L D V
V

Q

+
=                                        (9) 

 
If Equations 6 and 8 are substituted into Equation C-B3-2 the reliability index, β, will be 

given in terms of the live-to-dead load ratio, L D  , and the resistance factor, ϕ. Thus, 
 

( )
( ) ( )( )2 2

1.2 1.61 ln m

n m mR Q

L DR
R D D L L L DV V

⎡ ⎤⎛ ⎞+
β = ⎢ ⎥⎜ ⎟⎜ ⎟φ ++ ⎢ ⎥⎝ ⎠⎣ ⎦

                           (10) 

 
 
For LRFD, the live plus dead load combinations are 1.4D and (1.2D + 1.6L). The 

effective dead load factor as a function of the live-to-dead-load ratio can be taken as   
 

( )LRFD

1.4
max

1.2 1.6i

i
L D

⎡ ⎤
γ = ⎢ ⎥+⎣ ⎦

                                       (11) 

 
and the mean load effect dead load multiplier as 

 
( )( )im m m i

Q D D L L L D= +                                        (12) 
 
Thus, Equation 10 can be generalized to address other LRFD load combinations as 

follows: 
( )

( ) ( )( )
LRFD

2 2 2 2

1.2 1.61 1ln ln i

ii

m m

n m m n mR Q R Q

L DR R
R D D L L L D R QV V V V

⎡ ⎤⎛ ⎞ ⎡ ⎤+ ⎛ ⎞γ
β = =⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟φ + φ+ +⎢ ⎥ ⎝ ⎠⎣ ⎦⎝ ⎠⎣ ⎦

          (13) 

 
where LRFDiγ  is the effective LRFD load factor for the load combination under consideration, imQ
is the mean load effect multiplier for that load combination, and 

iQV  is the coefficient of variation 
of the load effect, all as a function of the varying load ratio as indicated by the   subscript i. 
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To convert Equation 13 for use with ASD load combinations, LRFDiγ  is replaced by ASDiγ
and nRφ  is replaced by nR Ω . Thus, Equation 13 becomes 

      

( )
ASD

2 2

1 ln i

ii

m

n mR Q

R
R QV V

⎡ ⎤⎛ ⎞γ
β = ⎢ ⎥⎜ ⎟Ω⎢ ⎥+ ⎝ ⎠⎣ ⎦

                                       (14) 

 
Based on extensive studies for A992 steel (Bartlett et al.2) and the original work for the 

development of the 1986 AISC Specification by Ravindra and Galambos, the following values 
can be used: 

Mm = 1.055;   VM = 0.058 
Fm = 1.00;   VF = 0.05 
Pm = 1.02;   VP = 0.06 

Thus, 
( )( )( )

( ) ( ) ( )2 2 2

1.055 1.00 1.02 1.076

0.058 0.05 0.06 0.097

m n n

R

R R R

V

= =

= + + =

 

 
Based on Galambos et al.3 (1982), the ratio of mean to code specified dead and live loads 

can be taken as, for dead load    
Dm/D = 1.05;  VD = 0.10 

 
and for live load    

Lm/L = 1.00;  VL = 0.25 
 

The values for imQ  and imV  will be functions of the live-to-dead load ratio. 
The reliability index, β, based on Equations 13 and 14, for a live-to-dead load ratio from 

1.0 to 5.7 is presented in Figure 1.18 for a compact wide-flange beam under uniform moment for 
both LRFD and ASD. The figure is based on the load combination of live load plus dead load and 
statistical variations consistent with those used in the development of the Specification. It is seen 
that the reliability of design by LRFD is somewhat more uniform for this condition than design 
by ASD and that at a live to dead load ratio of approximately 3, the two approaches yield the 
same reliability. The higher the reliability index is, the safer the structure. Regardless of the 
numerical value of β, any structure that meets the requirements of the Specification will be 
sufficiently safe. A more detailed discussion of the statistical basis of steel design is available in 
Load and Resistance Factor Design of Steel Structures.4 Since the introduction of the 2005 AISC 
Specification, design by ASD and LRFD have essentially been equivalent and differ only by the 
effect of load combinations. 

                                                                                                                                                                                                         
2 Bartlett, R.M., Dexter, R.J., Graeser, M.D., Jelinek, J.J., Schmidt, B.J. and Galambos, T.V. (2003), “Updating Standard 

Shape Material Properties Database for Design and Reliability,” Engineering Journal, American Institute of Steel 
Construction, Vol. 40, No. 1, pp. 2–14. 

3 Galambos, T.V., Ellingwood, B., MacGregor, J.G. and Cornell, C.A. (1982), “Probability-Based Load Criteria: Assessment 
of Current Design Practice,” Journal of the Structural Division, American Society of Civil Engineers, Vol. 108, No. ST5, 
May, pp. 959–977. 

4 Geschwindner, L. F., Disque, R. O., and Bjorhovde, R. Load and Resistance Factor Design of Steel Structures. Englewood 
Cliffs, NJ: Prentice Hall, 1994. 
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Figure 1.18    Reliability Index vs Live-to-Dead Load Ratio for Compact Simply Supported 
Wide-Flange Beams with Uniform Moment 

 
General structural integrity requires a continuous load path to the ground for resisting all 

gravity and lateral loads that might be applied to the structure. With the introduction of the 2016 
AISC Specification, provisions that address structural integrity beyond these general requirements 
have been introduced. The requirements in Section B3.9 are beyond normal strength requirements 
and are intended to improve the connectivity of the structure and thus the performance of the 
structure under undefined extraordinary events. These requirements apply only to a small set of 
structures where additional structural integrity is mandated. 

 
1.13 LIMIT STATES 
 

Regardless of the design approach, ASD or LRFD, or the period in history of the design’s 
execution, 1923 or 2018, all design is based on the ability of a structure or its elements to resist 
load. This ability is directly related to how an element carries that load and how it might be 
expected to fail, which is referred to as the element’s limit state. Each structural element can have 
multiple limit states, and the designer is required to determine which of these limit states will 
actually limit the structure’s strength. 

There are two types of limit states to be considered: strength limit states and 
serviceability limit states. Strength limit states are those limiting conditions that, if exceeded, will 
lead to collapse of the structure or a portion of the structure, or to such serious deformations that 
the structure can no longer be expected to resist the applied load. Strength limit states are 
identified by the Specification, and guidance is provided for determination of the nominal 
strength, Rn, the safety factor, Ω, and the resistance factor, φ. Examples of the more common 
strength limit states found in the Specification are yielding, rupture, and buckling. 

Serviceability limit states are not as well defined as strength limit states. If a 
serviceability limit state is exceeded, it usually means that the structure has reached some 
performance level that someone would find objectionable. The Specification addresses design for 
serviceability in Chapter L and defines serviceability in Section L1 as “a state in which the 
function of a building, its appearance, maintainability, durability, and the comfort of its occupants 
are preserved under typical usage.” Chapter L lists deflections, drift, vibration, wind-induced 
motion, thermal expansion and contraction, and connection slip as items to be considered, 
although no specific limitations are given for any of these limit states. 
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Strength and serviceability limit states will be addressed throughout this book as 
appropriate for the elements or systems being considered. 

 
1.14 BUILDING CODES AND DESIGN SPECIFICATIONS 
 

The design of building structures is regulated by a number of official, legal documents that are 
known commonly as building codes. These cover all aspects of the design, construction, and 
operation of buildings and are not limited to just the structural design aspects. 

The model code currently in use in the United States is the ICC International Building 
Code. Model codes are published by private organizations and have been adopted, in whole or in 
part, by state and local governments as the legal requirements for buildings within their area of 
jurisdiction. In addition to the model codes, cities and other governmental entities have written 
their own local building codes. Unfortunately, since the adoption of a building code is in great 
part a political activity, the regulations in use across the country are not uniform. A new 
International Building Code is published every 3 years but not adopted as quickly as issued. Thus, 
building codes with effective dates from 2003 to 2015 are still in use. In addition, governmental 
bodies will often adopt a model code with local amendments. Because of the technical nature of 
the AISC Specification, local amendments normally do not affect those aspects of steel design but 
they often do modify the loading definitions and thus do ultimately affect steel design. 

To the structural engineer, the most important sections of a building code deal with the 
loads that must be used in the design, and the requirements pertaining to the use of specific 
structural materials. The load magnitudes are normally taken from Minimum Design Loads for 
Buildings and Other Structures, a national standard published by the American Society of Civil 
Engineers (Structural Engineering Institute) as ASCE/SEI 7. The loads presented in ASCE/SEI 7 
may be altered by the model code authority or the local building authority upon adoption, 
although this practice adds complexity for designers who may be called upon to design structures 
in numerous locations under different political entities. Throughout this book, ASCE/SEI 7 will 
be referred to simply as ASCE 7 as it is most commonly referred to in the profession.  

The AISC Specification is incorporated into the model building code by reference. The 
Specification, therefore, becomes part of the code, and thus part of the legal requirements of any 
locality where the model code is adopted. Locally written building codes also exist and the AISC 
Specification is normally adopted within those codes by reference also. Through these adoptions 
the AISC Specification becomes the legally binding standard by which all structural steel 
buildings must be designed. However, regardless of the Specification rules, it is always the 
responsibility of the engineer to ensure that their structure can carry the intended loads safely, 
without endangering the occupants. 

 
1.15 INTEGRATED DESIGN PROJECT 
 

This section introduces a building to be used in subsequent chapters of this book as an integrated 
design project. It is a relatively open-ended design project in that only a limited set of design 
parameters are set at this point. Several options will be presented in subsequent chapters so that 
the project can be tailored at the desire of the instructor. 

The building is a four-story office building with one story below grade. It is located in 
Downers Grove, Illinois, at approximately 42°N latitude and 88°W longitude. This is a 102,000 
ft2 building with approximately 25,500 ft2 per above-grade floor. For the first three floors, the 
floor-to-floor height is 13 ft 6 in. For the top floor, the floor-to-roof height is 14 ft 6 in. The 
below-grade floor-to-floor height is 15 ft 6 in. The façade is a lightweight metal curtain wall that 
extends 2.0 ft above the roof surface, and there is a 6.0 ft screen wall around the middle bay at the 
roof to conceal mechanical equipment and roof access. All steel will receive spray-applied 
fireproofing as necessary.  
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12.  Describe the difference between a strength limit 
state of a structure and a serviceability limit state. 
 
13. Give a description of both the LRFD and ASD 
design approaches. What is the fundamental 
difference between the methods? 
 
14. Provide a brief description of plastic design 
(PD).  

15. Identify three sources of variation in the strength 
of a structure and its components. 
 
16. Provide three examples of strength limit states. 
 
17. Provide three examples of serviceability limit 
states. 

 


