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With the occurrence of this deflection, the applied load of 400 kips is now at an eccentricity from 
the member in its displaced position. Thus, an additional moment is induced into the member 
equal to  

( )
additional

400 0.715
23.8 ft-kips

12
M = =  

 
The addition of this additional moment to the original internal moment of 200 ft-kips yields the 
second-order moment, 

2 200 23.8 224 ft-kipsndM = + =  
 

Thus, there is an amplification of the moment by 224/200 = 1.12. If this were the final case, 
second-order analysis would be fairly simple. Unfortunately, the additional moment just 
determined also causes additional deflection, which, in turn, causes additional moment. This 
process continues until equilibrium is reached. The process is an iterative one, and is nonlinear. 

A second example is a column similar to that shown in Figure 8.2b. The same W12×96 
member is used, and the axial force is again Pu = 400 kips. In this case, the column is a cantilever 
with a moment of Mu = 200 ft-kips applied at the top. This moment will cause a horizontal 
deflection at the top of the column of 

( ) ( )
( )( )

22 200 20 1728
2.86 in.

2 2 29,000 833
uM L
EI

Δ = = =  

 
In this displaced position, the 400 kip load is now at an eccentricity from the fixed support, which 
induces an additional moment 

( )
additional

400 2.86
95.3 ft-kips

12
M = =  

 
The addition of this additional moment to the original support moment of 200 ft-kips yields the 
second-order moment 

2 200 95.3 295 ft-kipsndM = + =  
 

which is an increase of 1.48 times the first-order moment. Again, this is not the end of the 
required calculations; this additional moment causes additional deflections and additional 
moments. 

Both of these second-order effects are significant in real structures and must be accounted 
for in the design of beam-columns according to Section C1 of the Specification. Procedures for 
incorporating these effects will be addressed once an overall approach to beam-column design is 
established. 

 
8.3 INTERACTION PRINCIPLES 
 

The interaction of axial load and bending within the elastic response range of a beam-
column can be investigated through the straightforward techniques of superposition. This 
is the approach normally considered in elementary strength of materials in which the 
normal stress due to an axial force is added to the normal stress due to a bending moment. 

Although the superposition of individual stress effects is both simple and correct 
for elastic stresses, there are significant limitations when applying this approach to the 
limit states of real structures. These include: 
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1. Superposition of stress is correct only for behavior within the elastic 
range, and only for similar stress types. 

2. Superposition of strain can be extended only into the inelastic range when 
deformations are small. 

3. Superposition cannot account for member deformations or stability effects 
such as local buckling. 

4. Superposition cannot account for structural deflections and system 
stability. 

With these limitations in mind, it is desirable to develop interaction equations that 
will reflect the true limit states behavior of beam-columns. Any limit state interaction 
equation must reflect the following characteristics: 

 
Axial Load 

1. Maximum column strength 

2. Individual column slenderness 

Bending Moment 

1. Lateral support conditions 

2. Sidesway conditions 

3. Member second-order effects 

4. Structure second-order effects 

5. Moment variation along the member 

The resulting equations must also provide a close correlation with test results and 
theoretical analyses for beam-columns, including the two limiting cases of pure bending 
and pure compression. 

Application of the resulting interaction equations can be regarded as a process of 
determining available axial strength in the presence of a given bending moment or 
determining the available moment strength in the presence of a given axial load. An 
applied bending moment consumes a portion of the column strength, leaving a reduced 
axial load strength. When the two actions are added together, the resulting total load must 
not exceed the total column strength. Conversely, the axial load can be regarded as 
consuming a fraction of the moment strength. This fraction, plus the applied moments, 
must not exceed the maximum beam strength. 

 
8.4 INTERACTION EQUATIONS 

 
A simple form of the three-dimensional interaction equation is 

 
 

1.0ryr rx

c cx cy

MP M
P M M

≤+ +  (8.1) 

 
where the terms with the subscript r represent the required strength and those with the subscript c 
represent the available strength. 

This interaction equation is plotted in Figure 8.3. The figure shows that this results in a 
straight line representation of the interaction between any two of the load components. The 
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horizontal plane of Figure 8.3 represents the interaction of moments in the two  principal axis 
directions, called biaxial bending, whereas the vertical planes represent the interaction of axial 
compression plus either major or minor axis bending. It should also be apparent that the three-
dimensional aspect is represented by a plane with intercepts given by the straight lines on the 
three coordinate planes. 

The interaction equations in Chapter H of the Specification result from fitting interaction 
equations that are similar to the form of Equation 8.1 to a set of data developed from an analysis 
of forces and moments for various plastic stress distributions on a stub column. Figure 8.4a shows 
the actual analysis results for a W14×82 stub column. Figure 8.4b shows the same data plotted as 
functions of the normalized axial strength Py and flexural strength Mp. In both cases, the influence 
of length on the axial or flexural strength is not included. Using curves of this type, developed for 
a wide variety of steel beam-column shapes, two equations were developed that are conservative 
and accurate for x-axis bending. When applied to y-axis bending, they are significantly more 
conservative; however, simplicity of design and the infrequent use of weak axis bending justify 
this extra level of conservatism. 

An additional modification to these equations is required to account for length effects. 
Rather than normalizing the curves on the yield load and the plastic moment as was done in 
Figure 8.4b, the equations were developed around the nominal strength of the column and the 
nominal strength of the beam. The resulting equations are Equations H1-1a and H1-1b in the 
Specification and are plotted in Figure 8.5.  

The equations shown here consider bending about both principal axes, whereas the plot in 
Figure 8.5 is for single-axis bending. 

For 0.2r

c

P
P

≥ , 

 8 1.0
9

ryr rx

c cx cy

MP M
P M M

⎛ ⎞
+ + ≤⎜ ⎟

⎝ ⎠
 (AISC H1-1a) 

For 0.2r

c

P
P

< , 

 1.0
2

ryr rx

c cx cy

MP M
P M M

⎛ ⎞
+ + ≤⎜ ⎟
⎝ ⎠

 (AISC H1-1b) 

where 
 Pr = required compressive strength, kips 
 Pc = available compressive strength, kips 
 Mr = required flexural strength, ft-kips 
 Mc = available flexural strength, ft-kips 
 x = subscript relating symbol to strong axis bending 
 y = subscript relating symbol to weak axis bending 

 
It is important to note that 
1. The available column strength, Pc, is based on the axis of the column with the 

largest slenderness ratio. This is not necessarily the axis about which bending takes 
place. 

2. The available bending strength, Mc, is based on the bending strength of the beam 
without axial load, including the influence of all the beam limit states. 
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discussed in Chapter 6. Later in this chapter the requirements for bracing to ensure that a structure 
can be considered a braced frame, as found in Appendix 6, are discussed. 

If the column in a braced frame is rigidly connected to a girder, bending moments result 
from the application of the gravity loads to the girder. These moments can be determined through 
a first-order elastic analysis. The additional second-order moments resulting from the 
displacement along the column length can be determined through the application of an 
amplification factor. 

The full derivation of the amplification factor has been presented by various authors.1,2 
Although this derivation is quite complex, a somewhat simplified derivation is presented here to  
help establish the background. An axially loaded column with equal and opposite end moments is 
shown in Figure 8.7a. This is the same column that was discussed in Section 8.2. The resulting 
moment diagram is shown in Figure 8.7b where the moments from both the end moments and the 
secondary effects are given.  

The maximum moment occurring at the mid-height of the column, Mr, is shown to be 
 

1 2δrM M P= +  
 
The amplification factor is defined as 

1 2

1 1

δrM M PAF
M M

+
= =  

 
Rearranging terms yields 

2

1 2

1
δ1 –
δ

AF P
M P

=

+

 

 
Two simplifying assumptions will be made. The first is based on the assumption that δ is 

sufficiently small that 
2 1

1 2 1

δ δ
δM P M

≈
+

 

 
and the second, using the beam deflection, δ1 = M1 L2/8EI, assumes that 

2
1

2 2
1

8 π
δ e
M EI EI P

L L
= ≈ =  

 
Because these simplifying assumptions are in error in opposite directions, they tend to be 
offsetting. This results in a fairly accurate prediction of the amplification. Thus, 

1
1 – / e

AF
P P

=                                                         (8.2) 

 
A comparison between the actual amplification and that given by Equation 8.2 is shown in Figure 
8.8. 

The discussion so far has assumed that the moments at each end of the column are equal 
and opposite, and that the resulting moment diagram is uniform. This is the most severe loading 
case for a beam-column braced against translation. If the moment is not uniformly distributed, the  

                                                                                                                                                                                                         
1Galambos, T. V., Structural Members and Frames. Englewood Cliffs, NJ: Prentice Hall, Inc., 1968. 
2Johnson, B. G., Ed., Guide to Stability Design Criteria for Metal Structures, 3rd ed., SSRC, New York: Wiley, 1976. 
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SOLUTION Step 1: Determine the appropriate load combinations. From ASCE 7, Section 2.3, 
the following two combinations are considered. 
 
ASCE 7 load combination 3 

1.2D + 1.6(Lr or S or R) + (0.5L or 0.5W) 
 
ASCE 7 load combination 4 

1.2D + 1.0W + 0.5L + 0.5(Lr or S or R) 
 

 Step 2: Determine the factored roof gravity loads for each load combination. For 
load combination 3 

1.2(50) + 1.6(20) = 92 psf 
 
and for load combination 4 

1.2(50) + 0.5(20) = 70 psf 
 
Because column A1 does not participate in the lateral load resistance, the 
worst case loading will use the uniformly distributed roof load of 92 psf. 
 

 Step 3: Carry out a preliminary first-order analysis. Because the structure is 
indeterminate, a number of approaches can be taken. If an arbitrary 6:1 
ratio of moment of inertia for beams to columns is assumed, a moment 
distribution analysis yields the moment and force given in Figure 8.9b. 
Thus, the column will be designed to carry 
Pu = 29.1 kips and Mu = 37.7 ft-kips 
 

 Step 4: Select a trial size for column A1 and determine its compressive strength 
and bending strength. 
 
Try W10×33. (Section 8.8 addresses trial section selection.)  
 
From Manual Table 1-1 
 

A = 9.71 in.2, rx = 4.19 in., ry = 1.94 in., Ix = 171 in.4,  rx/ry = 2.16 
 

The column is oriented so that bending is about the x-axis of the column. It 
is braced against sidesway by the diagonal braces in panel A2–A3 and is 
pinned at the bottom and rigidly connected at the top in the plane of 
bending. The column is also braced out of the plane of bending by the brace 
in panel A1–B1. Because this column is part of a braced frame, K = 1.0 can 
be used. Although the Specification permits the use of a lower K-factor if 
justified by analysis, this is not recommended because it would likely 
require significantly more stiffness in the braced panel. 
 
From Manual Table 4-1a, for y-axis buckling 

φPn = 214 kips for Lc = 16.0 ft 
 
From Manual Table 3-10 

φMn = 113 ft-kips for Lb = 16.0 ft 
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 Step 5: Check the W10×33 for combined axial load and bending in-plane. 
 
For an unbraced length of 16 ft, the Euler load is 

2 2

1 2 2
1

(29,000)(171) 1330 kips
(16.0(12))e

c

EIP
L
π π

= = =  

 
The column is bent in single curvature between bracing points, the end 
points, and the moment at the base is zero, so M1/M2 = 0.0. Thus 
 

Cm = 0.6 – 0.4(0.0) = 0.6 
 
Therefore, the amplification factor, with α  = 1.0, becomes 

( )1

1

0.6 0.613  1.0
1.0 29.11 1 –

1330

m

r

e

CB P
P

= = = ≤
α

−
 

 
The Specification requires that B1 not be less than 1.0. Therefore, taking B1 
= 1.0, 
 

Mrx = B1(Mx) = 1.0(37.7) = 37.7 ft-kips 
 
To determine which equation to use, calculate 

29.1 0.136 < 0.2
214

u

n

P
P

= =
φ

 

 
Therefore, use Equation H1-1b 

1.0
2

37.70.5(0.136) 0.402 < 1.0
113

u u

n n

P M
P M

+ ≤
φ φ

+ =

 

 
Thus, the W10×33 will easily carry the given loads. 
 
The solution to Equation H1-1b indicates that there is a fairly wide extra 
margin of safety. It would be appropriate to consider a smaller column for a 
more economical design. 
 

 
EXAMPLE 8.1b 
Braced Frame 
Column Design for 
Combined Axial 
and Bending by 
ASD 

Goal: Design column A1 in Figure 8.9 for the given loads using the ASD 
provisions and the second-order amplification factor provided in Appendix 
8 of the Specification. 
 

Given: The three-dimensional braced frame for a single-story structure is given in 
Figure 8.9. Rigid connections are provided at the roof level for columns 
A1, B1, A4, and B4. All other column connections are pinned. Dead Load 
= 50 psf, Snow Load = 20 psf, Roof Live Load = 10 psf, and Wind Load = 
20 psf horizontal. Use A992 steel. Assume that the X-bracing is sufficiently 
stiffer than the rigid frames to resist all lateral load. 
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SOLUTION Step 1: Determine the appropriate load combinations. From ASCE 7, Section 2.3, 
the following two combinations are considered. 
 
ASCE 7 load combination 3 

D + (Lr or S or R) 
 

ASCE 7 load combination 6 
D + 0.75(0.6W) +  0.75(Lr or S or R) 

 
 Step 2: Determine the factored roof gravity loads for each load combination. For 

load combination 3 
50 + 20 = 70 psf 

 
and for load combination 6 

50 + 0.75(20) = 65 psf 
 

Because column A1 does not participate in the lateral load resistance, the 
worst case loading will use the uniformly distributed roof load of 70 psf. 
 

 Step 3: Carry out a preliminary first-order analysis. Because the structure is 
indeterminate, a number of approaches can be taken. If an arbitrary 6:1 
ratio of moment of inertia for beams to columns is assumed, a moment 
distribution analysis yields the moment and force given in Figure 8.9c. 
Thus, the column will be designed to carry 

Pa = 22.1 kips and Ma = 28.7 ft-kips 
 

 Step 4: Select a trial size for column A1 and determine its compressive strength 
and bending strength. 
 
Try W10×33. (Section 8.8 addresses trial section selection.) 
 
From Manual Table 1-1 
 

A = 9.71 in.2, rx = 4.19 in., ry = 1.94 in., Ix = 171 in.4, rx/ry = 2.16 
 

The column is oriented so that bending is about the x-axis of the column. It 
is braced against sidesway by the diagonal braces in panel A2–A3 and is 
pinned at the bottom and rigidly connected at the top in the plane of 
bending. The column is also braced out of the plane of bending by the brace 
in panel A1–B1. Because this column is part of a braced frame, K = 1.0 can 
be used. Although the Specification permits the use of a lower K-factor if 
justified by analysis, this is not recommended because it would likely 
require significantly more stiffness in the braced panel. 
 
From Manual Table 4-1a for y-axis buckling 

142 kips for 16.0 ftn cP LΩ = =   
 

From Manual Table 3-10 
74.9 ft-kips for 16.0 ftn bM LΩ = =   
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 Step 5: Check the W10×33 for combined axial load and bending in-plane. 
 
For an unbraced length of 16 ft, the Euler load is 

2 2

1 2 2
1

(29,000)(171) 1330 kips
(16.0(12))e

c

EIP
L
π π

= = =  

 
The column is bent in single curvature between bracing points, the end 
points, and the moment at the base is zero, so M1/M2 = 0.0. Thus 
 

Cm = 0.6 – 0.4(0.0) = 0.6 
 

Therefore, the amplification factor, with α = 1.6. becomes 

( )1

1

0.6 0.616  1.0
1.6 22.11 1 –

1330

m

r

e

CB P
P

= = = ≤
α

−
 

 
The Specification requires that B1 not be less than 1.0. Therefore, taking B1 
= 1.0, 

Mrx = B1(Mx) = 1.0(28.7) = 28.7 ft-kips 
 

To determine which equation to use, calculate 
22.1 0.156 < 0.2
142

u

n

P
P

= =
Ω

 

 
Therefore, use Equation H1-1b 

1.0
2

28.70.5(0.156) 0.461 < 1.0
74.9

a a

n n

P M
P M

+ ≤
Ω Ω

+ =

 

 
Thus, the W10×33 will easily carry the given loads. 
 
The solution to Equation H1-1b indicates that there is a fairly wide extra 
margin of safety. It would be appropriate to consider a smaller column for a 
more economical design. 

 
 
8.6 Moment Frames 
 

A moment frame depends on the stiffness of the beams and columns that make up the frame for 
stability under gravity loads and under combined gravity and lateral loads. Unlike braced frames, 
there is no external structure to lean against for stability. Columns in moment frames are 
subjected to both axial load and moment and experience lateral translation. 

The same interaction equations, Equations H1-1a and H1-1b, are used to design beam-
columns in moment frames as were previously used for braced frames. However, in addition to 
the member second-order effects discussed in Section 8.5, there is the additional second-order 
effect that results from the sway or lateral displacement of the frame. 
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 2
2

11

1

1 –
B P

HL

Δ
= =

ΔΔ
 (8.7) 

 
Considering that the typical beam-column will be part of some larger structure, this 

equation must be modified to include the effect of the multistory and multibay characteristics of 
the actual structure. This is easily accomplished by summing the total gravity load on the columns 
in the story and the total lateral load in the story. Thus, Equation 8.7 becomes 

 2
1

1

1 –
B P

HL

=
Σ Δ
Σ

 (8.8) 

 
This amplification factor is essentially that given in Appendix 8 of the Specification as 

Equation A-8-6, when combined with Equation A-8-7 

 2

 

1 1 1.0α α1 – 1 –story story H

e story M

B P P
P R HL

= = ≥
Δ

                            (AISC A-8-6) 

where 
Pstory = total gravity load on the story 

Pe story = measure of lateral strength of the structure = M
H

HLR
Δ

     (AISC A-8-7) 

ΔH = story drift from a first-order analysis due to the lateral load, H 
 
α = 1.0 for LRFD and 1.6 for ASD to account for the nonlinear behavior of the structure 
at its ultimate strength 

1 0.15 mf
M

story

P
R

P
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

                                     (AISC A-8-8) 

Pmf = the total vertical load in columns that are part of the lateral load resisting system 
 

The variable RM  accounts for the influence of the member effect on the sidesway displacement 
that could not be accounted for in the simplified derivation above. If all the columns are moment 
frame columns, Pmf/Pstory = 1.0 and RM = 0.85. For braced frames, Pmf = 0 and RM = 1.0. For frames 
with a combination of columns resisting lateral load through bending and gravity only or leaning 
columns, the value of RM will be between these limits. 

It is often desirable to limit the lateral displacement, or drift, of a structure during the 
design phase. ASCE 7 Appendix C Commentary provides some general guidance. This limit can 
be defined using a drift index, which is the story drift divided by the story height, ΔH/L. The 
design then proceeds by selecting members so that the final structure performs as desired. This is 
similar to beam design, where deflection is the serviceability criterion. Because a limit on the 
drift index can be established without knowing member sizes, it can be used in Equation A-8-6; 
thus an analysis with assumed member sizes is unnecessary. 

With this amplification for sidesway, the moment, Mr, to be used in Equations AISC H1-
1a and AISC H1-1b, can be evaluated. Mr must include both the member and structure second-
order effects. Thus, a first-order analysis without sidesway is carried out, yielding moments, Mnt, 
that is without translation, to be amplified by B1. Next, a first-order analysis including lateral 
loads and permitting translation is carried out. This yields moments, Mlt, with translation, to be 
amplified by B2. The resulting second-order moment is 

 1 2r nt ltM B M B M= +                                     (AISC A8-1) 
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where 
 B1 is given by Equation A-8-3 

 B2 is given by Equation A-8-6 

 Mnt = first-order moments when the structure is not permitted to translate laterally 

 Mlt = first-order moments that result from just the lateral translation 

 
Mlt could include moments that result from unsymmetrical frame properties or loading as well as 
from lateral loads. In most real structures, however, moments resulting from this lack of 
symmetry are usually small and are thus often ignored. 

The second-order force is 
 2r nt ltP P B P= +                                             (AISC A-8-2) 

 
The sum of Pnt and Plt for the entire structure will equal the total gravity load on the 

structure, since the sum of Plt will be zero. For the individual column, however, it is important to 
amplify the portion of the individual column force that comes from the lateral load. 

For situations where there is no lateral load on the structure, it may be necessary to 
incorporate a minimum lateral load in order to capture the second-order effects of the gravity 
loads. This is covered in Section 8.7 where the three methods provided in the Specification for 
treating stability analysis and design are discussed. 

 
EXAMPLE 8.2a 
Moment Frame 
Strength Check for 
Combined 
Compression and 
Bending by LRFD 

Goal: Using the LRFD provisions, determine whether the W14×90, A992 column 
shown in Figure 8.11 is adequate to carry the imposed loading. 
 

Given: An exterior column from an intermediate level of a multi-story moment 
frame is shown in Figure 8.11. The column is part of a braced frame out of 
the plane of the figure. Figure 8.11a shows the elevation of the frame with 
the member to be checked labeled AB. The same column section will be 
used for the level above and below the column AB. A first-order analysis of 
the frame for gravity loads plus the minimum lateral load (the minimum 
lateral load will be discussed in Section 8.7) results in the forces shown in 
Figure 8.11b, whereas the results for gravity plus wind are shown in Figure 
8.11c. Assume that the frame drift under service loads is limited to 
height/300 for a story shear, H = 148 kips. 
 

SOLUTION Step 1: Determine the column effective length factor in the plane of bending. 
 
Using the effective length alignment chart introduced in Chapter 5 and 
given in Commentary Figure C-A-7.2, determine the effective length for 
buckling in the plane of the moment frame. At each joint there are two 
columns and one beam framing in. Thus, 

( )
( )

9992
12.5 2.28
2100 
30.0

c
A B

g

I L
G G

I L

⎛ ⎞
⎜ ⎟Σ ⎝ ⎠= = = =

Σ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Thus, from Figure 5.20, K = 1.66. 
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 Step 2: Determine the controlling effective length. 

 
With rx/ry = 1.66 for the W14 × 90, 
 

( ) ( ) ( ) ( )1.66 12.5
12.5 ft

1.66
x

cx eff eff
x y

KL
L KL

r r
= = = =  

 
Lcy = KLy = 1.0(12.5) = 12.5 ft 

 
 Step 3: Since the effective length about each axis is 12.5 ft, determine the column 

design axial strength using Lc = 12.5. 
 
From the column tables, Manual Table 4-1a, for Lc = 12.5 ft, 
φPn = 1060 kips 
 

 Step 4: Determine the first-order moments and forces for the loading combination 
that  includes wind, 1.2D +0.5L + 1.0W. 
 
The column end moments given in Figure 8.11c are a combination of 
moments resulting from a nonsway gravity load analysis and a wind 
analysis: 
 
Moment for end A: 

Mnt = 96.7 ft-kips 
Mlt = 154 ft-kips 

Moment for end B: 
Mnt = 48.3 ft-kips 
Mlt = 154 ft-kips 

Compression: 
Pnt = 354 kips 
Plt = 99.0 kips 
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 Step 5: Determine the second-order moments by amplifying the first-order 
moments. 
 
No-translation amplification: The no-translation moments must be 
amplified by B1. From Figure 8.11c it is seen that the end moments bend 
the column in reverse curvature: 

( )

1

2

1 2

2 2

1 2 2
1

48.3 0.50
96.7

0.6 0.4 0.6 – 0.4(0.50) 0.4

π (29,000)(999) 12,700  kips
(1.0(12.5)(12))

m

e
c

M
M

C M M

EP
L

= =

= − = =

π
= = =

 

 
Thus, with α = 1.0 for LRFD and Pr = 354 + 99 = 453 kips, Equation A-8-3 
yields 

1

1

0.4 0.415 < 1.0(1.0)(453)1 1–
12,700

m

r

e

CB P
P

= = =
α

−
 

Therefore, B1 = 1.0. 
 
Translation amplification: The translation forces and moments must be 
amplified by B2. The design drift limit of height/300 and  Equation A-8-6 
are used to determine B2. 
 
The total service lateral load on this story is given as 

H = 148 kips 
 
Additional given information is that the total gravity load for this load   
combination in Figure 8.11c is 

Pstory = 2110 kips 
 
The drift limit under the service lateral load of 148 kips is 

ΔH = L/300 = 12.5(12)/300 = 0.50 in. 
 
Remember that in the calculation of B2, H can be taken as any convenient 
magnitude, as long as ΔH is the corresponding displacement. This is 
because it is the ratio of H to ΔH that is used in the determination of Pe story. 
 
Thus, with α = 1.0 for LRFD and RM = 0.85 assuming all columns are 
moment frame columns, Equation A-8-7 gives 
 

 
0.85(148)(12.5)(12) 37,700 kips

0.50
M

e story
H

R HLP = = =
Δ

 

 
and Equation A-8-6 gives 

2

 

1 1 1.06>1.0
(1.0)21101 1 –
37,700

story

e story

B P
P

= = =
α ⎛ ⎞− ⎜ ⎟

⎝ ⎠
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  Thus, the second-order compressive force and moment are 
Pr = Pnt + B2(Plt) = 354 + 1.06(99) = 459 kips 

Mr = B1(Mnt) + B2(Mlt) = 1.0(96.7) + 1.06(154) = 260 ft-kips 
 

These represent the required strength for this load combination. 
 

 Step 6: Determine whether the W14×90 will provide the required strength based on 
the appropriate interaction equation. 
 
The unbraced length of the compression flange for pure bending is 12.5 ft, 
which is less than Lp = 15.1 ft for this section, taking into account that its 
flange is noncompact. Thus, from Manual Table 3-2, the design moment 
strength of the section is 

φMn = 574 ft-kips 
 
Determine the appropriate interaction equation. From Step 3, φPn = 1060 
kips; 

459 0.433 > 0.2
1060

u

n

P
P

= =
φ

 

 
so use Equation H1-1a, which yields 

8 1.0
9

8 2600.433 0.836 < 1.0
9 574

u u

n n

P M
P M

⎛ ⎞
+ ≤⎜ ⎟φ φ⎝ ⎠
⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 

Thus, 
the W14×90 is adequate for this load combination. 

 
 Step 7: Check the section for the gravity-only load combination, 1.2D + 1.6L. 

 
Because this is a gravity-only load combination, Specification Appendix 
Section 7.2.2, by reference to Section C2.2b, requires that the analysis 
include a minimum lateral load of 0.002 times the gravity load. This will be 
further discussed in Section 8.7. For this load combination, the total story 
gravity load must also be known and is given in Figure 8.11b as Pstory = 
2430 kips. Thus, for this frame the minimum lateral load is 0.002Pstory = 
0.002(2430) = 4.86 kips at this level. 
 
The forces and moments given in Figure 8.11b include the effects of this 
minimum lateral load. The magnitude of the lateral translation effect is 
small in this case. Since both the moment due to the minimum lateral load 
and the amplification factor, B2, are expected to be small, the forces and 
moments used for this check will be assumed to come from a no-translation 
case, with little error. If the minimum lateral load would produce large 
moments or the amplification factor, B2, calculated in Step 5, were large, 
this would not be a good assumption. Therefore, at end A, Mnt = 142 ft-
kips, at end B Mnt = 71.0 ft-kips, and Pnt = 522 kips. 
 
A quick review of the determination of B1 from the first part of this solution 
shows that the only change is in the magnitude of the axial force and the 
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member end moments; thus 
 

1

2

71.0 0.50
142

M
M

= =  

( )1 20.6 0.4 0.6 – 0.4(0.50) 0.4mC M M= − = =  
2 2

1 2 2
1

π (29,000)(999) 12,700  kips
(1.0(12.5)(12))e

c

EIP
L
π
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Thus, with α = 1.0 for LRFD, 

1

1

0.4 0.417 < 1.0(1.0)(522)1 1–
12,700

m

r

e

CB P
P

= = =
α

−
 

 
Note that B1 is again 1.0. 
 
With the assumption that there is no lateral translation, 
Mlt = 0.0 and B2 is unnecessary,thus 
 

522 kips,   1.0(142) 142 ft-kipsr rP M= = =  
 

Again using Equation H1-1a, 
8 1.0
8

522 8 142 0.712 < 1.0
1060 9 574

u u

n n

P M
P M

⎛ ⎞
+ ≤⎜ ⎟φ φ⎝ ⎠
⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 

Thus,  
the W14×90 is adequate for both load combinations. 

   
 
EXAMPLE 8.2b 
Moment Frame 
Strength Check for 
Combined 
Compression and 
Bending by ASD 

Goal: Using the ASD provisions, determine whether the W14×90, A992 column 
shown in Figure 8.11 is adequate to carry the imposed loading. 
 

Given: An exterior column from an intermediate level of a multi-story moment 
frame is shown in Figure 8.11. The column is part of a braced frame out of 
the plane of the figure. Figure 8.11a shows the elevation of the frame with 
the member to be checked labeled AB. The same column section will be 
used for the level above and below the column AB. A first-order analysis of 
the frame for gravity loads plus the minimum lateral load (the minimum 
lateral load will be discussed in Section 8.7) results in the forces shown in 
Figure 8.11d, whereas the results for gravity plus wind are shown in Figure 
8.11e. Assume that the frame drift under service loads is limited to 
height/300 for a story shear, H = 148 kips. 
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SOLUTION Step 1: Determine the column effective length factor in the plane of bending. 
 
Using the effective length alignment chart introduced in Chapter 5 and 
given in Commentary Figure C-A-7.2, determine the effective length for 
buckling in the plane of the moment frame. At each joint there are two 
columns and one beam framing in. Thus, 

( )
( )

9992
12.5 2.28
2100 
30.0

c
A B

g

I L
G G

I L

⎛ ⎞
⎜ ⎟Σ ⎝ ⎠= = = =

Σ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Thus, from Figure 5.20, K = 1.66. 
 

 Step 2: Determine the controlling effective length. 
 
With rx/ry = 1.66 for the W14 × 90, 
 

( ) ( ) ( ) ( )1.66 12.5
12.5 ft

1.66
x

cx eff eff
x y

KL
L KL

r r
= = = =  

 
Lcy = KLy = 1.0(12.5) = 12.5 ft 

 
 Step 3: Since the effective length about each axis is 12.5 ft, determine the column 

allowable axial strength using Lc = 12.5. 
 
From the column tables, Manual Table 4-1a, for Lc = 12.5 ft, 

703 kipsnP Ω =   
 

 Step 4: Determine the first-order moments and forces for the loading combination 
that  includes wind, D +0.75L + 0.75(0.6W). 
 
The column end moments given in Figure 8.11e are a combination of 
moments resulting from a nonsway gravity load analysis and a wind 
analysis: 
 
Moment for end A: 

Mnt = 78.0 ft-kips 
Mlt = 96.0 ft-kips 

Moment for end B: 
Mnt = 39.0 ft-kips 
Mlt = 96.0 ft-kips 

Compression: 
Pnt = 280 kips 
Plt = 62.0 kips 
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 Step 5: Determine the second-order moments by amplifying the first-order 
moments. 
 
No-translation amplification: The no-translation moments must be 
amplified by B1. From Figure 8.11e it is seen that the end moments bend 
the column in reverse curvature: 

( )

1

2

1 2

2 2

1 2 2
1

39.0 0.50
78.0

0.6 0.4 0.6 – 0.4(0.50) 0.4

π (29,000)(999) 12,700  kips
(1.0(12.5)(12))

m

e
c

M
M

C M M

EP
L

= =

= − = =

π
= = =

 

 
Thus, with α = 1.6 for ASD and Pr = 280 + 62 = 342 kips, Equation A-8-3 
yields 

1

1

0.4 0.418 < 1.0(1.6)(342)1 1–
12,700

m

r

e

CB P
P

= = =
α

−
 

Therefore, B1 = 1.0. 
 
Translation amplification: The translation forces and moments must be 
amplified by B2. The design drift limit of height/300 and  Equation A-8-6 
are used to determine B2. 
 
The total service lateral load on this story is given as 

H = 148 kips 
 
Additional given information is that the total gravity load for this load   
combination in Figure 8.11e is 

Pstory = 1670 kips 
 
The drift limit under the service lateral load of 148 kips is 

ΔH = L/300 = 12.5(12)/300 = 0.50 in. 
 

Remember that in the calculation of B2, H can be taken as any convenient 
magnitude, as long as ΔH is the corresponding displacement. This is 
because it is the ratio of H to ΔH that is used in the determination of Pe story. 
 
Thus, with α = 1.6 for ASD and RM = 0.85 assuming all columns are 
moment frame columns, Equation A-8-7 gives 
 

 
0.85(148)(12.5)(12) 37,700 kips

0.50
M

e story
H

R HLP = = =
Δ

 

 
and Equation A-8-6 gives 

2

 

1 1 1.08>1.0
(1.6)16701 1 –
37,700

story

e story

B P
P

= = =
α ⎛ ⎞− ⎜ ⎟

⎝ ⎠
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  Thus, the second-order compressive force and moment are 
Pr = Pnt + B2(Plt) = 280 + 1.08(62.0) = 347 kips 

Mr = B1(Mnt) + B2(Mlt) = 1.0(78.0) + 1.08(96.0) = 182 ft-kips 
 

These represent the required strength for this load combination. 
 

 Step 6: Determine whether this shape will provide the required strength based on 
the appropriate interaction equation. 
 
The unbraced length of the compression flange for pure bending is 12.5 ft, 
which is less than Lp = 15.1 ft for this section, taking into account that its 
flange is noncompact. Thus, from Manual Table 3-2, the allowable moment 
strength of the section is 

382 ft-kipsnM Ω =   
 
Determine the appropriate interaction equation. From Step 3, φPn = 1060 
kips; 

347 0.494 > 0.2
703

a

n

P
P

= =
Ω

 

 
so use Equation H1-1a, which yields 

8 1.0
9

8 1820.494 0.918 < 1.0
9 382

a a

n n

P M
P M

⎛ ⎞
+ ≤⎜ ⎟Ω Ω⎝ ⎠
⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 

Thus, 
the W14×90 is adequate for this load combination. 

 
 Step 7: Check the section for the gravity-only load combination, D + L. 

 
Because this is a gravity-only load combination, Specification Appendix 
Section 7.2.2, by reference to Section C2.2b, requires that the analysis 
include a minimum lateral load of 0.002 times the gravity load. This will be 
further discussed in Section 8.7. For this load combination, the total story 
gravity load must also be known and is given in Figure 8.11d as Pstory = 
1690 kips. Thus, for this frame the minimum lateral load is 0.002Pstory = 
0.002(1690) = 3.38 kips at this level. 
 
The forces and moments given in Figure 8.11d include the effects of this 
minimum lateral load. The magnitude of the lateral translation effect is 
small in this case. Since both the moment due to the minimum lateral load 
and the amplification factor, B2, are expected to be small, the forces and 
moments used for this check will be assumed to come from a no-translation 
case, with little error. If the minimum lateral load would produce large 
moments or the amplification factor, B2, calculated in Step 5, were large, 
this would not be a good assumption. Therefore, at end A, Mnt = 95.0 ft-
kips, at end B Mnt = 47.0 ft-kips, and Pnt = 348 kips. 
 
A quick review of the determination of B1 from the first part of this solution 
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shows that the only change is in the magnitude of the axial force and the 
member end moments; thus 

( )

1

2

1 2

2 2

1 2 2
1

47.0 0.50
95.0

0.6 0.4 0.6 – 0.4(0.50) 0.4

π (29,000)(999) 12,700  kips
(1.0(12.5)(12))

m

e
c

M
M

C M M
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= =

= − = =

π
= = =

 

 
Thus, with α = 1.6 for ASD, 

1

1

0.4 0.418 < 1.0(1.6)(348)1 1–
12,700

m

r

e

CB P
P

= = =
α

−
 

 
Note that B1 is again 1.0. 
 
With the assumption that there is no lateral translation, 

Mlt = 0.0 and B2 is unnecessary, 
thus 

348 kips,   1.0(95.0) 95.0 ft-kipsr rP M= = =  
Again using Equation H1-1a, 

8 1.0
8

348 8 95.0 0.716 < 1.0
703 9 382

a a

n n

P M
P M

⎛ ⎞
+ ≤⎜ ⎟Ω Ω⎝ ⎠
⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 

Thus,  
the W14×90 is adequate for both load combinations. 

   
 

The moments in the beams and the beam-column connections must also be amplified for 
the critical case to account for the second-order effects. This is done by considering equilibrium 
of the beam-column joint. The amplified moments in the column above and below the joint are 
added together and this sum distributed to the beams which frame into the joint according to their 
stiffnesses. These moments then establish the connection design moments. 
 

8.7 SPECIFICATION PROVISIONS FOR STABILITY ANALYSIS AND DESIGN 
 

Up to this point, the discussion of the interaction of compression and bending has concentrated on 
the development of the interaction equations and one approach to incorporate second-order 
effects. The Specification actually provides three approaches to deal with these two closely linked 
issues. The most direct approach is to use a general second-order analysis in conjunction with the 
Direct Analysis Method described in Chapter C. 

A general second-order analysis yields forces and moments that can be used directly in 
the interaction equations of Chapter H without the need to resort to amplification factors as just 
described. The disadvantage to this approach is that, since the extremely useful principal of 
superposition cannot be used (since the structural response is nonlinear), a complete nonlinear 
analysis must be carried out for each load combination.  A discussion of general, or rigorous, 
methods of second-order analysis is beyond the scope of this book. Thus, in the remainder of this 
book, if second-order effects have not already been included in the analysis results given, the 
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method did not require the determination of K, it is a significantly simpler method than the 
effective length method.  

Another consideration that has only briefly been mentioned to this point is the 
requirement in Section C1 that the influence of geometric imperfections be considered. As with 
residual stresses, the influence of geometric imperfection on the strength of compression 
members has already been addressed through the Specification column strength equations. The 
requirement here is to consider the influence of out-of-plumbness on the stability of the structure. 
This may be accomplished by modeling the structure in its out-of-plumb condition or through the 
use of notional loads to simulate the out-of-plumbness. These notional loads will be discussed 
later in this section. It should be noted that this is not a requirement of the direct analysis method 
alone but a general requirement for determining required strength. 

In addition to the direct analysis method, two other design methods are given in the 
Specification. They are found in Appendix 7. The limitations on the application of these methods  
are based on the direct analysis method. 

 
8.7.2 Effective Length Method 

 
Appendix 7.2 provides the requirements for the effective length method. This is the 

approach already described earlier in this chapter for braced and moment frames. It is valid so 
long as the ratio of second-order deflection to first-order deflection, Δ2/Δ1, is equal to or less than 
1.5. Another way to state this requirement is to remember that Δ2/Δ1 = B2, so the effective length 
method is valid as long as B2 ≤ 1.5. Although this check was not made in Example 8.2, it can now 
be seen that it was acceptable to use the effective length method in that example, since for both 
LRFD and ASD, B2 ≤ 1.5.  A special case occurs when B2 ≤ 1.1. In this case, columns in moment 
frames can be designed using K = 1.0. The effective length method is essentially the same method 
used in past practice with the addition of the requirement of a minimum lateral load to be applied 
in gravity-only load combinations. This is the notional load discussed above to account for initial 
out-of-plumbness. It is the same as the minimum lateral load used in Example 8.2 and will be 
discussed later in this section. 

 
8.7.3 First-Order Analysis Method 
 

A third method is given in the Appendix 7.3, the first-order analysis method. This 
approach permits design without direct consideration of second-order effects except through the 
application of additional notional lateral loads that account for structure out-of-plumbness and 
second-order effects. This is possible because of the limits placed on the implementation of this 
method. As with the effective length method, the structure must support gravity loads primarily 
through vertical columns, walls or frames and the ratio of the second-order drift to first-order drift 
must be less than or equal to 1.5. Additionally, compression members that participate in lateral 
load resistance must behave elastically according to    

 0.5r nsP Pα ≤                                               (AISC A-7-1) 
 

With the foregoing limitations and the application of the notional load given by  
( )2.1 0.0042i i iN L Y Y= α Δ ≥                                     (AISC A-7-2) 

 
compression members may be designed using K = 1.0.  
 

8.7.4 Geometric Imperfections  
 

Now, consider in more detail the requirement to consider geometric imperfections. 
Specification Section C1 requires that geometric imperfections be considered in the analysis and 
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and 
( )( )
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HLP R= = =
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1 1 1.19
1.0 4001 1
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B P
P

= = =
α

− −
 

 
Next, consider the limitations on use of the effective length method. This structure 

supports gravity loads through vertical columns so it meets the first limitation in Section 7.2.1. 
The second limitation requires that the second-order amplification, B2, be less than or equal to 
1.5. Since 2 1.19 1.5B = ≤  the effective length method may be used for this frame. 

The required strength, including second-order effects is found through Equations A-8-1 
and A-8-2. 

( )1 2 0 1.19 300 357 ft-kipsr nt ltM B M B M= + = + =  

and 
( )2 200 1.19 0 200 kipsr nt ltP P B P= + = + =  

 
The next step in the effective length method is determination of the effective length 

factor. The effective length factor for the flag pole column alone is Kx = 2.0. However, as 
discussed in Chapter 5, the inclusion of the gravity only column with load will increase the 
effective length of column A. Using the approach presented in Chapter 5, with the load on the 
moment frame column, Pmf = 200 kips and the load on the gravity only column, Pgrav only = 200 
kips, the effective length factor is 

*
 1 2.0 1 200 200 2.83x x grav only mfK K P P= + = + =  

 
Assuming that the frame is braced out of the plane of the frame, Ky = 1.0. 
 The available strength of the W14×90 column can be determined from Table 6-2 for an 
unbraced length of the compression flange Lb = 15 ft < Lp = 15.1 ft, 574 ft-kipsnMφ = . The 
controlling effective length is for x-axis buckling, thus ( ) ( )2.83 15 1.66 25.6 ftcx eff

L = =  and 

720 kipsnPφ = . With the required strength and available strength determined, the interaction 
equation can be checked. 
 First determine which interaction equation should be used. Since 

200 720 0.278 0.2r nP Pφ = = >  use Equation H1-1a, thus 
8 200 8 357 0.278 0.553 0.831 1.0
9 720 9 574

r r

c c

P M
P M

⎛ ⎞ ⎛ ⎞+ = + = + = <⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
So the W14×90 is shown to be adequate by the effective length method. 
  
First-Order Analysis Method: The first-order analysis method of Appendix Section 7.3 may be 
used for those structures that meet the limitations of Section 7.3.1. These limitations are the same 
as for the effective length method with the addition of the requirement that the columns behave 
elastically such that  

 0.5r nsP Pα ≤                                                      (AISC A-7-1) 
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Since the W14×90 column does not have slender elements for compression, 

( )50 26.5 1330 kipsns y y gP P F A= = = =  and for the frame of Figure 8.14 200 kipsrPα = . Thus 
( )200 0.5 1330 666 kips≤ =  and the first-order analysis method may be used. 

 The required strength for the first-order analysis method is determined from a first-order 
analysis that includes a notional load defined by Equation A-7-2 added to the lateral load in all 
load combinations. This notional load accounts for both the initial out-of-plumbness of the 
structure and second-order effects.  Thus, 

 ( )2.1 0.0042i i iN L Y Y= α Δ ≥                                       (AISC A-7-2) 
 

For our structure, Δ = 1.34 in. as before and Yi = 400 kips so the notional load for this load 
combination is 

( ) ( )( )( )( ) ( )2.1 1.0 1.34 15 12 400 6.25 kips 0.0042 400 1.68 kipsiN = = ≥ =  

Thus, the lateral load in the analysis will be increased from 20 kips to 26.3 kips. The results of the 
first-order analysis for the determinate structure are  200 kipsuP =  and 

( )26.3 15 395 ft-kipsuM = = .   Although this is called the first-order analysis method, it does 
require that the moment be amplified by B1 found using 

 1
1

1.0
1

m

r e

CB
P P

= ≥
−α

                                       (AISC A-8-3) 

 
This amplification addresses the member effect and is influenced by the buckling strength of the 
column as a pin ended column in a no sway condition, Pe1, and the equivalent uniform moment 
factor, Cm.  Thus, 

( ) ( )1 20.6 0.4 0.6 0.4 0 395 0.6mC M M= − = − =  

and with EI* = EI,  

( )( )
2 * 2

1 22
1

(29,000)(999) 8830 kips
15 12

e
c

EIP
L

π π
= = =  

which gives 

1
0.6 0.614 1.0

1 200 8830
B = = <

−
 

Therefore there is no amplification needed so 200 kipsr uP P= =  and 395 ft-kipsr uM M= = . 
The available moment strength of the W14×90 column determined previously from Table 

6-2 is unchanged, thus 574 ft-kipsnMφ = . The controlling effective length is for y-axis buckling, 
thus 15.0 ftcyL =  and 1000 kipsnPφ = . With the required strength and available strength 
determined, the interaction equation can be checked. 
First determine which interaction equation should be used. Since 200 1000 0.20 0.2r nP Pφ = = ≤  
use Equation H1-1a, thus 

8 200 8 395 0.200 0.612 0.812 1.0
9 1000 9 574

r r

c c

P M
P M

⎛ ⎞ ⎛ ⎞+ = + = + = <⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
So the W14×90 is shown to be adequate by the first order analysis method.  
 
Direct Analysis Method: The third method to be considered is the direct analysis method of 
Chapter C. There are no limitations on the use of the direct analysis method like there are on the 
effective length or first-order analysis methods and second-order effects and initial out-of-
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plumbness must be accounted for as they were for the effective length method. The only new 
requirement is that the stiffness of all members that contribute to the lateral load resistance be 
reduced in the analysis to * 0.8 bEI EI= τ   and * 0.8EA EA= . It is this stiffness reduction that 
permits the use of an effective length factor equal to one when using the direct analysis method. 
From the discussion of the effective length method it was seen that B2 was less than 1.5 when 
using the unreduced stiffness thus the notional load to account for out-of-plumbness does not 
need to be added to the lateral load. Thus, from a first order analysis of the determinate structure, 

200 kipsuP =  and ( )20.0 15 300 ft-kipsuM = = . As for the effective length method, 1.0bτ =  so 

that the flexural stiffness of column A will be taken as * 0.8EI EI= . Thus the 20 kip lateral load 
produces a drift calculated as for a cantilevered beam, 

( )( )
( )( )( )

3
3

*

20 15 12
1.68 in.

3 3 0.8 29,000 999
HL
EI

Δ = = =  

 
The total gravity load on the structure is  400 kips. Half of this load is on the lateral load resisting 
column A and half is on the gravity only column. Thus again, 

2001 0.15 1 0.15 0.925
400

mf
M

tory

P
R

P
⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

and 
( )( )

 

20 15 12
0.925 1980 kips

1.68e story M
H

HLP R= = =
Δ

 

 Thus, 

( )2

 

1 1 1.25
1.0 4001 1

1980
story

e story

B P
P

= = =
α

− −
 

Note that the drift increased from what was calculated for the effective length method and 
therefore the second-order amplification increased. 

The required strength, including second-order effects is found through Equations A-8-1 
and A-8-2. 

( )1 2 0 1.25 300 375 ft-kipsr nt ltM B M B M= + = + =  

and 
( )2 200 1.25 0 200 kipsr nt ltP P B P= + = + =  

 
The available moment strength of the W14×90 column determined previously from Table 

6-2 is unchanged, thus 574 ft-kipsnMφ = . The controlling effective length is for y-axis buckling, 
thus 15.0 ftcyL =  and 1000 kipsnPφ = . With the required strength and available strength 
determined, the interaction equation can be checked. 
 First determine which interaction equation should be used. Since 

200 1000 0.20 0.2r nP Pφ = = ≤  use Equation H1-1a, thus 
8 200 8 375 0.200 0.581 0.781 1.0
9 1000 9 574

r r

c c

P M
P M

⎛ ⎞ ⎛ ⎞+ = + = + = <⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
So the W14×90 is adequate by the direct analysis method. Note that based on the results of the 
interaction equation, this approach is less conservative than the other two methods. Since the only 
new requirement of the direct analysis method is to use a reduced stiffness in calculating second-
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order effects and this permits the use of an effective length factor in the lateral load resisting 
direction of one, this is clearly the simplest and most direct method available. 
 Three methods of analysis are available and all three have their place in design. It is up to 
the user to determine when to use each approach most efficiently. 
 

EXAMPLE 8.3a 
Direct Analysis 
Method for 
Column Design by 
LRFD 

Goal: Using the LRFD provisions and the results from a second-order direct 
analysis, determine if a W14×132, A992 member is adequate to carry the 
given loads and moments. 
 

Given: The column has a length of 16 ft and is braced at the ends only. The results 
of the second-order direct analysis are Pu = 800 kips, Mux = 300 ft kips, and 
Muy = 76 ft kips. 
 

SOLUTION Step 1: Determine the required strength. 
 
Since the given results are from a second-order analysis, there is no need to 
amplify forces and moments; thus 

800 kips,   300 ft kips,    76 ft kipsr u rx ux ry uyP P M M M M= = = = = =  
 

 Step 2: Determine the available compressive strength of the column. 
 
Since the given results are from a direct analysis, K = 1.0; thus, from 
Manual  Table 4-1 with Lc = 16.0 ft, 

1440 kipsnPφ =  
 

 Step 3: Determine the available strength for bending about the x-axis. 
 
With an unbraced length Lb = 16 ft, from Manual Table 3-2, 

878 ft kips,   13.3 ft,  7.74 kipsp pM L BFφ = = φ =  
and 

( ) ( )878 7.74 16.0 13.3 857 ft kipsnx p b pM M BF L Lφ = φ − φ − = − − =  
 

 Step 4: Determine the available strength for bending about the y-axis. 
 
From Manual Table 3-4, 

424 ft kipsnyMφ =  
 

 Step 5: Check the W14×132 for combined axial load and bending. To determine 
which equation to use, check 

800 0.556  0.2
1440

u

n

P
P

= = ≥
φ

 

Therefore, use Equation H1-1a. 

1.0

300 760.556 1.09 > 1.0
857 424

ryr rx

n nx ny

MP M
P M M

+ + ≤
φ φ φ

+ + =

 

Thus, 
the W14×132 will not carry the given load. 
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EXAMPLE 8.3a 
Direct Analysis 
Method for 
Column Design 
by ASD 

Goal: Using the ASD provisions and the results from a second-order direct 
analysis, determine if a W14×132, A992 member is adequate to carry the 
given loads and moments. 
 

Given: The column has a length of 16 ft and is braced at the ends only. The 
results of the second-order direct analysis are Pa = 530 kips, Max = 200 ft 
kips, and May = 52 ft kips. 
 

SOLUTION Step 1: Determine the required strength. 
 
Since the given results are from a second-order analysis, there is no need 
to amplify forces and moments. Thus, 

530 kips,   200 ft kips,    52 ft kipsr a rx ax ry ayP P M M M M= = = = = =  
 

 Step 2: Determine the available compressive strength of the column. 
 
Since the given results are from a direct analysis, K = 1.0. Thus, from 
Manual Table 4-1 with Lc = 16.0 ft, 

960 kipsnP
=

Ω
 

 
 Step 3: Determine the available strength for bending about the x-axis. 

 
With an unbraced length Lb = 16 ft, from Manual Table 3-2, 

584 ft kips,   13.3 ft,  5.15 kipsp
p

M BFL= = =
Ω Ω

 

And 

( ) ( )584 5.15 16.0 13.3 570 ft kipspnx
b p

MM BF L L= − − = − − =
Ω Ω Ω

 

 
 Step 4: Determine the available strength for bending about the y-axis. 

From Manual Table 3-4 

282 ft kipsnyM
=

Ω
 

 
 Step 5: Check the W14×132 for combined axial load and bending. To determine 

which equation to use, check 
530 0.552  0.2
960

u

n

P
P

= = ≥
φ

 

 
Therefore, use Equation H1-1a. 

1.0

200 520.552 1.09 > 1.0
570 282

ryr rx

n nx ny

MP M
P M M

+ + ≤
Ω Ω Ω

+ + =

 

Thus, 
the W14×132 will not carry the given load. 
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8.8 INITIAL BEAM-COLUMN SELECTION 

Beam-column design is a trial-and-error process that requires that the beam-column section be 
known before any of the critical parameters can be determined for use in the appropriate 
interaction equations. There are numerous approaches to determining a preliminary beam-column 
size. Each incorporates its own level of sophistication and results in its own level of accuracy. 
Regardless of the approach used to select the trial section, one factor remains—the trial section 
must ultimately satisfy the appropriate interaction equation. 

To establish a simple, yet useful, approach to selecting a trial section, Equation H1-1a is 
modified by multiplying each term by Pc  which yields 

 
8 8
9 9

ry crx c
r c

cx cy

M PM PP P
M M

+ + ≤                                               (8.9) 

 
Then  multiplying the third term by Mcx/Mcx ,  letting 

8
9

c

cx

Pm
M

=  

and 
cx

cy

MU
M

=  

and substituting into Equation 8.9 yields 
 r rx ry cP mM mUM P+ + ≤                                                 (8.10) 

 
Because Equation 8.10 calls for the comparison of the left side of the equation to the 

column strength, Pc, Equation 8.10 can be thought of as an effective axial load; thus 
 eff r rx ry cP P mM mUM P= + + ≤                                           (8.11) 

 
The accuracy used in the evaluation of m and U dictates the accuracy with which 

Equation 8.11 represents the strength of the column being selected. Because at this point in a 
design the actual column section is not known, exact values of m and U cannot be determined. 

Past editions of the AISC Manual have presented numerous approaches to the evaluation 
of these multipliers. A simpler approach however, is more useful for preliminary design. If the 
influence of the length—that is, all buckling influence on Pc and Mcx—is neglected, the ratio, 
Pc/Mcx, becomes A/Zx, and m = 8A/9Zx. Evaluation of this m for all W6 to W14 shapes with the 
inclusion of a units correction factor of 12 results in the average m values given in Table 8.2. If 
the relationship between the area, A, and the plastic section modulus, Zx, is established using an 
approximate internal moment arm of 0.89d, where d is the nominal depth of the member in 
inches, then m = 24/d. This value is also presented in Table 8.2. This new m is close enough to 
the average m that it may be readily used for preliminary design. 

When bending occurs about the y-axis, U must be evaluated. A review of the same W6 to 
W14 shapes results in the average U values given in Table 8.2. However, an in-depth review of 
the U values for these sections shows that only the smallest sections for each nominal depth have 
U values appreciably larger than 3. Thus, a reasonable value of U = 3.0 can be used for the first 
trial. 

More accurate evaluations of these multipliers, including length effects, have been 
conducted, but there does not appear to be a need for this additional accuracy in a preliminary 
design. Once the initial section is selected, however, the actual Specification provisions must be 
satisfied. 
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Table 8.2 Simplified Bending Factors 
Shape mavg m = 24/d Uavg

W6 4.41 4.00 3.01 
W8 3.25 3.00 3.11 
W10 2.62 2.40 3.62 
W12 2.08 2.00 3.47 
W14 1.71 1.71 2.81 

 
 

EXAMPLE 8.4a 
Initial Trial 
Section Selection 
by LRFD 

Goal: Determine the initial trial section for a column. 
 

Given: The loadings of Figure 8.11c are to be used. Assume the column is a W14 
and use A992 steel. Also, use the simplified values of Table 8.2, m = 24/d. 

SOLUTION Step 1: Obtain the required strength from Figure 8.11c. Use the first-order analysis 
results. 

453 kips
251 ft-kips

u

u

P
M

=
=

 

 
 Step 2: Determine the effective load by combining the axial force and the bending 

moment. 
 
For a W14, m = 1.71, so 
 

( )453 1.71 251 882 kipseffP = + =  
 

 Step 3: Select a trial column size to carry the required force, Peff. 
 
Using an effective length Lc = 12.5 ft, from Manual Table 4-1, the lightest 
W14 to carry this load is 
 

W14 90 with 1060 kipsnP× φ =  
 
Example 8.2a showed that this column adequately carries the imposed load. 
Because the approach used here is expected to be conservative, it would be 
appropriate to consider the next smaller selection, a W14×82, and check it 
against the appropriate interaction equations. 
 

 
EXAMPLE 8.4b 
Initial Trial 
Section Selection 
by ASD 

Goal: Determine the initial trial section for a column. 
 

Given: The loadings of Figure 8.11e are to be used. Assume the column is a W14, 
and use A992 steel. Also, use the simplified values of Table 8.2, m = 24/d. 

SOLUTION Step 1: Obtain the required strength from Figure 8.11e. Use the first-order analysis 
results. 

342 kips
174 ft-kips

a

a

P
M

=
=

 

 
 Step 2: Determine the effective load by combining the axial force and the bending 

moment. 
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For a W14, m = 1.71; thus  

( )342 1.71 174 640 kipseffP = + =  
 

 Step 3: Select a trial column size to carry the required force, Peff. 
 
Using an effective length Lc = 12.5 ft, from Manual Table 4-1, the lightest 
W14 to carry this load is 
 

W14 90 with 703 kipsnP× Ω =  
 

Example 8.2b showed that this column adequately carries the imposed load. 
Because the approach used here is expected to be conservative, it would be 
appropriate to consider the next smaller selection, a W14×82, and check it 
against the appropriate interaction equations. 
 

 
Every column section selected must be checked through the appropriate interaction equations for 
the second-order forces and moments. Thus, the process for the initial selection should be quick 
and reasonable. The experienced designer will rapidly learn to rely on that experience rather than 
these simplified approaches. 

 
8.9 BEAM-COLUMN DESIGN USING MANUAL PART 6 
 

Manual Part 6, Design of Members Subject to Combined Loading contains Table 6-2 which 
includes the axial and flexural strength for all W-shapes. Although these tables are presented here 
as they relate to combined loading, they can also be used for compression only, bending only, 
tension only and shear. There is no information found in Table 6-2 that is not already included in 
other Parts of the Manual already discussed. The advantage for combined loading is that all of the 
available strength values needed are found in one location. 

Figure 8.15 is a portion of Manual Table 6-2. It shows that the compressive strength for a 
given section is a function of the effective length about the weak axis of the member. The 
effective length is tabulated in the center of the table with the compressive strengths shown on the 
left portion of the table. This portion of the table is used in exactly the same way as the column 
tables in Part 4 of the Manual. The strong axis bending strength is a function of the unbraced 
length of the compression flange of the beam. Previously, this information was available only 
through the beam curves in Part 3 of the Manual. In Table 6-2 it is tabulated on the right portion 
of the table with the same column of lengths now defined as the unbraced length of the 
compression flange. Weak axis bending is not a function of length, so only one value is given for 
each shape. Although not used for beam-columns, when tension is combined with bending, the 
table also provides tension yield and rupture strength. 
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EXAMPLE 8.5a 
Combined Strength 
Check Using 
Manual Part 6 and 
LRFD 

Goal: Check the strength of a beam-column using Manual Part 6 and compare to 
the results of Example 8.2a. 
 

Given: It has already been shown that the W14×90 column of Example 8.2a is 
adequate by LRFD. Use the required strength values given in Example 8.2a 
and recheck this shape using the values found in Figure 8.15 or Manual 
Table 6-2. 
 

SOLUTION Step 1: Determine the values needed from Manual Table 6-2 (Figure 8.15). The 
column is required to carry a compressive force with an effective length 
about the y-axis of 12.5 ft and an x-axis moment with an unbraced length of 
12.5 ft. Thus, from Figure 8.15, 

1060 kips
574 ft-kips

n

n

P
M
φ =
φ =

 

 
 Step 2: Determine which interaction equation to use. 

459 0.433 0.2
1060

r

n

P
P

= = >
φ

 

 
Therefore, use Equation H1-1a. 

200 8 260 0.433 0.403 0.836 1.0
1060 9 574

⎛ ⎞+ = + = <⎜ ⎟
⎝ ⎠

 

 
Therefore, as previously determined in Example 8.2a, the shape is adequate 
for this column and this load combination. The results from Manual Tables 
6-2 are exactly the same as those determined from Table 4-1 for 
compression and Table 3-2 for bending. 
 

 
EXAMPLE 8.5b 
Combined 
Strength Check 
Using Part 6 and 
ASD 

Goal: Check the strength of a beam-column using Manual Part 6 and compare to 
the results of Example 8.2b. 
 

Given: It has already been shown that the W14×90 column of Example 8.2b is 
adequate by ASD. Use the required strength values given in Example 8.2b 
and recheck this shape using the values found in Figure 8.15 or Manual 
Table 6-2. 
 

SOLUTION Step 1: Determine the values needed from Manual Table 6-2 (Figure 8.15). The 
column is required to carry a compressive force with an effective length 
about the y-axis of 12.5 ft and an x-axis moment with an unbraced length of 
12.5 ft. Thus, from Figure 8.15, 

703 kips
382 ft-kips

n

n

P
M

Ω =
Ω =
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analysis results for nominal Snow and nominal Dead Load are given in 
Figure 8.19b. The analysis results for nominal Wind Load acting to the left 
are given in Figure 8.19c. 
 

 Step 2: Determine the first-order forces and moments for the column on lines A-1. 
 
For ASCE 7 load combination 3: 

Pu = 1.2(15.8) + 1.6(6.33) + 0.5(0.710) = 29.1 + 0.355 = 29.5 kips 
Mu = 1.2(20.5) + 1.6(8.20) + 0.5(32.0) = 37.7 + 16.0 = 53.7 ft-kips 

 
For ASCE 7 load combination 4: 

Pu = 1.2(15.8) + 0.5(6.33) + 1.0(0.710) = 22.1 + 0.710 = 22.8 kips 
Mu = 1.2(20.5) + 0.5(8.20) + 1.0(32.0) = 28.7 + 32.0 = 60.7 ft-kips 

 
 Step 3: Determine the total story gravity load acting on one frame. 

Dead = 0.05 ksf (90 ft)(50 ft)/2 frames = 113 kips 
Snow = 0.02 ksf (90 ft)(50 ft)/2 frames = 45.0 kips 
 

 Step 4: Determine the second-order forces and moments for load combination 3. 
Gravity loads will be assumed to yield the no-translation effects, and wind 
load to yield the lateral translation effects. 
 
From Step 2, 

Pnt = 29.1 kips, Plt = 0.355 kips,  Mnt = 37.7 ft-kips, Mlt = 16.0 ft-kips 
 

For the W8×40, 
A = 11.7 in.2, Ix = 146 in.4, rx = 3.53 in., rx/ry = 1.73 

 
In the plane of the frame, 

( )1 2

2 2

1 2 2
1

0 0.6 0.4 0.6 – 0.4   0.6
37.7

(29,000)(146) 1130 kips
(16.0(12))

m

x
e

c

C M M

EIP
L

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

π π
= = =

 

 
and with Pr = Pnt + Plt = 29.1 + 0.355 = 29.5 

1

1

 0.6   0.616 < 1.029.51  1 –
1130

m

r

e

CB P
P

= = =
α

−
 

 
Therefore, use B1 = 1.0. 
 
To determine the sway amplification, the total gravity load on the frame for 
this load combination from Step 3 is 
Pstory = 1.2(113) + 1.6(45.0) = 208 kips 
 
A serviceability drift index of 0.003 is maintained under the actual wind 
loads. Therefore, H = 4.0 kips, and Δ/L = 0.003 is used to determine the 
sway amplification factor. If this limit is not met at the completion of the 
design, the second-order effects must be recalculated.  
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The sway amplification is given by 
 

2

 

1 1.0
1 story

e story

B
P

P

= >
⎛ ⎞α

−⎜ ⎟
⎝ ⎠

                   (AISC A-8-6) 

and  
 

 e story M
H

HLP R=
Δ

                         (AISC A-8-7) 

 
Since one third of the load is on the  moment frame corner columns, 
Equation A-8-8 gives 

11 0.15 0.95
3MR ⎛ ⎞= − =⎜ ⎟

⎝ ⎠
 

 
Thus, with α = 1.0 for LRFD, Equation A-8-6 becomes 

( )
( )

2
1 1 1.20

1.0 208
1 1 (0.003)

0.95 4.0
story

M

B
P

R H L

= = =
α⎛ ⎞Δ⎛ ⎞− −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 
Thus, the second-order force and moment are 

Mr = 1.0(37.7) + 1.20(16.0) = 56.9 ft-kips 
Pr = 29.1 + 1.20(0.355) = 29.5 kips 
 

 Step 5: Determine whether the column satisfies the interaction equation. 
 
Because the roof beam is assumed to be rigid in this example, use the 
recommended design value of K = 2.0 from Figure 5.17 case f in the plane 
of the frame, Lcx = 2.0(16.0) = 32.0 ft. Out of the plane of the frame, this is 
a braced frame where K = 1.0; thus, Lcy = 16.0 ft. 
 
Determine the critical buckling axis. 

( ) 32.0 18.5 ft > 16.0 ft
/ 1.73
cx

cx cyeff
x y

LL L
r r

= = = =  

 
Thus, from Manual Table 6-2, using Lc =( Lcx) eff = 18.5 ft, 

φPn = 222 kips 
 
and from Manual Table 6-2 with an unbraced length of Lb = 16 ft 

φMnx = 128 ft-kips 
 
Determine the appropriate interaction equation to use. 

29.5 0.133 < 0.2
222

r

n

P
P

= =
φ

 

 
Therefore, use Equation H1-1b. 
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1.0
2

29.5 56.9 0.511 < 1.0
2(222) 128

u u

n n

P M
P M

+ ≤
φ φ

+ =
 

 
Thus, the column is adequate for this load combination. 
 

 Step 6: Determine the first-order forces and moments for load combination 4 with 
the same assumption as to translation and no-translation effects. From Step 
2. 
 

Pnt = 22.1 kips, Plt = 0.710 kips, Mnt = 28.7 ft-kips, Mlt = 32.0 ft-kips 
 

 Step 7: Determine the second-order forces and moments. 
 

In the plane of the frame, as in Step 4, 

( )1 2

2 2

1 2 2
1

00.6 0.4 0.6 – 0.4 0.6
28.7

(29,  000)(146) 1130 kips
(16(12))
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π π
= = =
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1

1
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P

= = =
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Therefore, use B1 = 1.0. 
 
To determine the sway amplification, the total gravity load on the frame is 

Pu = 1.2(113) + 0.5(45.0) = 158 kips 
 
Again, a serviceability drift index of 0.003 is maintained under the actual 
wind loads. Therefore, H = 4.0 kips, and Δ/L = 0.003 is used to determine 
the sway amplification factor. As before, RM = 0.95 so 

( )
( )

2
1 1 1.14

1.0 158
1– 1– (0.003)

0.95 4.0
story

M

B
P

R H L

= = =
α⎛ ⎞Δ⎛ ⎞

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 
Thus, the second-order force and moment are 

Mr = 1.0(28.7) + 1.14(32.0) = 65.2 ft-kips 
Pr = 22.1 + 1.14(0.710) = 22.9 kips 

 Step 8: Determine whether the column satisfies the interaction equation. 
 
Using the same strength values found in Step 5, determine the appropriate 
interaction equation. 

22.9 0.103 < 0.2
222

r

n

P
P

= =
φ

 

Therefore, use Equation H1-1b. 
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1.0
2

22.9 65.2 0.561 < 1.0
2(222) 128

u u

n n

P M
P M

+ ≤
φ φ

+ =
 

Thus, the column is adequate for this load combination also. 
 

 Step 9: The W8×40 is shown to be adequate for gravity and wind loads in 
combination. Now, check to see that these columns have sufficient capacity 
to brace the interior pinned columns for load combination 3, which will put 
the greatest load on the gravity only columns. 
 

 Step 10: For stability in the plane of the frame, using the Yura approach discussed in 
Section 8.10, the total load on the structure is to be resisted by the four 
corner columns; thus 

Dead Load = 0.05 ksf (50 ft)(90 ft)/4 columns = 56.3 kips/column 
Snow Load = 0.02 ksf (50 ft)(90 ft)/4 columns = 22.5 kips/column 

 
Thus, for load combination 3 

Pu = 1.2(56.3) + 1.6(22.5) +0.5(0.710) = 104 kips 
Mu = 1.2(20.5) + 1.6(8.20) + 0.5(32.0) = 53.7 ft-kips 

 
 Step 11: Determine the second-order amplification. 

 
As before, for the length Lx = 16.0 ft, Pe1 = 1130 kips, and Cm = 0.6, the 
second-order amplification for member effect is 

1

1

0.6 0.66 < 1.01041 1 –
1130

m

r

e

CB P
P

= = =
α

−
 

Therefore, use B1 = 1.0 and Pr = Pu = 104 kips. 
 

Sway amplification will be the same as determined in step 4, since the 
gravity load is the same; thus B2 = 1.20. Therefore  

Mr = Mu = 1.0(37.7) + 1.20(16.0) = 56.9 ft-kips. 
 

 Step 12: Check the corner columns for interaction under these forces and moments. 
 
As determined in Step 5 for in-plane buckling, 

φPnx = 222 kips 
φMnx = 128 ft-kips 

Checking for the appropriate interaction equation, 
104 0.468 > 0.2
222

u

n

P
P

= =
φ

 

Thus, use Equation H1-1a. 
8 1.0
9

104 8 56.9 0.864 < 1.0
222 9 128

u u x

n n x

P M
P M

⎛ ⎞
+ ≤⎜ ⎟φ φ⎝ ⎠
⎛ ⎞+ =⎜ ⎟
⎝ ⎠
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Thus, the W8×40 is adequate for both strength under combined load and 
stability for supporting the gravity only columns. 

   
 
EXAMPLE 8.6b 
Moment Frame  
Strength and 
Stability by ASD 

Goal: Determine whether the structure shown in Figure 8.18 has sufficient 
strength and stability to carry the imposed loads. 
 

Given: The frame shown in Figures 8.18 and 8.19 is similar to that in Example 8.1 
except that the in-plane stability and lateral load resistance is provided by 
the rigid frame action at the four corners. The exterior columns are W8×40, 
and the roof girder is assumed to be rigid. Out-of-plane stability and lateral 
load resistance is provided by X-bracing along column lines 1 and 4. 
 
The loading is the same as that for Example 8.1: Dead Load = 50 psf, Snow 
Load = 20 psf, Roof Live Load = 10 psf, and Wind Load = 20 psf 
horizontal. Use A992 steel. 
 

SOLUTION Step 1: The analysis of the frame for gravity loads as given for Example 8.1 will be 
used. Because different load combinations may be critical, however, the 
analysis results for nominal Snow and nominal Dead Load are given in 
Figure 8.19b. The analysis results for nominal Wind Load acting to the left 
are given in Figure 8.19c. 
 

 Step 2: Determine the first-order forces and moments for the column on lines A-1. 
 
For ASCE 7 load combination 3: 

Pa = (15.8) + (6.33) = 22.1 kips 
Ma = (20.5) + (8.20) = 28.7 ft-kips 

 
For ASCE 7 load combination 6: 

Pa = (15.8) + 0.75(6.33) + 0.75(0.6(0.710)) =  20.9 kips 
Ma = (20.5) + 0.75(8.20) + 0.75(0.6(32.0)) =  41.1 ft-kips 

 
 Step 3: Determine the total story gravity load acting on one frame. 

Dead = 0.05 ksf (90 ft)(50 ft)/2 frames = 113 kips 
Snow = 0.02 ksf (90 ft)(50 ft)/2 frames = 45.0 kips 

 
 Step 4: Determine the second-order forces and moments for load combination 3. 

Gravity loads will be assumed to yield the no-translation effects. With no 
wind load, there will be no lateral translation effects; thus 
 
From Step 2: 

Pnt = 22.1 kips, Plt = 0 kips, Mnt = 28.7 ft-kips, Mlt = 0 ft-kips 
 
For the W8×40: 

A = 11.7 in.2, Ix = 146 in.4, rx = 3.53 in., rx/ry = 1.73 
 
In the plane of the frame: 
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Therefore, use B1 = 1.0. 
 
To determine the sway amplification, even though there are no lateral 
translation forces or moments for this combination, the total gravity load on 
the frame for this load combination from Step 3 is 
Pstory = (113) + (45.0) = 158 kips 
 
A serviceability drift index of 0.003 is maintained under the actual wind 
loads. Therefore, H = 4.0 kips, and Δ/L = 0.003 is used to determine the 
sway amplification factor. If this limit is not met at the completion of the 
design, the second-order effects must be recalculated.  
 
The sway amplification is given by 
 

2

 

1 1.0
1 story

e story

B
P

P

= >
⎛ ⎞α

−⎜ ⎟
⎝ ⎠

                          (AISC A-8-6) 

and  
 

 e story M
H

HLP R=
Δ

                                (AISC A-8-7) 

 
Since one third of the load is on the  moment frame corner columns, 
Equation A-8-8 gives 
 

11 0.15 0.95
3MR ⎛ ⎞= − =⎜ ⎟

⎝ ⎠
 

 
Thus, with α = 1.6 for ASD, Equation A-8-6 becomes 
 

( )
2

1 1 1.251.6(158)1– (0.003)1– 0.95 4.0L
story

M

B
P

R H

= = =
α⎛ ⎞Δ⎛ ⎞

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 
Thus, the second-order force and moment are 

Mr = 1.0(28.7) + 1.25(0) = 28.7 ft-kips 
Pr = 22.1 + 1.25(0) = 22.1 kips 

 



52     Chapter   8     Beam-Columns and Frame Behavior 
 

 

 Step 5: Determine whether the column satisfies the interaction equation. 
 
Because the roof beam is assumed to be rigid in this example, use the 
recommended design value of K = 2.0 from Figure 5.17 case f in the plane 
of the frame, Lcx = 2(16.0) = 32.0 ft. Out of the plane of the frame, this is a 
braced frame where K = 1.0; thus, Lcy = 16.0 ft. 
 
Determining the critical buckling axis. 

( ) 32 18.5 ft > 16.0 ft
/ 1.73
cx

cx cyeff
x y

LL L
r r

= = = =  

 
Thus, from Manual Table 6-2, using Lc = (Lcx)eff = 18.5 ft, 

Pn/Ω = 148 kips 
 
and from Manual Table 6-2, with an unbraced length of Lb = 16 ft, 

Mnx/Ω = 84.9 ft-kips 
 

Determine the appropriate interaction equation to use. 
22.1 0.149 < 0.2

/ 148
r

n

P
P

= =
Ω

 

Therefore, use Equation H1-1b. 

( ) ( )
1.0

2
22.1 28.7 0.413 < 1.0

2(148) 84.9

a a

n n

P M
P M

+ ≤
Ω Ω

+ =
 

Thus, the column is adequate for this load combination.  
 

 Step 6: Determine the first-order forces and moments for load combination 6. 
Gravity loads will be assumed to yield the no-translation effects, and wind 
load will yield the lateral translation effects. From Step 2. 
 

Pnt = 20.5 kips, Plt = 0.320 kips, Mnt = 26.7 ft-kips, Mlt = 14.4 ft-kips 
 

 Step 7: Determine the second-order forces and moments. 
 
In the plane of the frame, as in Step 4, 

( )1 2

2 2

1 2 2
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Therefore, use B1 = 1.0. 
 
To determine the sway amplification, the total gravity load on the frame is 

Pstory = (113) + 0.75(45.0) = 147 kips 
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Again, a serviceability drift index of 0.003 is maintained under the actual 
wind loads. Therefore, H = 4.0 kips and Δ/L = 0.003 is used to determine 
the sway amplification factor. As before, RM = 0.95 so 

( )
2

1 1 1.231.6(147)1– (0.003)1– 0.95 4.0L
story

M

B
P

R H

= = =
α⎛ ⎞Δ⎛ ⎞
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Thus, the second-order force and moment are 

Mr = 1.0(26.7) + 1.23(14.4) = 44.4 ft-kips 
 
and, adding in the lateral load effect amplified by B2, 

Pr = 20.5 + 1.23(0.320) = 20.9 kips 
 

 Step 8: Determine whether the column satisfies the interaction equation. 
 
Using the same values found in Step 5, determine the appropriate 
interaction equation. 

20.9 0.141 < 0.2
/ 148
r

n

P
P

= =
Ω

 

 
Therefore, use Equation H1-1b. 

( ) ( )
1.0

2
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Thus, the column is adequate for this load combination also. 
 

 Step 9: The W8×40 is shown to be adequate for gravity and wind loads in 
combination. Now, check to see that these columns have sufficient capacity 
to brace the interior pinned columns for gravity load only. This load 
combination puts the greatest load in the gravity only columns. 
 

 Step 10: For stability in the plane of the frame, using the Yura approach discussed in 
Section 8.10, the total load on the structure is to be resisted by the four 
corner columns; thus 

Dead Load = 0.05 ksf (50 ft)(90 ft)/4 columns = 56.3 kips 
Snow Load = 0.02 ksf (50 ft)(90 ft)/4 columns = 22.5 kips 

 
Thus, for load combination 3, 

Pa = (56.3) + (22.5) = 78.8 kips 
Ma = (20.5) + (8.20) = 28.7 ft-kips 
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 Step 11: Determine the second-order amplification 
 
As before, for the length Lx = 16.0 ft, Pe1 = 1130 kips and  Cm = 0.6, the 
second-order amplification for member effect is 

1

1

0.6 0.675 < 1.01.6(78.8)1 1 –
1130

m
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P

= = =
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−
 

Therefore, use B1 = 1.0 and Pr = Pa = 78.8 kips 
 
Sway amplification will be the same as determined in step 4, since the 
gravity load is the same; thus, B2 =1.25. Therefore  
 

( ) ( )1.0 28.7 1.25 0 28.7 ft-kipsrM = + =  
 

 Step 12: Check the corner columns for interaction under this force and moment. 
 
 As determined in Step 5 for in-plane buckling, 

Pn/Ω = 148 kips 
Mnx/Ω = 84.9 ft-kips 

 
Checking for the appropriate interaction equation, 

78.8 0.532 > 0.2
/ 148
u

n

P
P

= =
Ω

 

Thus, use Equation H1-1a. 
8 .0

/ 9 /
78.8 8 28.7 0.833 < 1.0
148 9 84.9
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n n x

P M
P M
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⎝ ⎠

 

 
Thus, the W8×40 is adequate for both strength under combined load and 
stability for supporting the gravity only columns. 
 

8.11 PARTIALLY RESTRAINED FRAMES 
 
The beams and columns in the frames considered up to this point have all been connected with 
moment-resisting fully restrained (FR) connections or simple pinned connections. These latter 
simple connections are defined in Specification Section B3.4a. Partially restrained connections,  
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and in the opposite direction will see the connection behavior move to points 3 and 3′. 
Note that on the windward side, the magnitude of this applied wind moment dictates whether the 
connection behaves linearly or follows the nonlinear curve, as shown in Figure 8.23d. Removal of 
this wind load causes the connection on one end to unload and on the other end to load, both 
linearly as shown in Figure 8.23e. Any further application of wind load, less than the maximum 
already applied, will see the connection behave linearly. In addition, the maximum moment on 
the connection is still close to that applied originally from the gravity load. Thus, the condition 
described in Figure 8.23f shows that shake-down has taken place and the connection now behaves 
linearly for both loading and unloading. 

The design procedure used to account for this shake-down is straight forward. All beams 
are designed as simple beams using the appropriate load combinations. This assures that the 
beams are adequate, regardless of the actual connection stiffness, as was seen in Figure 8.22. 
Wind load moments are determined through a modified portal analysis where the leeward column 
is assumed not to participate in the lateral load resistance. Connections are sized to resist the 
resulting moments, again for the appropriate load combinations. In addition, it is particularly 
important to provide connections that have sufficient ductility to accommodate the large rotations 
that will occur, without overloading the bolts or welds under combined gravity and wind. 

Columns must be designed to provide frame stability under gravity loads as well as 
gravity plus wind. The columns may be designed using the approach that was presented for 
columns in moment frames, but with two essential differences from the conventional rigid frame 
design: 

1. Because the gravity load is likely to load the connection to its plastic moment 
capacity, the column can be restrained only by a girder on one side and this 
girder will act as if it is pinned at its far end. Therefore, in computing the girder 
stiffness rotation factor, Ig/Lg, for use in the effective length alignment chart, the 
girder length should be doubled. 

2. One of the external columns, the leeward column for the wind loading case, 
cannot participate in frame stability, because it will be attached to a connection 
that is at its plastic moment capacity. The stability of the frame may be assured, 
however, by designing the remaining columns to support the total frame load. 

For the exterior column, the moment in the beam to column joint is equal to the capacity 
of the connection. It is sufficiently accurate to assume that this moment is distributed one-half to 
the upper column and one-half to the lower column. For interior columns, the greatest realistically 
possible difference in moments resulting from the girders framing into the column should be 
distributed equally to the columns above and below the joint. 

  
EXAMPLE 8.7a 
Column Design 
with Flexible Wind 
Connections by 
LRFD 

Goal: Select girders and columns for a building with flexible wind connections. 
 

Given: An intermediate story of a three-story building is given in Figure 8.24. 
Story height is 12 ft. The frame is braced in the direction normal to that 
shown. Use the LRFD provisions and A992 steel. 
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Therefore use  
W21×62 (φMn = 540 ft-kips, Ix = 1330 in.4) 

 
 Step 3: Design the columns for the gravity load on the interior column using 

Manual Table 4-1. 
 
For buckling out of the plane in a braced frame, K = 1.0 and Lcy = 12.0 
 
Thus, with Pu = 196 kips ,try  

W14×43, (φPn = 371 kips, Ix = 428 in.4, rx/ry = 3.08) 
 

 Step 4: To check the column for stability in the plane, determine the effective 
length factor from the alignment chart with 

( )
( )

4282
12.0 3.21

1330
2(30.0)

c
top bottom

g

I L
G G

I L

⎛ ⎞
⎜ ⎟Σ ⎝ ⎠= = = =

Σ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
Note that only one beam is capable of restraining the column and that the 
beam is pinned at its far end; thus the effective beam length is taken as 
twice its actual length. 

 
Considering the stress in the column under load, the stiffness reduction 
factor can be determined. 

196 12.6 15.6 ksiuP A = =  
 
Thus, since Pu/A = 15.6 < 0.5Fy, the stiffness reduction factor from Manual 
Table 4-13 is τb = 1.00. The stiffness ratio then remains 

Gtop = Gbottom =  3.21 
 

which yields, from the alignment chart, Figure 5.20 
K = 1.87 

 
 Step 5: Determine the effective length in the plane of bending. 

( ) 1.87(12.0) 7.29 ft
/ 3.08
cx

cx eff
x y

LL
r r

= = =  

 
 Step 6 Determine the column compressive strength from Manual Table 4-1 or 6-2 

with Lc = 7.29 ft. 
φPn = 484 kips 
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 Step 7: Determine the second-order moment. 
 

The applied wind moment is Mu = 1.0(6.0)(12.0) = 72.0 ft-kips and the 
applied force is Pu = 196 kips. 

 
Considering all the moment as a translation moment and using 
Commentary equation C-A-8-1 

( )

2 2

 2 2
2

(29,000)(428) 1690 kips
(1.87(12.0)(12))e story

EIP
K L
π π

= = =  

Therefore, for all three columns, 

( )2

 

1 1 1.13
1.0 3(196)

1–1
3(1690)

story

e story

B
P

P

= = =
⎛ ⎞α

− ⎜ ⎟
⎝ ⎠

 

and  
Mr = 1.13 (72.0) = 81.4 ft-kips 

 
 Step 8: Determine whether the column satisfies the interaction equation 

196 0.405 > 0.2
484

u

n

P
P

= =
φ

 

Therefore, use Equation H1-1a, φMn = 222, from Manual Table 3-10 or 6-
2, which results in 

8 1.0
9

8 81.40.405 0.731 < 1.0
9 222

u u

n n

P M
P M

⎛ ⎞
+ ≤⎜ ⎟φ φ⎝ ⎠
⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 

 
This indicates that the W14×43 is adequate for stability. The members can 
then be used as a starting point in a more rigorous analysis.  
 

 
EXAMPLE 8.7b 
Column Design 
with Flexible Wind 
Connections by 
ASD 

Goal: Select girders and columns for a building with flexible wind connections. 
 

Given: An intermediate story of a three-story building is given in Figure 8.24. 
Story height is 12 ft. The frame is braced in the direction normal to that 
shown. Use the ASD provisions and A992 steel. 

 Step 1: Determine the required forces and moments for the load combination  
D + 0.75L +0.75(0.6W). 

 
The loads shown in Figure 8.24 are the code-specified nominal loads. The 
required forces are calculated using tributary areas as follows.  
 
Gravity loads on exterior columns 

               D = (25 k + 0.75 k/ft (15 ft)) = 36.3 kips 
0.75L = 0.75 (75 k + 2.25 k/ft (15 ft)) =  81.6 kips 
                                                     Total = 118 kips 

 
Gravity loads on interior columns 
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                D = (50 k + 0.75 k/ft (30 ft)) = 72.5 kips 
0.75L = 0.75 (150 k + 2.25 k/ft (30 ft)) = 163 kips 
                                                      Total = 236 kips 
  

Gravity load on girders for the worst case, D + L 
D = (0.75 k/ft (30 ft)) = 22.5 kips 
L = (2.25 k/ft (30 ft)) = 67.5 kips 
                         Total  = 90.0 kips 

 
 Step 2: Design the girder for the simple beam moment assuming full lateral support 

using Manual Table 3-2 or 6-2. 
( )8 90.0 30.0 8 338 ft-kipsaM WL= = =  

 
Therefore use  

W21×62 (Mn/Ω = 359 ft-kips, Ix = 1330 in.4) 
 

 Step 3: Design the columns for gravity load on the interior column using Manual 
Table 4-1 or 6-2. 
 
For buckling out of the plane in a braced frame, K = 1.0 and Lcy = 12.0 
 
Thus, with Pa = 236 kips  

try W14×43 (Pn/Ω = 247 kips, Ix = 428 in.4, rx/ry = 3.08) 
 

 Step 4: To check the column for stability in the plane, determine the effective 
length factor from the alignment chart with 

( )
( )

4282
12.0 3.21

1330
2(30.0)

c
top bottom

g

I L
G G

I L

⎛ ⎞
⎜ ⎟Σ ⎝ ⎠= = = =

Σ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Note that only one beam is capable of restraining the column and that that 
beam is pinned at its far end; thus the effective beam length is taken as 
twice its actual length. 
 
Considering the stress in the column under load, the stiffness reduction 
factor can be determined. 

236 18.7 ksi
12.6

aP
A
= =  

Thus, from the Manual Table 4-13, the stiffness reduction factor τb = 0.960. 
The inelastic stiffness ratio then becomes 

Gtop = Gbottom = 0.960(3.21) = 3.08 
 
which yields, from the alignment chart, Figure 5.20 

K = 1.84 
 

 Step 5: Determine the effective length in the plane of bending. 

( ) 1.84(12.0) 7.17 ft
/ 3.08
cx

cx eff
x y

LL
r r

= = =  
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 Step 6: Determine the column compressive strength from Manual Table 4-1 or 6-2 
with Lc = 7.17 ft. 

Pn/Ω = 324 kips 
 

 Step 7: Determine the second-order moment. 
 
The applied wind moment is Ma = 0.75(0.6)(6.0(12.0)) = 32.4 ft-kips and 
the applied force is Pa = 236 kips. 
 
Considering all the moment as a translation moment and using 
Commentary equation C-A-8-1 

( )

2 2

 2 2
2

(29,000)(428) 1740 kips
(1.84(12)(12))e story

EIP
K L
π π

= = =  

 
αPa = 1.6(236) = 378 kips 

 
Therefore, for all three columns, 

2

 

1 1 1.283(378)1–1
3(1740)

story

e story

B P
P

= = =
α

−
 

and  
Mr = 1.28(32.4) = 41.5 ft-kips 

 
 Step 8: Determine whether the column satisfies the interaction equation 

236 0.728 < 0.2
/ 324
r

n

P
P

= =
Ω

 

 
Therefore, use Equation H1-1a, Mn/Ω = 148, from Manual Table 3-10 or 6-
2, which results in 

( ) ( )
8 1.0
9

8 41.50.728 0.98 1.0
9 148

a a

n n

P M
P M

⎛ ⎞
+ ≤⎜ ⎟⎜ ⎟Ω Ω⎝ ⎠
⎛ ⎞+ = <⎜ ⎟
⎝ ⎠

 

 
This indicates that the W14×43 is adequate for stability. These members 
can then be used as a starting point in a more rigorous analysis. 
 

After an acceptable column is selected, the lateral displacement of the structure must be 
checked. Coverage of drift in wind moment frames is beyond the treatment intended here, but is 
covered in the Geschwindner and Disque paper already referenced. 
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8.12.1 Column Bracing 

 
For column panel bracing, the required shear strength of the bracing system is 
  

 0.005br rV P=                                               (AISC A-6-1) 
and the required shear stiffness is 

1 2 (LRFD)r
br

br

P
L

⎛ ⎞β = ⎜ ⎟φ ⎝ ⎠
  

2 (ASD)r
br

br

P
L

⎛ ⎞β = Ω⎜ ⎟
⎝ ⎠

                 (AISC A-6-2) 

φ = 0.75 (LRFD)       Ω = 2.00 (ASD) 
where 
 Lbr = unbraced length of the panel under consideration 
 Pr = required strength of the column within the panel under consideration for ASD or  
         LRFD as appropriate for the design method being used. 
 
For a column point brace, the required brace strength is 

 Pbr = 0.01 Pr (AISC A-6-3) 
 

and the required brace stiffness is 

 
1 8 (LRFD)r

br
br

P
L

⎛ ⎞β = ⎜ ⎟φ ⎝ ⎠
  

8 (ASD)r
br

br

P
L

⎛ ⎞β = Ω⎜ ⎟
⎝ ⎠

                (AISC A-6-4) 

φ = 0.75 (LRFD)       Ω = 2.00 (ASD) 
 

where 
Lbr = laterally unbraced length adjacent to the point brace 
Pr = required strength for ASD or LRFD as appropriate for the design method being used. 

 
It should be noted that the requirements for point braces are significantly greater than those for 
panel braces. Thus, if a panel bracing system can be developed, it has the potential to be the more 
economical approach. 
 

8.12.2 Beam Bracing 
 
For a beam panel brace, the required shear strength of the bracing system is 
  

 0.01 r d
br

o

M CV
h

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                       (AISC A-6-5) 

and the required panel brace stiffness is 

 
1 4 (LRFD)r d

br
br o

M C
L h

⎛ ⎞β = ⎜ ⎟φ ⎝ ⎠
  

4 (ASD)r d
br

br o

M C
L h

⎛ ⎞β = Ω⎜ ⎟
⎝ ⎠

 (AISC A-6-6) 

                            φ = 0.75 (LRFD)                 Ω = 2.00 (ASD) 
where 
 ho = distance between flange centroids 
 Cd = 1.0 for single curvature bending and 2.0 for the brace closest to the inflection point  
          for double curvature bending 
 Lbr = laterally unbraced length within the panel under consideration 
 Mr = the largest required flexural strength of the beam within the unbraced lengths  
          adjacent to the point being braced 
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For a beam point brace, the required strength of the brace is 
 Pbr = 0.02MrCd/ho                                                                       (AISC A-6-7) 

and the required brace stiffness is 
 

 
1 10β (LRFD)r d

br
br o

M C
L h

⎛ ⎞= ⎜ ⎟φ ⎝ ⎠
   

10β (ASD)r d
br

br o

M C
L h

⎛ ⎞= Ω⎜ ⎟
⎝ ⎠

 (AISC A-6-8) 

                         φ = 0.75 (LRFD)                 Ω = 2.00 (ASD) 
where 
 ho = distance between flange centroids 
 Cd = 1.0 for single curvature and 2.0 for double curvature as above 
 Lbr = laterally unbraced length adjacent to the point brace 
 Mr = the largest required flexural strength of the beam within the unbraced lengths  
          adjacent to the point being braced 
 
As with column bracing, the requirements for point braces are greater than those for panel braces. 
 

8.12.3 Frame Bracing 
 
Frame bracing and column bracing are accomplished by the same panel and point braces and may 
be designed using the same stiffness and strength equations. However, the most direct approach 
to bracing design for frames is to include the braces in the model when a second-order analysis is 
carried out. When that is the case, the provisions of Appendix 6 do not need to be checked. 
 

EXAMPLE 8.8a 
Bracing Design by 
LRFD 

Goal: Determine the required bracing for a braced frame to provide stability for 
the gravity load. 
 

Given: Using the LRFD requirements, select a rod to provide the point bracing 
shown in the center panel of the three-bay frame of Figure 8.9a to provide 
stability for a total gravity dead load of 113 kips and live load of 45 kips.  
 

SOLUTION Step 1: Determine the required brace stiffness for gravity load. 
 
For the gravity load, the required brace stiffness is based on 1.2D + 1.6L. 

( ) ( )1.2 113 1.6 45.0 208 kipsrP = + =  
 

and from Equation A-6-4 
1 8 1 8(208)β 139 kips/ft

0.75 16.0
r

br
br

P
L

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟φ ⎝ ⎠⎝ ⎠
 

 
 Step 2: Determine the required brace area based on required stiffness and 

accounting for the angle of the brace. 
 
Based on the geometry of the brace from Figure 8.9, where θ is the angle of 
the brace with the horizontal and Lr = 34.0 ft is the length of the brace, 

2β cos  θ 139 kips/ftbr
br

r

A E
L

= =  

This results in a required brace area 
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2
22

139(34.0) 0.209 in.
cos 3029,000

34

br r
br

LA
E
β

= = =
θ ⎛ ⎞

⎜ ⎟
⎝ ⎠

 

 

 Step 3: Determine the required brace force for gravity load. The required horizontal 
brace force for a point brace given by Equation A-6-3 is 

( )0.01 0.01 208 2.08 kipsbr rP P= = =  
 
which gives a force in the member of 

( )( ) 2.08 34 30 2.36 kipsbr angleP = =  
 
and a required area, assuming Fy = 36 ksi for a rod, of 

( ) 22.36 0.0728 in.
0.9(36)

br angle
br

y

P
A

F
= = =

φ
 

 
 Step 4: For the dead plus live load case, 

2
min 0.209 in.A =  

 
 Step 5: Select a rod to meet the required area for the controlling case of stiffness 

for the dead plus live load case where 2
min 0.209 in.A =  

 
use a 5/8-in. rod with A = 0.307 in.2 

 
 
EXAMPLE 8.8b 
Bracing Design by 
ASD 

Goal: Determine the required bracing for a braced frame to provide stability for 
the gravity load. 
 

Given: Using the ASD requirements, select a rod to provide the point bracing 
shown in the center panel of the three-bay frame of Figure 8.9a to provide 
stability for a total  gravity dead load of 113 kips and live load of 45 kips.  
 

SOLUTION Step 1: Determine the required brace stiffness for gravity load. 
 
For the gravity load, the required brace stiffness is based on D + L. 

113 45.0 158 kipsrP = + =  
 
and from Equation A-6-4 
 

8 8(158)β 2.00 158 kips/ft
16.0

r
br

br

P
L

⎛ ⎞ ⎛ ⎞= Ω = =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
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 Step 2: Determine the required brace area based on required stiffness and 
accounting for the angle of the brace. 
 
Based on the geometry of the brace from Figure 8.9, where θ is the angle of 
the brace with the horizontal and Lr =34.0 ft is the length of the brace. 

2β cos  θ 158 kips/ftbr
br

r

A E
L

= =  

 
This results in a required brace area 

2
22

158(34.0) 0.238 in.
cos 3029,000

34

br r
br

LA
E
β

= = =
θ ⎛ ⎞

⎜ ⎟
⎝ ⎠

 

 
 Step 3: Determine the required brace force for gravity load.  

 
The required horizontal brace force for a point brace given by Equation A-
6-3  is 

( )0.01 0.01 158 1.58 kipsbr rP P= = =  
 
which gives a force in the member of 

( )( ) 1.58 34 30 1.79 kipsbr angleP = =  
and a required area, assuming Fy = 36 ksi for a rod, of 

( ) 21.79 0.0830 in.
(36 1.67)

br angle
br

y

P
A

F
= = =

Ω
 

 
 Step 4: For the dead plus live load case, 

2
min 0.238 in.A =  

 
 Step 5: Select a rod to meet the required area for the controlling case of stiffness 

for the dead plus live load case, Amin = 0.238 in.2. 
 

use a 5/8-in. rod with A = 0.307 in.2 

 
 

8.13 TENSION PLUS BENDING 
 
Throughout this chapter, the case of combined compression plus bending has been treated. That is 
the most common case of combined loading in typical building structures. However, the 
Specification also has provisions, in Section H1.2, for combining flexure and tension. The 
addition of a tension force to a member already undergoing bending may be beneficial. 

The interaction equations for combined tension and flexure are the same as those already 
discussed and given as Equations H1-1a and H1-1b. However, if the flexural strength is 
controlled by the limit state of lateral-torsional buckling, the addition of a tension force can 
increase bending strength.  This is accounted for in the Specification by the introduction of a 
modification factor to be applied to Cb. Thus, for doubly symmetric members, Cb in Chapter F 
can be multiplied by 1 r eyP P+ α for axial tension that acts concurrently with flexure, where 

2 2
ey y bP EI L= π  and α = 1.0 for LRFD and 1.6 for ASD, as before. The limit that Mn cannot 

exceed Mp still must be satisfied as it was for beam design discussed in Chapter 6. 
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EXAMPLE 8.9a 
Combined Tension 
and Bending by 
LRFD 

Goal: Check the given W-shape beam for combined tension and bending 
 

Given: A W16×77 beam spans 25 ft and carries a uniform dead load of 0.92 kips/ft 
and a uniform live load of 2.79 kips/ft. It also carries a tension live load of 
62.5 kips. The member is braced at the ends only for lateral-torsional 
buckling. Use A992 steel.  
 

SOLUTION Step 1: Determine the required moment strength 
( ) ( )1.2 0.92 1.6 2.79 5.57 kips/ftuw = + =  

( )25.57 25
435 ft-kips

8uM = =  

 Step 2: Determine the required tension strength 
( )1.6 62.5 100 kipsuT = =  

 
 Step 3: Determine the available moment strength. With Lb = 25 ft and Cb = 1.14, 

from Manual Table 6-2 
( )1.14 382 435 ft-kips 563 ft-kipsn pM Mφ = = < φ =  

 
 Step 4: Determine the available tension strength for the limit state of yielding. 

Connections at the end of the member are at a location of zero moment so 
tension rupture will not be a factor for interaction with bending. From 
Table 6-2 

1020 kipsnTφ =  
 

 Step 5: Determine the increase to be applied to Cb when tension is applied in 
conjunction with moment strength determined for the lateral-torsional 
buckling limit state.  

( )( )
( )( )

22

22

29,000 138
439 kips

25 12
ey

b

EIP
L

ππ
= = =  

( )1.0 100
1 1 1.11

439
r

ey

P
P
α

+ = + =  

 
 Step 6: Moment strength when considered in combination with tension 

( )1.11 435 483 ft-kips 563 ft-kipsn pM Mφ = = < φ =  
 

 Step 7: Determine the interaction equation to use 
100 0.098 0.2

1020
r

c

P
P

= = <  

 
 Step 8: Use Equation H1-1b 

0.098 435 0.049 0.901 0.95 1.0
2 2 483

r r

c c

P M
P M
+ = + = + = <  

 
So the beam is adequate to carry the bending moment and tension force. 
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 Step 9: Check the beam for bending alone, in case the tension force were not there. 
Use the available moment strength from Step 3.  

435 1.0 1.0
435

r

c

M
M

= = ≤  

 
So the beam would just be adequate. In cases where the application of the 
tension force increases interaction strength and that force may not actually 
occur, it is important to check the member for flexure alone.  

   
The W16×77  is adequate to carry the applied loads. 
 

 
EXAMPLE 8.9b 
Combined Tension 
and Bending by 
ASD 

Goal: Check the given W-shape beam for combined tension and bending 
 

Given: A W16×77 beam spans 25 ft and carries a uniform dead load of 0.92 kips/ft 
and a uniform live load of 2.79 kips/ft. It also carries a tension live load of 
62.5 kips. The member is braced at the ends only for lateral-torsional 
buckling. Use A992 steel.  
 

SOLUTION Step 1: Determine the required moment strength 
0.92 2.79 3.71 kips/ftaw = + =  

( )23.71 25
290 ft-kips

8aM = =  

 Step 2: Determine the required tension strength 
62.5 kipsaT =  

 
 Step 3: Determine the available moment strength. With Lb = 25 ft and Cb = 1.14, 

from Manual Table 6-2 

( )1.14 254 290 ft-kips 374 ft-kipspn MM
= = < =

Ω Ω
 

 
 Step 4: Determine the available tension strength for the limit state of yielding. 

Connections at the end of the member are at a location of zero moment so 
tension rupture will not be a factor for interaction with bending. From 
Table 6-2 

677 kipsnT
=

Ω
 

 
 Step 5: Determine the increase to be applied to Cb when tension is applied in 

conjunction with moment strength determined for the lateral-torsional 
buckling limit state.  
 

( )( )
( )( )

22

22

29,000 138
439 kips

25 12
ey

b

EIP
L

ππ
= = =  

( )1.6 62.5
1 1 1.11

439
r

ey

P
P
α

+ = + =  

 Step 6: Moment strength when considered in combination with tension 
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( )1.11 290 322 ft-kips 374 ft-kipspn MM
= = < =

Ω Ω
 

 
 Step 7: Determine the interaction equation to use 

62.5 0.092 0.2
677

r

c

P
P

= = <  

 
 Step 8: Use Equation H1-1b 

0.092 290 0.046 0.901 0.95 1.0
2 2 322

r r

c c

P M
P M

+ = + = + = <  

 
So the beam is adequate to carry the bending moment and tension force. 
 

 Step 9: Check the beam for bending alone, in case the tension force were not there. 
Use the available moment strength from Step 3.  

290 1.0 1.0
290

r

c

M
M

= = ≤  

 
So the beam would just be adequate. In cases where the application of the 
tension force increases interaction strength and that force may not actually 
occur, it is important to check the member for flexure alone.  

   
The W16×77  is adequate to carry the applied loads. 
 

8.14 PROBLEMS 
Unless noted otherwise, all columns should be 
considered pinned in a braced frame out of the plane 
being considered in the problem with bending about 
the strong axis. 
 
1. Determine whether a W14×90, A992 column 
with a length of 12.5 ft is adequate in a braced frame 
to carry the following loads from a first-order 
analysis: a compressive dead load of 100 kips and 
live load of 300 kips, a dead load moment of 30 ft-
kips and live load moment of 70 ft-kips at one end, 
and a dead load moment of 15 ft-kips and a live load 
moment of 35 ft-kips at the other. The member is 
bending in reverse curvature about the strong axis. 
Determine by (a) LRFD and (b) ASD. 
 
 
 
 
2. A W12×58, A992 is used as a 14 ft column in a 
braced frame to carry a compressive dead load of 60 
kips and live load of 120 kips. Will this column be 
adequate to carry a dead load moment of 30 ft-kips 
and live load moment of 60 ft-kips at each end, 

bending the column in single curvature about the 
strong axis? The analysis results are from a first-
order analysis. Determine by (a) LRFD and (b) 
ASD. 
 
3. Determine whether a W12×190, A992 column 
with a length of 22 ft is adequate in a braced frame 
to carry the following loads from a first-order 
analysis: a compressive dead load of 300 kips and 
live load of 500 kips, a dead load moment of 50 ft-
kips and live load moment of 100 ft-kips at one end, 
and a dead load moment of 25 ft-kips and a live load 
moment of 50 ft-kips at the other. The member is 
bending in reverse curvature about the strong axis. 
Determine by (a) LRFD and (b) ASD. 
 
4. A W10×60, A992 is used as a 13 ft column in a 
braced frame to carry a compressive dead load of 74 
kips and live load of 120 kips. Will this column be 
adequate to carry a dead load moment of 30 ft-kips 
and live load moment of 45 ft-kips at each end, 
bending the column in single curvature about the 
strong axis? The analysis results are from a first-
order analysis. Determine by (a) LRFD and (b) 
ASD. 
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5. Given a W14×500, A992 42 ft column in a 
braced frame with a compressive dead load of 90 
kips and live load of 270 kips. Maintaining a live 
load to dead load ratio of 3, determine the maximum 
live and dead load second-order moments that can be 
applied about the strong axis on the upper end when 
the lower end is pinned by (a) LRFD and (b) ASD. 
 
6. Given a W14×132, A992 15 ft column in a 
braced frame with a compressive dead load of 350 
kips and live load of 350 kips, and maintaining a live 
load to dead load ratio of 1, determine the maximum 
live and dead load second-order moments that can be 
applied about the strong axis on the upper end when 
the lower end is pinned by (a) LRFD and (b) ASD. 
 
7. Reconsider the column and loadings in Problem 
1 if that column were bent in single curvature by (a) 
LRFD and (b) ASD. 
 
8. Reconsider the column and loadings in Problem 
2 if that column were bent in reverse curvature by 
(a) LRFD and (b) ASD. 
 
9. Reconsider the column and loadings in Problem 
3 if that column were bent in single curvature by (a) 
LRFD and (b) ASD. 
 
10. Reconsider the column and loadings in 
Problem 4 if that column were bent in reverse 
curvature by (a) LRFD and (b) ASD. 
11. A 14 ft pin-ended column in a braced frame 
must carry a compressive dead load of 85 kips and 
live load of 280 kips, along with a uniformly 
distributed transverse dead load of 0.4 kips/ft and 
live load of 1.3 kips/ft. Will a W14×68, A992 
member be adequate if the transverse load is applied 
to put bending about the strong axis? Determine by 
(a) LRFD and (b) ASD. 
 
12. A pin-ended chord of a truss is treated as a 
member in a braced frame. Its length is 12 ft. It must 
carry a compressive dead load of 90 kips and live 
load of 170 kips, along with a uniformly distributed 
transverse dead load of 1.1 kips/ft and live load of 
2.3 kips/ft. Will a W8×58, A992 member be 
adequate if the transverse load is applied to put 
bending about the strong axis? Determine by (a) 
LRFD and (b) ASD. 
 
13. A moment frame is designed so that under a 
service lateral load H= 150 kips, the frame drifts no 

more than L/400. There are a total of 15 columns in 
this frame, so Pstory is 15 times the load on this 
column. A 13 ft, W14×120, A992 column is to be 
checked. Analysis results are from a first-order 
analysis. The column is called upon to carry a 
compressive dead load of 100 kips and live load of 
300 kips. This load will be taken as coming from a 
no-translation analysis. The top of the column is 
loaded with no-translation dead load moment of 25 
ft-kips and a no-translation live load moment of 80 
ft-kips. The translation moments applied to that 
column end are a dead load moment of 35 ft-kips 
and a live load moment of 100 ft-kips. The lower 
end of the column feels half of these moments. The 
column is bending in reverse curvature about the 
strong axis. Will the W14×120, A992 member be 
adequate to carry this loading? Analysis shows that 
the effective length factor in the plane of bending is 
1.66. Determine by (a) LRFD and (b) ASD. 
 
14. A W14×193, A992 member is proposed for 
use as a 12.5 ft column in an moment frame. The 
frame is designed so that under a service lateral load 
H= 120 kips, the frame drifts no more than L/500. 
The total story load, Pstory, is 20 times the individual 
column load. Analysis results are from a first-order 
analysis. Will this member be adequate to carry a 
no-translation compressive dead load of 160 kips 
and live load of 490 kips? The top of the column is 
loaded with a no-translation dead load moment of 15 
ft-kips and a no-translation live load moment of 30 
ft-kips. The translation moments applied to that 
column end are a dead load moment of 80 ft-kips 
and a live load moment of 250 ft-kips. The column 
is bending about the strong axis and, the lower end 
of the column is considered pinned, and the effective 
length factor is taken as 1.5. Determine by (a) LRFD 
and (b) ASD. 
 
15. Will a W14×48 be adequate as a 14 ft column 
in a moment frame with a compressive dead load of 
35 kips and live load of 80 kips? One half of this 
compressive load is taken as a no-translation load 
and one half as a translation load. The top and 
bottom of the column are loaded with a no-
translation dead load moment of 20 ft-kips and a no-
translation live load moment of 55 ft-kips. The 
translation moments applied to the column ends are 
a dead load moment of 10 ft-kips and a live load 
moment of 50 ft-kips. Analysis results are from a 
first-order analysis. The frame is designed so that 
under a service lateral load H= 50 kips, the frame 
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selected for the gravity plus wind load combination, 
so there should be no need to include notional loads. 
 
Design the columns and beams for the resulting load 
effects and redo the analysis to check the strength of 
these new members and the drift of the structure.  
 

 


