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Unified Design of Steel Structures, 3rd Edition, Errata  last updated 2/13/22 

p. 78, Section 3.8, Problem 2.  “the 2010 AISC Specification” should be  “the 2016 AISC Specification” 
p. 112, Section 4.8, see p.3 of this errata 
p. 121, Section 4.13, Problem 28.  The end of the WT (perpendicular to the load) is also welded. 
p. 184, Section 5.12, Problem 32. “A300 Gr. C” should be “A500 Gr. C” 
p. 215, Section 6.4.2, Example 6.7 
Example 6.7a  

 Step 6: Select a shape with 282 ft-kipspMφ ≥ from Manual Table 3-2.  
Thus , select  

W18×40, 294 ft-kipspMφ =  
 Step 7: Confirm in Manual Table 3-10 that the line, either solid or dashed, for the 

W18×40 is above and to the right of the intersection of 169 ft-kipsnMφ =  and 
Lb = 15 ft. Since this is not the case, Thus, select the W18×40 is not adequate. 

 Step 8: By trial and error, checking the shapes that are up and to the right of this 
point in Table 3-10, select 

W16×45 
with 309 282 ft-kipspMφ = ≥  

Example 6.7b 
 Step 6: Select a shape with 188 ft-kipspM Ω ≥ from Manual Table 3-2.  

Thus, select a  
W18×40 with 196 ft-kipspM Ω =  

 Step 7: Confirm in Manual Table 3-10 that the line, either solid or dashed, for the 
W18×40 is above and to the right of the intersection of 113 ft-kipsnM Ω =  
and Lb = 15 ft. Since this is not the case, Thus, select the W18×40 is not 
adequate. 

 Step 8: By trial and error, checking the shapes that are up and to the right of this 
point in Table 3-10, select 

W16×45 
with 205 188 ft-kipspM Ω = ≥  

p. 262, Section 6.17, Problem 48. “limit deflection” should be “limit live load deflection” 
p. 262, Section 6.17, Problem 55.  Use 30 ft spans. 
p. 272, Section 7.2.2, Flange Local Buckling. “...same as those used in Chapter 6 and Section 7.2.1.” 
p. 275, Section 7.2.2, Example 7.1.  In Step 2, insert  

𝜆𝜆𝑤𝑤 =
ℎ𝑐𝑐
𝑡𝑡𝑤𝑤

=
48

0.375
= 128 > 𝜆𝜆𝑝𝑝𝑤𝑤 = 3.76�

𝐸𝐸
𝐹𝐹𝑦𝑦

= 3.76�
29000

36
= 107 

128 < 𝜆𝜆𝑟𝑟𝑤𝑤 = 5.70�
𝐸𝐸
𝐹𝐹𝑦𝑦

= 5.70�
29000

36
= 162 

before “Thus, this is a noncompact web girder, and the provisions of Section F4 must be 
followed. The web plastification factor must be determined.” 

p. 332, “EXAMPLE 8.3a” should be “EXAMPLE 8.3b” 
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p. 333, in the ASD solution for Example 8.3 (changes in red font) 
Step 5: Check the W14×132 for combined axial load and bending. To determine which equation to 

use, check 
 

𝑃𝑃𝑛𝑛
Ω

=
530
960

= 0.552 ≥ 0.2 
 

p. 343, Example 8.6a, Step 7 – for the sway amplification, “Pu” should be replaced with “Pstory” 
p. 367, Section 8.14, Problem 14. The total story load, Pstory, is 15 times the individual column load; “an 

moment frame” should be “a moment frame” 
p. 367, Section 8.14, Problem 16. Determine by (a) LRFD and (b) ASD. 
p. 368, Section 8.14, Problem 18. “0.5 in.” should be “0.1 in.” 
p. 368, Section 8.14, Problem 23. “an LRFD second-order direct analysis” should be “an ASD second-

order direct analysis” 
p. 369, Figure P8.19. Interior column moments are acting in the same direction; see revised figure: 

 
p. 370, Figure P8.28.  For the loads given at the top of the figure, wLL is 1.7 k/ft and wDL is 2.8 k/ft. 
p. 379, third paragraph, If Cc  < Tw + Tf,  less tension is needed for equilibrium and the PNA is MAY BE in 

the web. 

p. 386, Example 9.3, Step 6.  𝑀𝑀𝑛𝑛 = 𝑇𝑇𝑠𝑠 �
𝑑𝑑
2
� + 𝐶𝐶𝑐𝑐 �𝑡𝑡 −

𝑎𝑎
2
� − 2𝐴𝐴𝑠𝑠−𝑐𝑐𝐹𝐹𝑦𝑦 �

𝑥𝑥
2
� 

p. 415, Example 9.9, Step 3, EIeff  equation should show C1 rather than C3 
p. 426, Section 9.13, Problems.  If needed, assume normal-weight concrete. 
p. 446, Example 10.3, Step 1 should read Fnv = 0.45Fu = 0.45(150) = 68 ksi 
p. 468, Figure P10.28. Workable gage should be 3-1/2 in. instead of 5-1/2 in. Does not change problem. 
p. 503, Example 11.4a, Step 12.  φRn = 55.8 kips 
p. 544, Section 11.12, Problem 18. Should have a dead load reaction of 7.5 kips and a live load reaction 

of 22.5 kips 
p. 545, Section 11.12, Problem 41.  Assume f’c = 5 ksi; assume also that the area of the concrete support 

is the same as the steel bearing plate area. 
p. 545, Section 11.12, Problem 42.  Assume f’c = 5 ksi; assume also that the area of the concrete support 

is 4 times as large as the steel bearing plate area, and assume concentric areas. 
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p. 556, Figure 12.4(c), below, should be inserted. 

 
pp. 569-570, 575-576, Examples 12.3a and 12.3b, see below and pp. 4-6 of this errata 
pp. 582-583, 586, Section 12.4, Examples 12.4a and 12.4b.  Step 1, between the two equations, the limit 
state should be “flange local bending”; Steps 2 and 3, Fyf should be Fyw 
p. 585, Figure 12.8, w = bs 
 
Section 4.8 PIN-CONNECTED MEMBERS (starting on p. 112) 

The discussion in this section does not mention the two arbitrary requirements of Section D5.2(c).  

The width of the plate at the pin hole shall not be less that 2be + d and the minimum extension, 
a, beyond the bearing end of the pin hole, parallel to the axis of the member, shall not be less 
than 1.33be. 

Since be is limited to the width of the plate, the first of these will automatically be satisfied. The second, 
however must be checked. 

In Example 4.15a and 4.15b, the end distance is taken as 2.5 in. but this is less than 1.33be = 1.33(2.13) = 
2.83 in. Therefore the end distance should be taken as a = 3.0 in. Thus, in Step 4, the shear area will be 

 ( ) ( )( ) 22 2 2 0.750 3.00 4.0 2 7.50 in.sfA t a d= + = + =   
The nominal strength for the limit state of shear rupture using Equation D5-2 will be 

 ( )( )0.6 0.6 65 7.50 293 kipsn u sfP F A= = =   
and the available strength will be 

 ( )0.75 293 220 kips
293 2.00 147 kips

n

n

P
P
φ = =

Ω = =
  

Note that the change in the extension past the pin has not changed the strength of the member since 
strength is controlled by the limit state of tension rupture in Step 3. 
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Example 12.3a errata. Pages 569-570 (changes in red font) 

 Step 8: Check the plate for block shear rupture. 
 
Check the plate for block shear using the geometry shown in Figure 12.5. 
There are three possible block shear failure patterns shown, one with the 
center portion failing in tension, Figure 12.5a, one with the two outside 
portions failing in tension, Figure 12.5b, and one with only one shear failure 
plane and the tension failure over the middle portion with one outside 
portion, Figure 12.5c. The worst case must be identified. For the first two 
possibilities, the critical tension area for block shear will be the one 
associated with the least tension width. In this case it will be for the middle 
3-1/2 in. section as shown in Figure 12.5a, and the critical net tension area is 

( )( )
( )( ) 2

1 16

3.5 7 8 1 8 (0.750) 1.88 in.

nt h pA b d t= − +

= − + =
 

 
and the shear areas for the two shear planes are 
 

( )
( )( )( )

( )( )

2

2

2

2 10.75(0.750) 16.1in.

2 0.5 1 16

2 10.75 3.5 7 8 1 8 (0.750) 10.9 in.

gv w

nv h w

A lt

A l n d t

=

= =

= − − +

= − + =

 

 
Determine the tension rupture strength 

( )58 1.88 109 kipsu ntF A = =  
 

Consider the shear yield and shear rupture and select the one with least 
strength; thus, 

( )( )
( )( )

0.6 0.6 36 16.1 348 kips

0.6 0.6 58 10.9 379 kips
y gv

u nv

F A

F A

= =

= =
 

 
Selecting the shear yield term and combining it with the tension rupture term 
gives a connection design block shear strength, with Ubs = 1.0, of 

( )( ) ( )0.75 348 1.0 109 0.75 457 343 167 kipsnRφ = + = = >  
 

Since the shear contribution is so much greater than the tension contribution, 
the pattern shown in Figure 12.5c should be checked. For a tension width 
equal to 5.38 in., the net tension area is 

( )( )
( )( ) 2

1.5 1 16

5.38 1.5 7 8 1 8 (0.7 2.9150) in.

nt h pA b d t= − +

= − + =
 

 
and the shear areas for a single shear plane are 
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( )( )( )
( )( )

2

2

10.75(0.750) 8.06 in.
0.5 1 16

10.75 3.5 7 8 1 8 (0.750) 5.44 in.

gv w

nv h w

A lt

A l n d t

=

= =

= − − +

= − + =

 

 
Determine the tension rupture strength 

( )2.91 16958  kipsu ntF A = =  
 
Consider shear yield and shear rupture and select the one with the least 
strength; thus 

( )( )
( )

0.6 0.6 36 8.06 174 kips

0.6 0.6 58 5.44 189 kips
y gv

u nv

F A

F A

= =

= =
 

 
Selecting the shear yield term and combining it with the tension rupture term 
gives a connection design block shear strength, with Ubs = 1.0, of 

( )( ) ( )0.75 174 1.0 0169 343 257.75 167 kipsnRφ = + = = >  
 
Of the three block shear patterns illustrated, this is clearly the most critical. 
However, it should be noted from step 4 that tension rupture of the plate is 
more critical than any of the block shear failure patterns. When the shear 
strength of the block shear patterns is larger than all the potential tension 
pattern strengths, tension rupture of the plate will likely control over any of 
the potential block shear modes. Thus, any time that the pattern illustrated in 
Figure 12.5c would be the controlling block shear pattern, tension rupture of 
the plate will be more critical. 
 

 

Example 12.3b errata. Pages 575-576 (changes in red font) 

 Step 8: Check the plate for block shear rupture. 
 
Check the plate for block shear using the geometry shown in Figure 12.5. 
There are three possible block shear failure patterns shown, one with the 
center portion failing in tension, Figure 12.5a, one with the two outside 
portions failing in tension, Figure 12.5b, and one with only one shear failure 
plane and the tension failure over the middle portion with one outside 
portion, Figure 12.5c. The worst case must be identified. For the first two 
possibilities, the critical tension area for block shear will be the one 
associated with the least tension width. In this case it will be for the middle 
3½ in. section as shown in Figure 12.5a, and the critical net tension area is 

( )( )
( )( ) 2

1 16

3.5 7 8 1 8 (0.750) 1.88 in.

nt h pA b d t= − +

= − + =
 

 
and the shear areas for the two shear planes are 
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( )
( )( )( )

( )( )

2

2

2

2 10.75(0.750) 16.1in.

2 0.5 1 16

2 10.75 3.5 7 8 1 8 (0.750) 10.9 in.

gv w

nv h w

A lt

A l n d t

=

= =

= − − +

= − + =

 

 
Determine the tension rupture strength 

( )58 1.88 109 kipsu ntF A = =  
 

Consider the shear yield and shear rupture and select the one with least 
strength; thus, 

( )( )
( )( )

0.6 0.6 36 16.1 348 kips

0.6 0.6 58 10.9 379 kips
y gv

u nv

F A

F A

= =

= =
 

 
Selecting the shear yield term and combining it with the tension rupture term 
gives a connection allowable block shear strength, with Ubs = 1.0, of 

( )( )348 1.0 109 2.00 457 2.00 229 111 kipsnR Ω = + = = >  
 

Since the shear contribution is so much greater than the tension contribution, 
the pattern shown in Figure 12.5c should be checked. For a tension width 
equal to 5.38 in., the net tension area is 

( )( )
( )( ) 2

1.5

1

1 16

5.38 7 8 1 8 (0.750) i.5 2.91 n.

nt h pA b d t= − +

= − + =
 

 
and the shear areas for a single shear plane are 

( )( )( )
( )( )

2

2

10.75(0.750) 8.06 in.
0.5 1 16

10.75 3.5 7 8 1 8 (0.750) 5.44 in.

gv w

nv h w

A lt

A l n d t

=

= =

= − − +

= − + =

 

 
Determine the tension rupture strength 

( )2.91 16958  kipsu ntF A = =  
 
Consider shear yield and shear rupture and select the one with the least 
strength; thus 

( )( )
( )

0.6 0.6 36 8.06 174 kips

0.6 0.6 58 5.44 189 kips
y gv

u nv

F A

F A

= =

= =
 

 
Selecting the shear yield term and combining it with the tension rupture term 
gives a connection allowable block shear strength, with Ubs = 1.0, of 

( )( )169 343174 1.0 2.00 2 172.00 111 kipsnR Ω = + = = >  
 
Of the three block shear patterns illustrated, this is clearly the most critical. 
However, it should be noted from step 4 that tension rupture of the plate is 
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more critical than any of the block shear failure patterns. When the shear 
strength of the block shear patterns is larger than all the potential tension 
pattern strengths, tension rupture of the plate will likely control over any of 
the potential block shear modes. Thus, any time that the pattern illustrated in 
Figure 12.5c would be the controlling block shear pattern, tension rupture of 
the plate will be more critical. 
 

 


