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Abstract: The use of empirically calibrated moment-rotation models that account for strength and stiffness deterioration of steel frame
members is paramount in evaluating the performance of steel structures prone to collapse under seismic loading. These deterioration models
are typically used as zero-length springs in a concentrated plasticity formulation; however, a calibration procedure is required when they
are used to represent the moment-curvature ðM − χÞ behavior in distributed plasticity formulations because the resulting moment-rotation
ðM − θÞ response depends on the element integration method. A plastic hinge integration method for using deterioration models in force-
based elements is developed and validated using flexural stiffness modifications parameters to recover the exact solution for linear problems
while ensuring objective softening response. To guarantee accurate results in both the linear and nonlinear range of response, the flexural
stiffness modification parameters are computed at the beginning of the analysis as a function of the user-specified plastic hinge length. With
this approach, moment-rotation models that account for strength and stiffness deterioration can be applied in conjunction with force-based
plastic hinge beam-column elements to support collapse prediction without increased modeling complexity.DOI: 10.1061/(ASCE)ST.1943-
541X.0001052. © 2014 American Society of Civil Engineers.
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Introduction

Performance-based seismic design and assessment requires accurate
nonlinear finite element models that can capture the full range of
structural response associated with various performance targets. In
the development of realistic finite element models, two main aspects
need to be taken into consideration. First, modes of strength and
stiffness deterioration attributable to damage accumulation that could
lead to local or global collapse need to be identified. Second, the
models for structural components need to be reliable, robust, and
computationally efficient for the entire range of the analysis. Ideal-
ized beam and column models for nonlinear structural analysis vary
greatly in terms of complexity and computational efficiency, from
phenomenological models, such as concentrated plasticity models

and distributed plasticity beam-column elements, to complex con-
tinuum models based on plane-stress or solid finite-elements.

Concentrated plasticity models (Clough et al. 1965), consist of
two parallel elements, one with elastic-perfectly plastic behavior
to represent yielding and the other with elastic response to represent
post-yield hardening. Following the formal proposal by Giberson
(1969), where nonlinear zero-length moment rotation springs are
located at both ends of a linear-elastic beam-column element, this
type of approach became the reference model in the development
of the concentrated plasticity models. Many hysteretic laws have
been proposed in the last decades accounting for the most relevant
phenomena influencing member response up to collapse: cyclic
deterioration in stiffness (Takeda et al. 1970) and strength (Pincheira
et al. 1999; Sivaselvan and Reinhorn 2000), pinching under load
reversal (Roufaiel and Meyer 1987), among many others have de-
veloped different phenomenological models that define the behavior
of the concentrated plastic hinges. Even though these models were
developed several years ago, they have been recently proposed as the
main method for estimating seismic demands of frame structures
(Ibarra andKrawinkler 2005;Medina andKrawinkler 2005; Haselton
and Deierlein 2007) and have been presented as the preferred model-
ing approach in the ATC-72 guidelines (PEER/ATC 2010). These
models allow for reliable estimation of the seismic demands in
structures up to the onset of collapse with limited computational cost.

On the opposite end of the spectrum to concentrated plastic
hinge (CPH) models, continuum models are generally accepted
as the most reliable approach for estimating the seismic demands
of structures to localized and global collapse. However, these
models are typically complex and require very time-consuming
computations. Distributed plasticity finite elements offer a compro-
mise between concentrated plasticity models and continuum finite
element models.
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Three formulations for distributed plasticity elements have been
proposed in the literature: force-based beam-column elements
(Spacone and Filippou 1992; Neuenhofer and Filippou 1997),
displacement based beam-column elements (Taylor 1977; Kang
1977), and the mixed formulation based beam-column elements
(Alemdar and White 2005). Mixed formulations typically yield
the best results in nonlinear structural analysis, but they have
not been widely adopted in the finite element software typically
employed in PBEE analyses.

Force-based beam-column elements have been shown to be
advantageous over displacement-based elements for material
nonlinear frame analysis (Neuenhofer and Filippou 1997; Alemdar
and White 2005; Calabrese et al. 2010) by avoiding the discretiza-
tion of structural members into numerous finite elements, thereby
reducing the number of model degrees of freedom. In these
formulations, the behavior of a section is described by a fiber model
or a stress resultant plasticity model (El-Tawil and Deierlein 1998).

Despite these advantages, localization issues related to nonob-
jective strain-softening response (Coleman and Spacone 2001) led
to the development of force-based finite-length plastic hinge beam-
column elements (FLPH elements in short) by Scott and Fenves
(2006) and Addessi and Ciampi (2007). Conceptually, these ele-
ments are composed of two discrete plastic hinges and a linear elas-
tic region, all of which are incorporated in the element integration
method. Through the selection of experimentally calibrated plastic
hinge lengths and appropriate definition of the integration scheme,
localization can be avoided. The main advantages of the FLPH
elements are: (1) the explicit definition of the plastic hinge length,
which allows for the recovery of meaningful local cross-section re-
sults (e.g., curvatures and bending moments); (2) a clear distinction
between beam-column inelasticity from the nonlinear behavior of
connections; and (3) a reduced number of nodes, elements and
degrees of freedom. These advantages motivate the search for
alternate calibration approaches as presented in this paper.
Although, these elements have been used successfully in simulating
the seismic response of structures (Berry et al. 2008), they require
the definition of a moment-curvature relationship and plastic hinge
length to represent a desired moment-rotation behavior.

Based on a large database of experimental results, Lignos and
Krawinkler (2011) have developed and validated multilinear mo-
ment-rotation relationships that can be used to capture plastic hinge
behavior in simulating the deteriorating response of steel structures
to collapse. Other authors have reported similar moment-rotation
relationships for reinforced concrete structures (Haselton and
Deierlein 2007) and load-displacement relationships for timber
structures (Foliente 1995), which account for other modes of
deterioration not typically observed in steel structures. The devel-
oped moment-rotation ðM − θÞ relationships can be used directly in
CPH elements following approaches presented in Ibarra and
Krawinkler (2005). However, several other beam-column elements
formulations, such as the FLPH elements, require the definition
of moment-curvature relationships in the plastic hinge regions.
For example, for the modified Gauss-Radau integration scheme
(Scott and Fenves 2006), where the end points weights are equal
to the plastic hinge length Lp, moment-curvature relationships
are required for the two end sections. The direct scaling of the
moment-rotation relationship by the plastic length Lp to obtain
a moment-curvature ðM − χÞ relationship [i.e., by dividing each
rotation by Lp (χi ¼ θi=Lp)], at first may seem a logical approach.
However, this leads to erroneous results when no further calibration
is performed, as shown by Scott and Ryan (2013) for the common
case of elasto-plastic behavior with linear strain hardening under
antisymmetric bending.

The objective of this paper is to present a plastic-hinge calibra-
tion approach that allows for simulation of structures using FLPH
elements that use the modified Gauss-Radau integration scheme
and make use of recent multilinear moment-rotation constitutive
laws that have been derived from experimental results. This cali-
bration procedure can be implemented in a finite element frame-
work, decreasing the user’s modeling effort, while providing
accurate and reliable results.

The calibration procedure includes the definition of section
flexural stiffness modification parameters at the beginning of the
nonlinear structural analysis. These modification parameters are
computed as a function of the plastic hinge to span length ratio
by comparison of the element flexibility and the target flexibility.

The proposed calibration methodology improves the quality and
reliability of the results obtained without a notable increase either in
computation cost or in the complexity of structural model. None-
theless, it is worth noting that the influence of other effects that
are typically considered in two-dimensional (2D) frame modeling
of built infrastructure still need to be taken into account. Examples
of relevant effects are slab stiffness and strength deterioration on
cyclic performance of beams, diaphragm action, load distribution,
and mathematical representation of damping, among others (Gupta
and Krawinkler 1999). The validation of the calibration approach
is performed for nonlinear static (pushover) analyses. However, for
full implementation in finite element software, nonlinear cyclic
static and dynamic analyses including strength and stiffness
deterioration are needed in the future, as these cases fall outside
the scope of this paper. In addition, the proposed calibration scheme
was only developed for the modified Gauss-Radau scheme, as it is
found to be advantageous over other methods, namely by avoiding
localization issues, in the analysis of structures to seismic loading
and is implemented in a FLPH element (Scott and Fenves 2006).
The application of the calibration approach to other integration
methods falls outside the scope of this work.

Problem Statement

Empirical Steel Component Deterioration
Moment-Rotation Behavior

To simulate component deterioration, Ibarra and Krawinkler (2005)
proposed a phenomenological model to simulate the deterioration
of steel elements, which Lignos and Krawinkler (2011) adapted to
define deteriorating moment-rotation relationships for plastic
hinges in steel elements using data from a large set of experimental
tests. The hysteretic behavior of the steel components is based on
the force-displacement envelope (backbone curve) illustrated in
Fig. 1. Although steel structures are often modeled considering
elasto-plastic constitutive behavior with linear strain hardening,
during a severe ground motion, significant inelastic cyclic deforma-
tions cause deterioration of elements, reducing their strength and
stiffness. This deterioration is significant in the analysis of steel
structures under cyclic lateral loads as it influences not only the
resistance of the structure, but also its stiffness and its resulting
dynamic behavior. The backbone curve for the adopted moment-
rotation model (M − θ) is defined in terms of: (1) yield strength
and rotation (My and θy); (2) capping strength and associated ro-
tation for monotonic loading (Mc and θc); (3) plastic rotation for
monotonic loading (θp); (4) post-capping rotation (θpc); (5) residual
strength Mr ¼ κ ×My; and (6) ultimate rotation (θu). Other model
parameters permit the definition of cyclic strength, post-capping
strength, accelerated reloading stiffness and unloading stiffness
deterioration (Lignos and Krawinkler 2013).

© ASCE 04014112-2 J. Struct. Eng.
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CPH Models

The empirical models described above can be used directly in the
zero-length moment-rotation springs of CPH elements. In the case
of double curvature or antisymmetric bending, which is the refer-
ence case for the empirical moment-rotation models used in Ibarra
and Krawinkler (2005) and in Lignos and Krawinkler (2011), the
global element initial flexural stiffness of the one component CPH
becomes 6EI=L, where EI is the cross-section flexural stiffness,
and L is the element length. The flexibilities of the zero-length
moment-rotation springs and the element interior are additive,
giving the total element flexibility

f ¼ fI þ fint þ fJ ð1Þ
where fint is the flexibility of the linear-elastic element interior, and fI
and fJ are the flexibilities of the springs at ends I and J, respectively.

The correct linear-elastic solution for the entire element is only
obtained if the end rotational springs are approximated as rigid-
plastic. Thus, linear elastic cross-section stiffness of the springs
at both ends are affected by a constant n (typically greater than
10) such that the initial stiffness of the springs is large, but not
so large as to pose numerical instability, as shown in Appendix I.
Because the elastic stiffness of the member is related to the elastic
stiffness of the rotational springs and the beam-column element,
which are connected in series, the stiffness of the element interior
is also affected by n, and is expressed as

EImod ¼ EI
nþ 1

n
ð2Þ

which translates to spring initial stiffness given by

km ¼ n
6EImod

L
; m ¼ I; J ð3Þ

Following the methodology in Ibarra and Krawinkler (2005),
the ratio of post-yield to elastic stiffness of the spring, α 0 (ratio

of the tangent stiffness, kTm, to the linear elastic stiffness, km) is
given by

α 0 ¼ kTm
km

¼ α
1þ n × ð1 − αÞ ð4Þ

where α is the nominal post-yielding to elastic stiffness ratio, and
α 0 is assigned to the end springs in the CPH model to reproduce the
correct moment-rotation behavior of the member. The ratio α 0 is
thus defined such that the correct nonlinear moment-rotation stiff-
ness of the member, defined as α × 6EI=L, is recovered.

Finite-Length Plastic Hinge Elements

The FLPH element developed by Scott and Fenves (2006) is based
on the force-based beam-column finite element formulation by
Spacone et al. (1996) and uses alternative numerical integration
schemes to account for user-defined plastic hinge lengths. The
force-based beam-column finite element is formulated assuming
small displacements in a simply-supported basic system free of
rigid-body displacements. Fig. 2 illustrates the basic system in
which the vector of element-end forces, q, the vector of element
deformations, v, the internal section forces, sðxÞ, and section
deformations, eðxÞ, are shown for a 2D element. Section forces
correspond to the axial force and bending moments, whereas the
section deformations correspond to axial strain and curvature.

Equilibrium between the section forces sðxÞ at a location x, and
basic element forces q is given by

sðxÞ ¼ bðxÞqþ s0ðxÞ ð5Þ
where bðxÞ is the interpolation function matrix, and s0ðxÞ
corresponds to a particular solution associated with element loads.
Eq. (5) can be expanded into different forms depending on the
number of dimensions of the problem and the beam theory selected.
For the 2D Euler–Bernoulli beam-column element, the basic
forces are q ¼ fq1; q2; q3gT and the section forces are
sðxÞ ¼ fNðxÞ;MðxÞgT , all of which are shown in Fig. 2. Compat-
ibility between element deformations v and section deformations e
is expressed as

v ¼
Z

L

0

bðxÞTeðxÞdx ð6Þ

The element flexibility matrix is obtained through linearization
of the element deformations v with respect to basic forces q and
is given by

f ¼ ∂v
∂q ¼

Z
L

0

bðxÞTfSðxÞbðxÞdx ð7Þ

(a)

(b)

Fig. 1. Adapted modified Ibarra-Krawinkler model: (a) backbone
curve; (b) basic modes of cyclic deterioration

Fig. 2. Basic system for two-dimensional frame elements
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where fS is the section flexibility, equal to the inverse of the section
stiffness fS ¼ k−1

S . The section stiffness is obtained from lineari-
zation of the constitutive relationship between section forces and
section deformations, kS ¼ ∂s=∂e, at the current element state.
The implementation details of the force-based element formulation
into a displacement-based software were presented by Neuenhofer
and Filippou (1997) and are not reproduced here for brevity.

Numerical evaluation of Eq. (6) is given by

v ¼
XNP

i¼1

ðbTejx¼ξiÞwi ð8Þ

where NP is the number of integration points over the element
length, and ξi and wi are the associated locations and weights.
The element flexibility is therefore given by

f ¼
XNP

i¼1

ðbTfSbjx¼ξiÞwi ð9Þ

The main issue related to use of this formulation is the locali-
zation of strain and displacement responses that can be obtained in
the case of strain-softening response of force-based distributed
plasticity elements (Coleman and Spacone 2001). Scott and Fenves
(2006) and Addessi and Ciampi (2007) proposed methods for
force-based FLPH integration, where the element is divided in three
segments, two corresponding to the plastic hinges at both ends,
with length LpI and LpJ, and a linear segment connecting both
hinges [Fig. 3(a)]. Thus, Eq. (6) simplifies to

v ¼
Z

LpI

0

bðxÞTeðxÞdxþ
Z

L−LpJ

LpI

bðxÞTeðxÞdx

þ
Z

L

L−LpJ

bðxÞTeðxÞdx ð10Þ

Various approaches were proposed by Scott and Fenves (2006)
and Addessi and Ciampi (2007) to evaluate this integral numeri-
cally; however, the focus herein is the modified Gauss-Radau in-
tegration scheme which retains the correct linear elastic solution
while using the specified plastic hinge lengths as the integration
weights at the element ends.

In this method both end sections are assigned a nonlinear behav-
ior, whereas the element interior is typically assumed to have
an elastic behavior, although this assumption is not necessary.
The flexibility of the FLPH element can be computed as

f ¼
Z
LpI

bðxÞTfSðxÞbðxÞdxþ
Z
Lint

bðxÞTfSðxÞbðxÞdx

þ
Z
LpJ

bðxÞTfSðxÞbðxÞdx ð11Þ

where Lint is the length of the linear-elastic element interior.
Using the modified Gauss-Radau integration scheme for the

plastic hinge regions, Eq. (11) can be rewritten as

f ¼
XNpI

i¼1

ðbTfsbjx¼ξiÞwi þ
Z
Lint

bðxÞTfSðxÞbðxÞdx

þ
XNpIþNpJ

i¼NpIþ1

ðbTfsbjx¼ξiÞwi ð12Þ

where NpI and NpJ are the number of integration points associated
with the plastic hinges at the element ends. For the modified

Gauss-Radau integration NpI ¼ NpJ ¼ 2. The element interior
term can be computed exactly when the element interior is elastic
and there are no member loads. Nonetheless, the element interior
can also be analyzed numerically. In this case, the Gauss-Legendre
integration scheme is appropriate to integrate the element interior. If
two integration points are placed in this region, a total of six inte-
gration points are defined along the element length. The location ξi
of the integration points associated with the modified Gauss-Radau
plastic hinge integration, represented in Fig. 3(a), are given by

ξ ¼ fξI; ξint; ξJg ð13Þ
where

ξI ¼
�
0;
8LpI

3

�

ξint ¼
�
4Lp þ Lint

2
×

�
1 − 1ffiffiffi

3
p

�
; 4Lp þ Lint

2
×

�
1þ 1ffiffiffi

3
p

��

ξJ ¼
�
L − 8LpJ

3
;L

�
ð14Þ

The corresponding weights wi are given by

w ¼ fwI;wint;wJg ð15Þ
where

wI ¼ fLpI ; 3LpIg wint ¼
�
Lint

2
;
Lint

2

�

wJ ¼ f3LpJ;LpJg ð16Þ

In this case, the element flexibility is then given by

f ¼
X6
i¼1

ðbTfsbjx¼ξiÞwi ð17Þ

where this equation is consistent with points and weights shown in
Fig. 3(a).

Calibration of Force-Based Finite-Length Plastic
Hinge Elements

The FLPH formulation requires the definition of moment-curvature
relationships in the plastic hinge region, and subsequent procedures
to relate these relationships to the moment-rotation response of the
element. In this section, a novel method for calibration of the
moment-rotation behavior of finite-length plastic hinge force-based
frame elements is proposed for arbitrary plastic hinge lengths. With
this approach, moment-rotation models that account for strength
and stiffness deterioration can be applied in conjunction with FLPH
models to support collapse prediction of frame structures. The
approach includes an automatic calibration procedure embedded
in the numerical integration of the element, freeing the analyst
of this task. The calibration procedure is formulated for the
modified Gauss-Radau integration scheme. However, it can be ap-
plied to other plastic hinge methods proposed by Scott and Fenves
(2006) and Addessi and Ciampi (2007), function of the weight and
location of the integration points used in the calibration.

The main goals of this calibration procedure are to:
1. Use empirical moment-rotation relationships that account for

strength and stiffness deterioration to model the flexural
behavior of the plastic hinge region;

2. Guarantee that the flexural stiffness is recovered for the
nominal prismatic element during the entire analysis; and

© ASCE 04014112-4 J. Struct. Eng.
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3. Allow the definition of arbitrary plastic hinge lengths by the
analyst.

The presented calibration procedure is performed at the element
level through the introduction of section flexural stiffness modifi-
cation parameters at internal sections of the beam-column element
making it possible to scale a moment-rotation relation to obtain
moment-curvature relations for the plastic hinge regions. Defining
the moment-rotation stiffness of the plastic hinge regions as

kM−θ ¼
α6EI
L

ð18Þ

and making use of a user-defined plastic hinge length at either end
of the element (LpI and LpJ for ends I and J, respectively), the
moment-curvature relations can be defined as

kM−χ ¼ α6EI
L

× LPfI;Jg ð19Þ

As highlighted by Scott and Ryan (2013), the moment-rotation
and moment-curvature relations are identical for LPfI;Jg=L ¼ 1=6.
However, for any other plastic hinge length, the definition of the
moment-curvature through direct scaling of the moment-rotation
given by Eq. (19) yields incorrect section stiffness, which in turn
leads to incorrect member stiffness. The calibration procedure
presented herein compensates for the incorrect stiffness of the plas-
tic hinge moment-curvature relationship by modifying the flexural
stiffness of each of the four internal sections [integration points ξ2,
ξ3, ξ4 and ξ5 in Fig. 3(a)], assumed to remain linear elastic

throughout the analysis, using one of three different parameters,
β1, β2, and β3, shown in Fig. 3(b).

The β modification parameters are quantified such that the
element flexibility matrix is: (1) within the elastic region, equal
to the analytical solution for an elastic prismatic element; and
(2) after yielding, identical to the target flexibility, i.e., is similar
to the user-defined M − θ behavior. The target flexibility matrix
in the elastic and nonlinear regions can be provided by the CPH
model using Eqs. (1)–(4). Then, the modification parameters are
defined based on the equivalence of the flexibility matrices
associated with the CPH and FLPH models. The target flexibility
can be computed using different models and herein the models
defined by Lignos and Krawinkler (2011) are used in the
derivations. In the calibration procedure, double curvature or
anti-symmetric bending is assumed to obtain the elastic stiffness
of the structural element. This is a common result of the lateral
loading and boundary conditions considered in seismic analysis
of frame structures. In this case, the elastic element M − θ
stiffness is 6EI=L. However, the calibration procedure shown
herein is valid for any element moment-rotation stiffness and
moment gradient.

Derivation of Modification Parameters

For the 2D beam-column element, a system of three integral
equations corresponding to each of the unique flexural coefficients
of the element flexibility matrix is constructed. The flexibility ma-
trix coefficients obtained from Eq. (17), corresponding to the
FLPH, are equated to the flexibility matrix coefficients obtained

(a)

(b)

Fig. 3. Modified Gauss-Radau integration scheme for (a) original formulation as per Scott and Fenves (2006); (b) the formulation proposed in
this paper
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from Eq. (1), associated with a CPH model and the empirical
model. From this system of equations, the three elastic stiffness
modification parameters, β1, β2, and β3, can be computed as a
function of LpI , LpJ, L, and n, which is the elastic stiffness

modification parameter of the CPH model. The code for solving
the system of equations, which is implemented in the wxMaxima
software (Souza et al. 2003) and is presented in the Appendix II.
When n tends to infinity, β1, β2, and β3 are given by

β1 ¼ − 54LpIL3 − 6LpIð60LpI þ 60LpJÞL2 þ 6LpIð96L2
pI þ 288LpILpJ þ 96L2

pJÞL − 6LpIð256L2
pILpJ þ 256LpIL2

pJÞ
Lð3L − 16LpJÞðL2 − 20LLpI þ 4LpJLþ 64L2

pIÞ

β2 ¼ − 3ð4LpI − Lþ 4LpJÞð3L2 − 12LLpI − 12LLpJ þ 32LpILpJÞ
Lð3L − 16LpIÞð3L − 16LpJÞ

β3 ¼ − 54LpJL3 − 6LpJð60LpI þ 60LpJÞL2 þ 6LpJð96L2
pI þ 288LpILpJ þ 96L2

pJÞL − 6LpJð256L2
pILpJ þ 256LpIL2

pJÞ
Lð3L − 16LpIÞðL2 − 20LLpJ þ 4LpILþ 64L2

pJÞ

ð20Þ

If both plastic hinges have the same length, i.e., Lp ¼
LpI ¼ LpJ, Eq. (20) simplifies significantly to

β1 ¼ β3 ¼ − 6ð3L2Lp − 24LL2
p þ 32L3

pÞ
LðL − 8LpÞ2

β2 ¼
3ð3L3 − 48L2Lp þ 224LL2

p − 256L3
pÞ

Lð3L − 16LpÞ2
ð21Þ

It is worth noting that in Eq. (21) there are singularities in β1 and
β3 for Lp=L ¼ 1=8 and in β2 for Lp=L ¼ 3=16, which correspond
to cases in which: (1) the length of the elastic element interior,
Lint, is equal to zero; and (2) the two internal integration points
ξ2 and ξ5 shown in Fig. 3(b) are colocated.

In Fig. 4 the flexural stiffness modification parameters of
Eq. (21) are represented as a function of the plastic hinge length
to span ratio Lp=L. Both parameters β1 and β3 are equal for all
Lp=L ratios, as both plastic hinges have the same flexural stiffness
α16EILp=L ¼ α26EILp=L. Note that the calibration procedure is
valid when Lint < 0, i.e., Lp=L > 1=8.

The proposed calibration procedure is illustrated in Fig. 5 for the
specific case of a nonlinear static (pushover) analysis. The
pushover analysis is conducted by controlling a jth degree of free-
dom (DOF). Furthermore, the displacement Uf and pseudo-time λ

are initialized to zero, and the displacement increment dUf for the
control DOF and the reference load pattern Pref are also initialized.
The stiffness matrix Kf is computed in the form stiffness matrix
procedure (Fig. 6) at the beginning of each analysis step and each
Newton-Raphson (NR) iteration. In this procedure, the parameters
α1 and α2 are calculated based on the committed (converged in a
previous step) element forces and deformations, and the tangent
stiffness. In the first analysis step, the section stiffness modification
parameters β1, β2, and β3 are computed, as shown in Fig. 6. Once
the stiffness modification parameters are computed, the stiffness
matrix is computed through inversion of the flexibility matrix.
The stiffness matrix is obtained considering the integration points
(IPs) of the modified Gauss-Radau integration scheme shown in
Fig. 3(b). Transformation from the basic to the local coordinate sys-
tem is performed with the matrix Af . From this point onward a
traditional NR algorithm is used, repeating the above procedure
at the beginning of each analysis step and at each NR iteration.
Different strategies can be used in updating the model state
determination, namely: (1) update state of the model domain
(displacements, pseudo-time, forces) using the residual tangent
displacement from the previous iteration; (2) decrease the displace-
ment increment and update the model domain trying to overcome
convergence problems; (3) change the numerical method used
(either for this analysis step only or for all remaining steps);

Fig. 4. Flexural stiffness modification parameters β1, β2 and β3 as a function of the plastic hinge length to span ratio Lp=L
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and (4) change the tolerance criteria (if that is admissible for the
case being analyzed). In case the NR method is not able to converge
after a user-defined maximum number of iterations, imax, the
analysis is stopped, and is considered not to have converged.
Illustrative examples are presented in the following sections.
Different solution algorithms may be used to solve the nonlinear

residual equations (De Borst et al. 2012; Scott and Fenves
2010). The NR algorithm is one of the most widely used and is
a robust method for solving nonlinear algebraic equations of
equilibrium. In this figure (Fig. 5) the flowchart for the calibration
procedure is exemplified using the NR algorithm.

Numerical Examples

The proposed methodology was applied to a set of simply sup-
ported beams subjected to end moments and considering different
plastic hinge lengths, and a simple steel frame structure. The beams
are analyzed considering a pushover analysis, where rotations are
incremented until reaching an ultimate rotation. For the first beam,
equal moments are applied at each support, whereas in the second
case, the moment applied at the left support is half of that applied to
the right support. The steel element properties, including the
parameters considered for the deterioration model, are presented
in Table 1.

Example 1

A simply supported beam is analyzed considering equal moments
and rotations applied at both ends. Fig. 7(a) shows the element end
moment plotted against the element end rotation. A local response,
corresponding to the rotation of a section at a distance Lp from the
support is also plotted against the end moment in Fig. 7(b). The
rotation at a distance Lp from the support, in the CPH model, must
consider the rotation of the zero-length spring and the deformation
of the elastic segment of length Lp.

In this figure, the plastic rotation of the CPH model is computed
obtained by adding the rotation of the zero-length spring to the
rotation of the elastic element over a length of Lp. The former
is obtained by multiplying the curvature (χ) of the end section
of the element by Lp.

Fig. 5. Calibration procedure for a nonlinear static structural (push-
over) analysis

Fig. 6. Flowchart for computation of element stiffness matrix

Table 1. Element Properties for Numerical Examples

Application
examples

Geometric
parameters

Moment-rotation
model parameters

Inertia
(m4)

Area
(m2)

My
(kNm) Mc=My

θp
(rad)

θpc
(rad)

Examples 1 and 2 0.0002 0.0073 320.78 1.05 0.0692 0.168
Frame beams 0.0111 0.0551 1,911.0 1.05 0.025 0.25
Frame columns 0.0111 0.0551 969.0 1.05 0.03 0.35
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The CPH curve denotes the results obtained using a concen-
trated plastic hinge model, following the procedure employed by
Lignos and Krawinkler (2013), and serves as a benchmark.
Fig. 7(a) shows that end rotations obtained using the CPH model
present an initial linear elastic response up to the yielding point,
defined by the yielding moment-rotation pair My;CPH − θy;CPH.
Then, a linear hardening region connects the yielding point to
the capping point (Mc;CPH − θc;CPH) and a linear softening region
links the capping point to the residual moment-rotation point
(Mr;CPH − θr;CPH), which is followed by a plastic region that ex-
tends to θU. The second model considered (FLPH S) corresponds
to the use of finite length plastic hinge elements, defining the
moment-curvature relation through direct scaling of the rotation
parameters (θy, θc, θpc, θr, and θu) by the plastic hinge length
Lp and no further calibration. The results show that this approach
leads to erroneous results, as the elastic stiffness obtained is signifi-
cantly lower than the target, and higher rotations are obtained in the
softening branch. If the moment curvature is calibrated (curve
FLPH M) using the proposed method, it is possible to reproduce
the CPH behavior of the beam exactly for the entire analysis.
Although the global response is in perfect agreement, Fig. 7(b)
shows that the local response is different when the CPH or the FLPH
M models are used. For the FLPH models, local response in
Fig. 7(b) corresponds to the integration of the end section curvature
(χ) over the plastic hinge length Lp (χ × Lp). This result is equal
for the FLPH S and the FLPH M models because the end sections
of both models are defined in a similar manner (only the interior
sections are affected by the flexural modification parameters).

The results from this example highlight the the advantages of the
calibration procedure proposed herein, namely showing that accu-
rate results can be achieved for varying lengths of the plastic hinge
and for cases considering softening.

Example 2

To show calibration for other moment gradients in the beam
element, an identical beam to that from the previous example is
analyzed considering the left moment equal to half of the right mo-
ment. As a result, the left end of the beam is always in the elastic
range, and the beam does not deform in double curvature. However,
as shown in Fig. 8, the results obtained for a plastic hinge length

Lp=L ¼ 1=16 are consistent with those obtained in Example 1. In
fact, the results obtained with the scaled moment curvature rela-
tion without calibration (FLPH S) show significant errors from the
elastic range, propagating over the entire range of analysis. When
calibration is considered (FLPH M) the results are corrected and
perfect agreement is found between CPH and FLPH M models.
Fig. 9(a) shows the errors associated with the different models and
different plastic hinge lengths. The errors are defined as the ratio
between the computed slopes of the elastic, hardening, and soft-
ening branches, and the respective target moment-rotation defined
in Lignos and Krawinkler (2011). The results show that: (1) the
FLPH M calibration procedure provides accurate results when
compared with the results obtained using CPH for the elastic,
hardening and softening ranges of the response; and (2) the FLPH
S procedure, where a scaled moment-curvature relation is used
without further calibration, results in significant errors. It is worth
noting that only for Lp=L ¼ 1=6 does the FLPH S model result in
the exact moment-rotation at yielding and at the capping point, as
previously shown by Scott and Ryan (2013). Fig. 9(b) shows the
results obtained considering several plastic hinge lengths. The
errors are computed by comparing the slopes of the elastic,
hardening and softening branches of the two FLPH elements with
the CPH model. Results show that the analysis presented for
Lp=L ¼ 1=16 is valid for all values of the plastic hinge length.
Furthermore, the results show that the proposed calibration
procedure is applicable to different moment gradients besides
anti-symmetric bending.

Frame Structure

A single-bay three-story frame with uniform stiffness and strength
over its height (Fig. 10) is used to illustrate the application of the
calibration procedure described above. A dead load of 889.6 kN is
applied to each story, giving a total structure weightW of 2,669 kN.
The flexural stiffness EI is identical for beams and columns with
values given in Table 1. Plastic hinges form at beam ends and at
base columns. The other columns are assumed to remain elastic.
Pushover analyses of the frame are conducted in the OpenSees
framework (McKenna et al. 2000) using a P-Delta geometric trans-
formation for the columns. Results obtained with model FLPH M
are compared with results obtained using the CPH models. It is

(a) (b)

Fig. 7. Example 1—basic system with equal moments at both ends and plastic hinge length Lp=L ¼ 1=16: (a) global response; (b) local response
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MM/2

L =L/16p L =L/16p

1.2 1.2

MM/2

L =L/16p
L =L/16p

(a) (b)

Fig. 8. Example 2—basic system with different moments at both ends and plastic hinge length Lp=L ¼ 1=16: (a) global response; (b) local response
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Fig. 9. Errors in the slopes of the elastic, hardening and softening regions for the CPH, FLPH S and FLPHMmodels during a monotonic analysis for
(a) Example 1; (b) Example 2
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worth noting that in steel W-shape beams with shape factors
(k ¼ Mp=My) of approximately 1.12, the plastic hinge length is
taken as 10% of the distance between the point of maximum mo-
ment and the inflection point (Bruneau et al. 1998). This value is
slightly larger, approximately 12.5%, at the center of beams that are
subjected to distributed loads. Thus, for members in a state of anti-
symmetric double curvature, it is suggested that a plastic hinge
length between L=20 and L=16 be used.

Fig. 11(a) shows the normalized base shear (V=W) versus roof
drift ratio for the three models and Fig. 11(b) illustrates the beam
moment-rotation response. The results obtained for this frame show
that the conclusions drawn for the two previous examples hold,
namely FLPH S should not be used as a procedure for converting
from empirical moment-rotation relations to moment-curvature re-
lations when FLPH elements are used, and FLPH M is an adequate
procedure that produces objective results without computationally
expensive iterative/updating procedures.

Conclusions

The present work proposes a calibration procedure that allows the use
of FLPH force-based beam-column elements for steel moment
frames that exhibit softening response at the section and element
levels. The use of scaled but uncalibrated moment-curvature relation-
ships in FLPH elements leads to significant errors in both local and
global responses and is therefore not adequate for structural analysis.
The new calibration procedure is performed at the element level
through the introduction of section flexural stiffness modification
parameters (β), which are computed at the beginning of the analysis
as a function of the user defined plastic hinge lengths. The modifi-
cation parameters are obtained by equating element flexural
coefficients of the flexibility matrix and target flexibility matrix,
where the latter is given by the user-defined moment-rotation relation
and is computed in this work using a CPH model. Nonlinear static
analyses of two simply supported beams and pushover analysis of a
steel moment-resisting frame were performed considering different
plastic hinge lengths. The results illustrate that the exact linear elastic
stiffness can be recovered for linear problems while ensuring objec-
tive response after the onset of deterioration. The cases studied and
error analysis based on analytical expressions show that the
calibration procedure is valid for any moment gradient. Even though
the proposed calibration procedure has only been validated for multi-
linear moment-rotation relationships, it is, in principle, possible to
use it with other constitutive laws, where moment-rotation can be
related to moment-curvature by a user-defined plastic hinge length.
The calibration procedure was validated at the section level for
bending moments and rotations only, but similar approaches may
be used for cases in which the interaction between bending and
axial deformations is considered. The accuracy and stability of the
proposed calibration procedure remains to be studied for nonlinear
dynamic time-history analysis of steel moment frame buildings.

Appendix I. Error in the Model Elastic Stiffness
Associated with the CPH Springs Elastic Stiffness
Amplification Factor

In CPH models, the elastic stiffness amplification factor (n) should
be chosen carefully because an excessively large value would pose
numerical problems, whereas a value that is not sufficiently large

26x10

Fig. 10. Steel moment frame
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Fig. 11. Example three-story frame used to demonstrate the proposed calibration procedures: (a) pushover curve; (b) beam response
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will lead to erroneous results in the elastic range. In this Appendix,
elastic stiffness errors associated with values of n < 1000 are
computed.

Considering that each member can be represented by two end
rotational springs and an elastic frame element in series, the
flexibilities of the springs and the frame element in a CPH element
are additive. Using the tangent stiffnesses, kTI and kTJ , of each
rotational spring, the member flexibility is

fb ¼
�
1=kTI 0

0 0

�
þ L
6EImod

×

�
2 −1
−1 2

�
þ
�
0 0

0 1=kTJ

�

ð22Þ
To recover the correct linear-elastic solution for the entire CPH

model, the end rotational springs need to be approximated as rigid-
plastic with an initial stiffness that is large, but not so large to pose
numerical instability. This is akin to the selection of large penalty
values when enforcing multi–point constraints in a structural model
(Cook et al. 2001). The ratio of flexibility coefficient fbð1; 1Þ to the
exact linear-elastic solution L=ð3EIÞ is plotted in Fig. 12 versus the
elastic stiffness amplification factor, which scales the characteristic
element stiffness 6EI=L (kI ¼ n × 6EImod =L).

As shown in Fig. 12, the ratio between the elastic stiffness re-
covered using different n values for the CPH model and the target
elastic stiffness (L=3EI) varies from 0.9545 (4.55% error) for
n ¼ 10 to 0.9995 (0.05% error) for n ¼ 1,000. Thus, to recover
the elastic solution with negligible errors, it is suggested that a
value of n ¼ 1,000 be used.

Although the suggested value of n ≥ 1,000 allows for recovery
of the elastic stiffness, several authors have highlighted that there is
an increased likelihood of nonconvergence of nonlinear time-
history response analyses if such a large value of n is used. For
this reason, Zareian and Medina (2010) have suggested the use
of n ¼ 10. However, the use of such a low value of n can lead
to underestimating the elastic flexibility of the elements up to
4.55%, which could lead to approximately 13% error in natural
frequencies of vibration.

Appendix II. Computation of the Section Flexural
Stiffness Modification Parameters

The following code was implemented in the wxMaxima software
(Souza et al. 2003).

• Unknowns

β1; β2;β3 ð23Þ
• Input data

y∶½0; 8=3 × LpI ;L − 8=3 × LpJ;L�;
w∶½LpI ; 3 × LpI ; 3 × LpJ;LpJ�;
mp∶½α1 × 6 × LpI=L;β1; β3;α2 × 6 × LpJ=L�; ð24Þ

• Computation of the element flexibility matrix (flexural terms
only)

f1∶matrixð½0; 0�; ½0; 0�Þ; ð25Þ
• Plastic hinges integration points

for i∶1 to 4 do

ðf1∶f1 þ transposeðmatrixð½0; 0�; ½y½i�=L − 1; y½i�=L�ÞÞ:
matrixð½0; 0�; ½y½i�=L − 1; y½i�=L�Þ × w½i�Þ
× ð1=ðmp½i� � EIÞÞ; ð26Þ

• Interior region

f1∶f1þ integrateðtransposeðmatrixð½0;0�; ½x=L−1;x=L�ÞÞ:
matrixð½0;0�; ½x=L−1;x=L�Þ×ð1=ðβ2×EIÞÞ;
x;4×LpI ;L−4×LpJÞ; ð27Þ

• Computation of the target flexibility matrix using a CPH model
(flexural terms only)

• CPH model parameters

EImod∶EI × ðnþ 1Þ=n;
Kspring∶n × 6 × EImod=L;

mp2∶½ðα1Þ=ð1þ n × ð1 − α1ÞÞ;
ðα2Þ=ð1þ n × ð1 − α2ÞÞ�; ð28Þ

• Model flexibility matrix

f2∶matrixð½1=ðmp2½1�×kspringÞ;0�; ½0;1=ðmp2½2�×kspringÞ�Þ;
f2∶f2þ integrateðtransposeðmatrixð½0;0�; ½x=L−1;x=L�ÞÞ:
matrixð½0;0�; ½x=L−1;x=L�Þ×ð1=ðEImodÞÞ;x;0;LÞ; ð29Þ

• Solve the system of equations for obtaining unknowns

eq1∶f1½1; 1� ¼ f2½1; 1�;
eq2∶f1½1; 2� ¼ f2½1; 2�;
eq3∶f1½2; 2� ¼ f2½2; 2�;
sol∶solveð½eq1; eq2; eq3�; ½β1; β2;β3�Þ; ð30Þ

• Although the previous step already gives a solution for the pro-
blem, it is useful to obtain the solution without dependency on
n. Thus, the solution, sol, is evaluated when n tends to infinity

limitðsol; n; infÞ; ð31Þ
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