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Numerically consistent regularization of force-based
frame elements

M. H. Scott∗,† and O. M. Hamutçuoğlu
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SUMMARY

Recent advances in the literature regularize the strain-softening response of force-based frame elements
by either modifying the constitutive parameters or scaling selected integration weights. Although the
former case maintains numerical accuracy for strain-hardening behavior, the regularization requires a
tight coupling of the element constitutive properties and the numerical integration method. In the latter
case, objectivity is maintained for strain-softening problems; however, there is a lack of convergence
for strain-hardening response. To resolve the dichotomy between strain-hardening and strain-softening
solutions, a numerically consistent regularization technique is developed for force-based frame elements
using interpolatory quadrature with two integration points of prescribed characteristic lengths at the
element ends. Owing to manipulation of the integration weights at the element ends, the solution of a
Vandermonde system of equations ensures numerical accuracy in the linear-elastic range of response.
Comparison of closed-form solutions and published experimental results of reinforced concrete columns
demonstrates the effect of the regularization approach on simulating the response of structural members.
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1. INTRODUCTION

Simulating localized response of structural systems using strain-softening constitutive models poses
several computational challenges since the equilibrium solution becomes ill-posed and the results
are mesh-dependent. This is of importance when evaluating the resistance of a structure to extreme
loadings, such as earthquakes. In the analysis of localized response in structural members modeled
by continuum finite elements, Bažant and Oh [1] propose a crack band theory where the material
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behavior is defined by parameters of fracture energy, uniaxial strength limit and crack bandwidth.
Further advances in the continuum analysis of strain-softening behavior analysis by de Borst and
Muhlhaus [2] led to plasticity theory based on higher-order spatial gradients of plastic strains. Simo
et al. [3] developed a regularized discontinuous finite element method to overcome problems with
mesh dependence in conventional methods. Wells et al. [4] present a regularized mesh-independent
continuum method using discontinuous displacement functions in a strain-softening medium.

Consistent with findings in the continuum context, finite element formulations of frame elements
exhibit similar problems of ill-posedness and mesh dependence in the presence of strain-softening
[5, 6]. Several approaches to simulating the localized response of frame members have been
proposed in the literature. Early attempts to model such behavior used non-linear moment–rotation
springs concentrated at the ends of a linear-elastic element [7, 8]. This approach has been extended
in more recent papers and the references therein to include axial–moment interaction [9, 10],
phenomenological hysteretic models of strength and stiffness degradation [11, 12], as well as
strain-softening behavior [13, 14]. Although this approach is computationally efficient, it generally
requires a calibration of the element properties based on the loading conditions and constitutive
properties. More recent approaches use strong discontinuities in the beam displacement field to
effectively incorporate local dissipative mechanisms in a general finite element setting [15].

Distributed plasticity formulations of frame finite elements offer a more flexible modeling
approach to concentrated plasticity by uncoupling the element state determination procedure from
the constitutive properties. Several formulations of distributed plasticity are available and fall
into three main categories: displacement-based, force-based and mixed [16–18]. Comparisons by
Hjelmstad and Taciroglu [19] show that there is no clear winner among the three formulations;
however, each has distinct advantages. In the case of force-based elements [20–22], the primary
advantage is they satisfy equilibrium in strong form, even in the range of non-linear material
response. This allows an analyst to use a coarse finite element mesh in simulating material non-
linear frame response under small displacements, and convergence is achieved by increasing the
number of integration points rather than by mesh refinement.

Unlike displacement-based formulations where localization occurs over the length of an entire
element, strain-softening behavior causes deformations to localize at a single integration point in a
force-based element. To establish objective response, regularization methods have been proposed
in the literature for force-based elements. Coleman and Spacone [23] present a regularization
method based on a constant fracture energy release to maintain objective response. However, this
approach requires an analyst to modify the material properties based on the number of Gauss–
Lobatto integration points and a prescribed characteristic length. Subsequent work by Addessi
and Ciampi [24] and Scott and Fenves [25] regularize force-based element response by scaling
integration weights at the element ends to match prescribed characteristic lengths. Although this
approach ensures regularized response for strain-softening behavior without modifying the element
constitutive properties, the response is too flexible when these integration methods are used to
simulate strain-hardening response. As a result, an analyst must know a priori whether to use a
standard or a regularized integration approach when the answer may not be obvious from the given
material properties and loading conditions.

An integration approach is developed in this paper to allow an analyst to regularize force-based
element response while maintaining numerical accuracy for strain-hardening behavior. The paper
starts with basic formulations of force-based frame elements followed by a summary of existing
regularization techniques based on the modification of integration weights. Alternative regulariza-
tion methods based on interpolatory quadrature are explored in order to arrive at the proposed
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method. Examples with the new method are compared with closed-form solutions to confirm the
numerical accuracy for strain-hardening behavior. For strain-softening behavior requiring regular-
ization, numerical solutions are compared with published test results of cyclically loaded reinforced
concrete columns.

2. FORCE-BASED ELEMENT FORMULATION

The force-based element formulation consists of interpolation of basic forces within a basic system
settled on the principle of small deformations [22]. Vectors q and v represent forces and defor-
mations, respectively, of a corotating frame of reference, or basic system, for the element [26],
as shown in Figure 1. Thus, the developments described in this paper are applicable to the large
displacement analysis of frames using the corotational formulation [27].

The sectional forces are defined by end forces and interpolation functions. At the element level,
equilibrium is stated in the form

s(x)=b(x)q+sp(x) (1)

where the section forces are in the vector s(x)=[N (x) M(x)]T. Member loads are not considered
in this paper; therefore, the particular equilibrium solution, sp(x), is equal to zero. The matrix b
contains interpolation functions for the section forces in terms of the basic end forces

b(x)=
[
1 0 0

0 x/L−1 x/L

]
(2)

From the principle of virtual forces, the element compatibility relation is formulated and the element
deformations, v, are obtained in terms of section deformations, e, along the element. For non-linear
material response, the compatibility relationship is approximated by numerical integration over N
discrete points

v=
N∑
j=1

bTj e jw j (3)

Figure 1. Degrees of freedom for plane frame elements: (a) forces and displacements in a global coordinate
system and (b) forces and deformations in a basic system.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:1612–1631
DOI: 10.1002/nme



REGULARIZATION OF FORCE-BASED FRAME ELEMENTS 1615

where b j and e j represent the interpolation function and section deformation, respectively, evaluated
at the j th integration point location x j with associated weightw j . The derivative of the compatibility
equation with respect to basic force vector provides the element flexibility matrix, f, in terms of
section flexibility

f= �v
�q

=
N∑
j=1

bTj fs jb jw j (4)

Neuenhofer and Filippou [28] provide full details of the force-based element formulation in a
standard stiffness-based finite element setting, while the variational basis for such elements is
described by Hjelmstad and Taciroglu [29]. Extensions of the formulation to include section shear
effects are given by Ranzo and Petrangeli [30], Schulz and Filippou [31] and Marini and Spacone
[32], while the extension to large deformations is described by De Souza [33].

The most common integration approach to evaluate Equations (3) and (4) is Gauss–Lobatto
quadrature [34], which places sample points at the element ends where bending moments are
largest in the absence of member loads. The order of accuracy, i.e. the highest monomial integrated
exactly, for Gauss–Lobatto quadrature is 2N−3. Thus, to obtain the exact solution for a linear-
elastic, prismatic frame element, e.g. during a patch test [35], at least three Gauss–Lobatto points
are required since quadratic polynomials appear in the integrand of Equation (3) in this case. A
unique solution is obtained for strain-hardening problems by increasing the number of integration
points in a single force-based element. Four to six points are typically sufficient to represent the
spread of plasticity along an element [28].

In the presence of strain-softening section response where deformations localize at a single
integration point, the solution depends on the characteristic length implied by the Gauss–Lobatto
integration weights. This leads to a loss of objectivity since the force-based element response will
change as a function of the number of integration points selected by the analyst. Coleman and
Spacone [23] regularize the element response using a criterion of constant energy release based on
the number of Gauss–Lobatto points and a characteristic length. The advantage of this approach
is it does not alter the integration weights of the Gauss–Lobatto rule and thus maintains numerical
accuracy for strain-hardening response. However, the main drawback is the regularization ties the
section material model to the element integration method, leading to a loss of objectivity of the
section response.

3. REGULARIZATION BASED ON SCALING INTEGRATION WEIGHTS

An alternative force-based element regularization method is to scale the element integration weights
to match prescribed characteristic lengths. This approach is based on dividing an element into
three regions (one plastic hinge region at each end and one interior region) then applying separate
integration rules over each region.

Addessi and Ciampi [24] use Gauss–Lobatto integration over each region, e.g. a two-point rule
over the plastic hinge regions and a three-point rule over the interior. To regularize the element
response, the integration rules over the plastic hinge regions are scaled by a factor of 2 in order
to make the integration weights at the element ends equal to the characteristic lengths, lpI and lpJ ,
specified by the analyst. As shown in Figure 2(a), the integration point locations are

x={0,2lpI,2lpI, L int/2, L−2lpJ, L−2lpJ, L} (5)
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Figure 2. Force-based element regularization methods based on scaling integration weights in the plastic
hinge regions: (a) Gauss–Lobatto over the plastic hinge and interior regions and (b) Gauss–Radau in the

plastic hinge regions and Gauss–Legendre over the interior.

and the associated weights are

w={lpI, lpI, L int/6,2L int/3, L int/6, lpJ, lpJ} (6)

where L int= L−2lpI−2lpJ is the length of the element interior. It is noted that the coincident
Gauss–Lobatto integration points in Equation (5), and their corresponding weights in Equation (6),
at the interfaces between the plastic hinge regions and the element interior can be combined in
order to reduce the number of sample points. Addessi and Ciampi [24] also propose three-point
Gauss–Lobatto integration over the plastic hinge regions, in which case quadratic polynomials are
represented exactly over the entire element length.

Scott and Fenves [25] apply two-point Gauss–Radau quadrature [34] over the plastic hinge
regions and scale the integration weights by 4 in order to regularize the element response. In
this case, the length of the element interior is L int= L−4lpI−4lpJ , over which two-point Gauss–
Legendre quadrature is applied, giving the following integration point locations:

x={0,8lpI/3, x3, x4, L−8lpJ/3, L} (7)

where x3(4) =4lpI+L int(±1/
√
3+1)/2. The associated weights are

w={lpI,3lpI, L int/2, L int/2,3lpJ, lpJ} (8)

The mixture of Gauss–Radau and Gauss–Legendre quadrature ensures a sufficient level of inte-
gration accuracy while placing sample points at the element ends. The locations and weights of
the integration points for this approach are shown in Figure 2(b).

The numerical behavior of regularization methods based on scaling integration weights is
demonstrated via the moment–rotation response of a simply supported beam under anti-symmetric
bending. As shown in Figure 3, the section moment–curvature relationship is bilinear with hard-
ening ratio �. To investigate strain-hardening section behavior, � is set equal to 0.02, while this
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Figure 3. Simply supported beam in a state of anti-symmetric bending and
with a bilinear moment–curvature relationship.
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Figure 4. Computed moment–rotation relationship of regularization methods based
on scaling integration weights compared with standard five-point Gauss–Lobatto rule

for: (a) strain-hardening behavior and (b) strain-softening section behavior.

parameter is set to −0.02 in order to produce localized response at the element ends. The charac-
teristic plastic hinge lengths are lpI = lpJ =0.15L .

The solutions obtained by using the integration points and weights in Equations (5)–(6) and
(7)–(8) are shown in Figure 4 and compared with that obtained for a standard five-point Gauss–
Lobatto rule applied over the element length. For strain-softening behavior that causes localization
at the element ends, both regularized integration methods unload at an identical rate, as shown in
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Figure 4(b). The beam unloads at a higher rate for five-point Gauss–Lobatto integration since the
implied characteristic length is 0.05L . On the other hand, five-point Gauss–Lobatto integration
gives the best solution for strain-hardening behavior (Figure 4(a)), while the post-yield response of
the regularized methods is too flexible compared with the exact solution. This example demonstrates
the need to find a single integration method that can accommodate both strain-softening and strain-
hardening behaviors. To arrive at such a solution, it is worth turning attention to a regularization
approach based on interpolatory quadrature.

4. REGULARIZATION BASED ON INTERPOLATORY QUADRATURE

An equivalent approach to regularize the force-based element response is to set the integration
weights at the element ends equal to characteristic values and then solve a system of equations for
the remaining integration point locations and weights to ensure numerical accuracy. In the case
where all integration point locations and weights are unknown over the interval [a,b] except for
end points of weights lpI and lpJ , there are 2N−4 unknown locations and to weights of the N−2
integration points. These unknowns can be found by solving the following system of equations:

N−1∑
i=2

x j
i wi +a j lpI+b j lpJ− b j+1−a j+1

j+1
=0, j =0,1, . . . ,2N−5 (9)

The most common choice to solve Equation (9) is Newton’s method [36]; however, its convergence
is highly dependent on the initial guess for the unknown locations and weights. The resulting
quadrature rule has an order of accuracy of 2N−5; thus, at least four integration points (two interior
points in addition to the two end points) are required to ensure that the element passes a patch test.
In the absence of constraints on the end weights, the solution to Equation (9) gives the Gauss–
Lobatto locations and weights with accuracy 2N−3, while in the absence of any constraints on
the locations and weights of the integration points, the solution gives Gauss–Legendre quadrature
of accuracy 2N−1.

Interpolatory quadrature, where the locations of all the integration points are fixed, gives a more
stable solution procedure, albeit with a lower order of accuracy. Specifying all N integration point
locations, in addition to setting the integration weights at the element ends to lpI and lpJ , reduces
the order of accuracy to N−3 and turns Equation (9) into a linear system of N−2 equations for
the unknown weights ⎡

⎢⎢⎢⎢⎣
1 1 · · · 1

x2 x3 · · · xN−1

...
...

...

xN−3
2 xN−3

3 · · · xN−3
N−1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

w2

w3

...

wN−1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

b−a−lpI−lpJ

(b2−a2)/2−alpI−blpJ
...

(bN−2−aN−2)/(N−2)−aN−3lpI−bN−3lpJ

⎤
⎥⎥⎥⎥⎦ (10)
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To integrate quadratic polynomials exactly, at least five integration points (three interior points
plus two end points) must be used. To prevent poor conditioning of the Vandermonde matrix in
Equation (10), the integration point locations should be well spaced and symmetric on the interval
of integration and the order of integration, N , should be kept low [37]. Better conditioning for
interpolatory quadrature rules can be obtained using least squares theory [38].

Although the solutions provided by Equations (9) and (10) regularize the element response
for strain-softening section behavior, they suffer from the same shortcomings for strain-hardening
behavior as the methods based on scaling integration weights and will thus lead to the same results
shown in Figure 4. A further modification is required in order for a single integration method
to provide regularized response while maintaining a convergent solution for strain-hardening
behavior.

5. PROPOSED REGULARIZATION METHOD

As seen in the foregoing discussion, regularizing force-based element response for strain-softening
behavior comes at the price of losing numerical accuracy when simulating strain-hardening
behavior. This forces an analyst to decide a priori which integration method to use when modeling
frame structures with force-based finite elements. For simulations such as reinforced concrete
columns with heavy axial loads using fiber models, the answer may not be clear.

To avoid complicated phenomenological rules that couple the integration rule to the section
constitutive model, a standard quadrature rule is modified with two additional integration points.
These points are placed at small distances, �I and �J , from the element ends, as shown in
Figure 5(b):

x={(x1=0),�I , x2, . . . , xN−1, L−�J , (xN = L)} (11)

From this juxtaposition of integration points, the element response is regularized by setting the
weights of the integration points at the element ends equal to lpI and lpJ , as was the case in the

(a)

(b)

Figure 5. (a) Standard five-point Gauss–Lobatto integration rule and (b) five-point Gauss–Lobatto rule
regularized by addition of two integration points just inside the element ends.
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previous regularization methods. Then, the weights of the integration points at �I and L−�J are
set equal to w1−lpI and wN −lpJ , respectively, where w1 and wN are the end weights of the
standard quadrature rule:

w={lpI,w1−lpI,w2, . . . ,wN−1,wN −lpJ, lpJ} (12)

This arrangement of integration points at the element ends, demonstrated in Figure 5(b) for
a standard five-point Gauss–Lobatto rule, ensures that a convergent strain-hardening solution is
maintained; however, manipulating the locations and weights of the integration points will compro-
mise the accuracy of the underlying Gauss–Lobatto quadrature rule. Only constant polynomials
can be represented exactly since the sum of the integration weights in Equation (12) remains equal
to the element length. For frame analysis, however, quadratic polynomials must be represented
exactly in order to capture the exact solution for a linear-elastic, prismatic element. To this end,
the integration weights of the element interior can be re-computed using interpolatory quadrature
in order to ensure a sufficient level of accuracy for structural engineering applications:

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

x2 x3 · · · xN−1

...
...

...

xN−3
2 xN−3

3 · · · xN−3
N−1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

w2

w3

...

wN−1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

L−w1−wN

L2/2−LlpJ−�I (w1−lpI)−(L−�J )(wN −lpJ)

...

LN−2

N−2
−LN−3lpJ−�I

N−3(w1−lpI)−(L−�J )
N−3(wN −lpJ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

For an underlying N -point Gauss–Lobatto rule, the order of accuracy will be reduced from 2N−3
to N−3 after re-computing the integration weights. As a result, there must be at least five integration
points of the underlying quadrature method in order for the regularized integration rule to capture
the exact solution for a linear-elastic, prismatic element. The underlying quadrature method can
provide as few as three integration points while maintaining the exact linear-elastic solution if the
constraints on (w1−lpI) and (wN −lpJ) are removed; however, using this few integration points
will lead to a poor representation of the spread of plasticity in strain-hardening problems.

It is emphasized that the proposed regularization method is not restricted to an underlying
Gauss–Lobatto quadrature rule. Any N point quadrature method can be used, including Newton-
Cotes, which spaces integration points equally along the element [34]. In fact, N arbitrarily located
integration points can be used; however, this may lead to ill-conditioning of the Vandermonde
equations used for interpolatory quadrature. The only restriction is that the underlying quadrature
rule places integration points at the element ends.
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5.1. Condition number

An additional consideration in constructing numerical integration rules is the condition number
[39, 40], which is the sum of the absolute values of the integration weights:

K =
N∑
i=1

|wi | (14)

For beam–column elements, a well-conditioned quadrature rule has a condition number equal to
the element length, L . However, for the regularized integration method described in this paper,
negative integration weights will appear when lpI>w1 or lpJ>wN . When there are negative weights
at each end of the element, it can be shown that the condition number of the regularized integration
method is

K =2(lpI−w1)+2(lpJ−wN )+ K̃ (15)

where K̃ is the condition number of the underlying quadrature rule. For values of lpI and lpJ that
satisfy lpI+lpJ<L , the condition number of the proposed regularization method remains bounded

Figure 6. UML diagram for implementation of proposed regularization method
in an object-oriented finite element framework.
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by 2L+ K̃ . Thus, for an underlying quadrature rule that is well conditioned, which is guaranteed
for Gauss–Lobatto quadrature with any value of N and Newton–Cotes quadrature for any N except
odd values greater than or equal to 9 [34], the proposed method will be numerically stable.

5.2. Software implementation

To emphasize the loose coupling of the proposed regularization method from both the underlying
quadrature method and the element constitutive behavior, a UML diagram [41] of its implementation
in an object-oriented finite element framework is shown in Figure 6. The force-based frame
element state determination is encapsulated in a class that contains N instances of a section force-
deformation object and one instance of a beam integration object. This implementation follows
the Strategy design pattern of offering an object interchangeable algorithms to define its behavior
[42, 43]. The proposed regularization method is implemented by recursive composition of an object
of the same type but different class, e.g. using an implementation of a Gauss–Lobatto or Newton–
Cotes quadrature rule. The encapsulation of the regularized integration method in an object separate
from the element makes the proposed method applicable to the wide range of force-based element
state determination algorithms available in the literature [22, 28, 44, 45].

5.3. Verification example

To verify that the proposed regularization method is mathematically correct, the response of the
simply supported beam in Figure 3 is demonstrated with a five-point Gauss–Lobatto rule regu-
larized with parameters �I =�J =0.001L and lpI = lpJ =0.15L . The location and weight of the
regularized integration points are given in Figure 5(b). After the solution to Equation (13), the inte-
rior integration weights are w2=w4=0.2718L and w3=0.3563L , which differ only slightly from
the corresponding weights of the underlying five-point Gauss–Lobatto rule, w2=w4=0.2722L
and w3=0.3556L . This difference increases with increasing values of �I and �J and would be
zero when these parameters are zero; however, this change in integration weights is essential to
ensure that the element response is correct in the linear-elastic range of response.

The moment–rotation response with the standard and regularized five-point Gauss–Lobatto
integration is presented in Figure 7 for strain-hardening section behavior. As shown in Figure
7(a), there is a slight difference between the response computed with the regularized and non-
regularized integration rules. This discrepancy occurs as yielding spreads over distances �I and �J
at the element ends. After these integration points plastify, the regularized solution returns to that
obtained by the standard Gauss–Lobatto rule. Thus, the proposed regularization method maintains
a convergent solution for strain-hardening problems. This was not possible using the previous
regularization methods [24, 25].

For the case of localization at the element ends due to strain-softening section behavior,
Figure 8(a) shows the regularized five-point Gauss–Lobatto rule unloads at an identical rate to the
solution obtained by scaling Gauss–Radau integration weights in the plastic hinge regions [25].
In addition, the response of the standard five-point Gauss–Lobatto rule is repeated in Figure 8(a)
for comparison. This idealized example shows that the proposed regularization method is suit-
able for simulating both strain-hardening and strain-softening section responses. Comparisons
with published experimental data in the following section show that the method is applicable to
simulating the response of reinforced concrete structural members.
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Figure 7. Comparison of beam response between standard and regularized
five-point Gauss–Lobatto for strain-hardening section behavior: (a) computed

moment–rotation response and (b) curvature distribution along the beam.

5.4. Sensitivity of � parameters

The most significant source of uncertainty in the proposed regularization method is the values of
parameters �I and �J . For strain-hardening problems, these parameters should be relatively small
in order to maintain the convergent behavior offered by the underlying quadrature method. The
effect of increasing �I and �J for the strain-hardening example is demonstrated in Figure 9. The
computed solution deviates slightly from the standard Gauss–Lobatto solution when �I =�J =
0.01L; however, there is a large error for �I =�J =0.1L , which places the additional integration
points outside the 0.05L region associated with the end points of the underlying five-point Gauss–
Lobatto rule.

On the other hand, for strain-softening problems, the �I and �J parameters should be large
enough to ensure that localization occurs only at the element ends under discrete load steps. For
large load steps and small values of �I and �J , it is possible for these additional integration points
to yield simultaneously with the integration points at the element ends. This simultaneous yielding
is demonstrated in Figure 10 for relatively small integration parameters �I =�J =0.001L and the
larger load step values of �M=0.01My. It is noted that the likelihood of simultaneous yielding is
reduced for more complex constitutive models, e.g. the reinforced concrete fiber sections presented
in the following example, where the stiffnesses of the adjacent sections at the element ends differ
due to axial–moment interaction.
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Figure 8. Comparison of beam response between standard and regularized
five-point Gauss–Lobatto for strain-softening section behavior: (a) computed

moment–rotation response and (b) curvature distribution along the beam.

Based on numerous simulations conducted by the authors, values of �I and �J equal to 0.1w1
and 0.1wN , respectively, are ideal for the regularization method to detect the correct behavior for
a wide range of constitutive behavior and load increments. The weights w1 and wN represent the
end weights of the underlying quadrature rule, e.g. for the five-point Gauss–Lobatto rule with end
weights w1=wN =0.05L , the optimal parameter values are �I =�J =0.005L .

6. REINFORCED CONCRETE COLUMNS WITH HARDENING AND
SOFTENING BEHAVIORS

To validate the proposed regularization method, the static, cyclic response of two reinforced
concrete specimens is simulated. The response of each specimen is computed using a single force-
based element with a regularized five-point Gauss–Lobatto rule with �I =�J =0.005L . The plastic
hinge lengths are determined from the individual specimen properties. The numerical examples
are performed in the Open System for Earthquake Engineering Simulation software framework
developed as the computational platform for research in performance-based earthquake engineering
at the Pacific Earthquake Engineering Research Center [46].
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Figure 9. Sensitivity of beam response for increasing values of parameters �I and �J for regularized
five-point Gauss–Lobatto integration and strain-hardening section behavior.
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Figure 10. Sensitivity of beam response for various combinations of parameters �I and �J and load steps
for regularized five-point Gauss–Lobatto integration and strain-softening section behavior.

6.1. Strain-hardening

A spirally reinforced concrete column, specimen 430 in the tests of Lehman and Moehle [47], is
modeled to demonstrate the accuracy of the regularized integration method under strain-hardening

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:1612–1631
DOI: 10.1002/nme



1626 M. H. SCOTT AND O. M. HAMUTÇUOĞLU

Figure 11. Dimensions of specimen 430 in the test of Lehman and Moehle [47].

behavior. The reinforcing details of the column are shown in Figure 11 and a fiber discretization
of the cross section is used to compute the section stress resultants and account for axial–moment
interaction. The stress–strain behavior of concrete fibers is modeled by a parabolic ascending
branch and linear descending branch in compression [48]. The concrete compressive strength is
f ′
c =31MPa. Confining effects of transverse reinforcement are estimated using the Mander model

[49]. Using this model, the confined concrete has a compressive strength of f ′
cc=43.4MPa reached

at a strain of �cc=0.006, and ultimate strain �ccu=0.028. The reinforcing steel is modeled using the
Giuffre–Menegotto–Pinto constitutive model [50]. The elastic modulus, yield stress and hardening
ratio of the steel are assumed to be E=200000MPa, fy=462MPa and �=0.01, respectively. The
compressive axial load applied to the specimen is 7.2% of the axial capacity, f ′

c Ag , a relatively
light axial load. For the plastic hinge length, an experimentally validated empirical formula that
takes into account the effects of bar pullout and strain penetration [51] is used

l p =0.08L+0.022 fydb (MPa,mm) (16)

where L , fy and db are the member length, steel yield stress and bar diameter, respectively. Using
the column properties, the plastic hinge length is equal to 0.15L according to Equation (16). In
using this equation to determine the plastic hinge length, it is implicitly assumed that if localization
occurs, the region of fracture will be large compared with the individual cracks that contribute to
the overall energy dissipation.

The computed load–displacement response of the column is shown in Figure 12(a) and (b) for
standard and regularized five-point Gauss–Lobatto integrations, respectively. As seen in the figures,
the methods give nearly identical results as yielding spreads from the base of the column under the
light axial load. Further evidence of the strong agreement between the standard and regularized
integration methods is shown in Figure 12(c) with the moment–curvature response at the base. The
results of this example show that the regularized method is able to find a unique solution for strain-
hardening cyclic response without any spurious behavior arising from the negative integration
weight a small distance from the base of the column.

6.2. Strain-softening

The reinforced concrete column, specimen BG-8 in the tests of Saatcioglu and Grira [52], is
analyzed in this example. The geometry and reinforcing details of the column are given in
Figure 13. As in the previous example, a fiber discretization of the cross section accounts for
axial–moment interaction. The same constitutive models for the steel and concrete stress–strain
relationships are used in this example. In this case, the concrete compressive strength is f ′

c =
34MPa. In the core region, f ′

cc is 49.3MPa due to the confining effects of the transverse steel.
The strain at the ultimate strength and the ultimate strain of core concrete are �cc=0.007 and
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Figure 12. Computed global response and local moment–curvature relationships at
the support section of specimen 430: (a) standard Gauss–Lobatto; (b) regularized

Gauss–Lobatto; and (c) local response at the support section.

Figure 13. Dimensions of specimen BG-8 in the tests of Saatcioglu and Grira [52].

�ccu=0.029, respectively. For the steel reinforcement, the elastic modulus is E=200000MPa,
yield stress is fy=455.6MPa and hardening ratio is �=0.01. A relatively large compressive axial
load, P=0.231 f ′

c Ag , is applied to the specimen. Using Equation (16), the plastic hinge length is
calculated as l p =0.20L .

The global response of the member using standard and regularized five-point Gauss–Lobatto is
given in Figure 14(a) and (b), respectively. As seen in the figures, the cyclic response envelope
of the cantilever with regularized integration matches the test data for strain-softening behavior.
On the other hand, using standard integration, there is a significant discrepancy in the base shear
envelope after the plastic hinge forms and damage localizes. Since the numerical solution is obtained
by displacement control of the cantilever free end, the computed moment–curvature response in
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Figure 14. Computed global response and local moment–curvature relationship at
the support section of specimen BG-8: (a) standard Gauss–Lobatto; (b) regularized

Gauss–Lobatto; and (c) local response at the support section.

Figure 14(c) shows the increased demands imposed at the fixed end as the response localizes over
the small plastic hinge length, 0.05L , implied by the standard five-point Gauss–Lobatto integration.
Upon inspection of the computed results, it is noted that the negative integration weight just above
the column base does not lead to spurious behavior during cyclic loading with strain-softening
section response.

7. CONCLUSION

The numerically consistent regularization method developed in this paper mitigates the uncertainty
of selecting an integration method to use with force-based frame elements. The integration points
at the element ends take on characteristic lengths specified by an analyst in order to regularize
localized response in the presence of strain-softening behavior. At the same time, a convergent
solution is maintained for the spread of plasticity due to strain-hardening behavior. Interpolatory
quadrature ensures that the correct solution for a linear-elastic prismatic element is maintained after
the introduction of new integration points and the subsequent manipulation of their weights. The
proposed regularization technique is coupled neither to the element constitutive parameters nor to
the element state determination algorithm. Furthermore, the examples show that the presence of
negative integration weights does not cause erratic numerical behavior under cyclic, static loading.
Thus, the proposed method is applicable to any section constitutive model and loading conditions,

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:1612–1631
DOI: 10.1002/nme



REGULARIZATION OF FORCE-BASED FRAME ELEMENTS 1629

as well as the many variants of force-based element algorithms available in the literature. Future
research will focus on analytic sensitivity of the element response with respect to the integration
parameters �I and �J using direct differentiation of the equations that govern the force-based
element response [53, 54].
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