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Abstract: The direct differentiation method (DDM) has been shown to be an accurate and efficient approach to computing the sensitivity of
structural response to uncertain parameters of constitutive models and finite-element formulations. Although it is well-known that the DDM
should be consistent with the numerical time stepping procedure at the structural level, it is possible for element-level numerical instabilities
to arise when the response sensitivity equations are inconsistent with the equations that govern the element response. Two existing formu-
lations of DDM force-based element response sensitivity are shown to be mathematically equivalent in exact arithmetic; however, only one is
consistent with the force-based response equations and possesses a low condition number for finite arithmetic. On the other hand, the in-
consistent formulation has a high condition number that is equal to the product of the largest singular values of the section and element
stiffness matrices. Representative examples show that the high condition number of the inconsistent formulation is innocuous for sensitivity
with respect to section-level parameters but can lead to round off errors for sensitivity with respect to element-level geometric parameters.
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Introduction

Response sensitivity analysis is an essential component to gradient-
based structural engineering applications such as reliability, optimi-
zation, and system identification in which structural response
depends on uncertain material, load, and geometric parameters.
Two fundamental approaches to response sensitivity analysis are
available. In the finite difference method, analyses are repeated
with perturbed parameters to approximate gradients of the struc-
tural response. Although this approach is easy to implement, its
accuracy is subject to the magnitude of the parameter perturbations,
and it can be inefficient to reanalyze the structure once for each
uncertain parameter. On the other hand, the direct differentiation
method (DDM) is difficult to implement but requires neither
parameter perturbations nor reanalysis. In the DDM, the governing
equations of structural equilibrium, compatibility, and equilibrium
are differentiated analytically with respect to the uncertain param-
eters and programmed as part of the finite-element core (Choi and
Santos 1987; Tsay and Arora 1990; Kleiber et al. 1997).

Considerable research has been devoted to making finite-
element formulations and constitutive models available for use with
the DDM and its accompanying gradient-based applications. A
sampling of this research includes the application of the DDM
to composite beams (Zona et al. 2005), steel moment resisting
frames (Gong et al. 2006), reinforced concrete frames (Habibi
and Moharrami 2010), and soil constitutive models (Fellin and
Ostermann 2006). Further extensions of the DDM have been

developed for handling multipoint constraints (Gu et al. 2009), fol-
lower loads (Pajot and Maute 2006), and large displacements by
using the corotational formulation (Scott and Filippou 2007). In
addition, the DDM has been extended for computing the second
derivative of structural response (Bebamzadeh and Haukaas 2008).

In the aforementioned references, accuracy of the DDM was
shown by convergence of finite difference calculations of decreas-
ing parameter perturbations to the exact derivative, whereas effi-
ciency is achieved because the DDM requires repeated use of a
factorized stiffness matrix instead of full reanalysis for every
parameter. However, many of the numerical issues associated with
computing finite-element response are also relevant in computing
DDM response sensitivity. Similar to the use of a numerically con-
sistent tangent matrix, derivatives must be measured with respect to
the space and time discretized equations rather than continuous rate
equations (Conte et al. 2003). Furthermore, the convergence of
gradient-based algorithms is improved when the DDM is applied
to smooth constitutive models (Barbato and Conte 2006). Special-
ized approaches to the DDM have been developed to reduce
the computational cost associated with path-dependent problems
(Haukaas 2006).

With accuracy and efficiency of the DDM well-established and
selected computational issues addressed, the ramifications of a sen-
sitivity formulation that is inconsistent with the underlying finite-
element response has not been addressed. This paper evaluates two
formulations of force-based frame element response sensitivity in
numerical stability of the equations required to compute derivatives
of the element response with respect to material, geometric, and
member load properties under small deformations of a corotating
reference frame. After a brief overview of the DDM’s application to
force-based elements, condition numbers associated with each for-
mulation are derived to quantify the potential for round off errors.
Perturbation analyses demonstrate the effect of an ill-conditioned
matrix that is formed as part of one formulation, and a pushover
analysis of a reinforced concrete column shows the evolution of
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each formulation’s condition number as the column loses load car-
rying capacity.

Governing Response Sensitivity Equations

For nonlinear static finite-element analysis, the following system of
equations must be assembled to solve for the nodal displacement
sensitivity, ∂U=∂θ

KT
∂U
∂θ ¼ ∂P

∂θ � ∂Pr

∂θ jU ð1Þ

in which KT = tangent stiffness matrix of the structure; ∂P=∂θ =
derivative of the applied nodal load vector; and ∂Pr=∂θjU = condi-
tional derivative of the resisting force vector, which is assembled
from element contributions by standard finite-element procedures.
Physically, the conditional derivative of Pr represents the nodal
forces that must be applied to the structure to keep the nodal dis-
placements, U, fixed, while the state of the structure changes due to
changes in the parameter θ. The extension of Eq. (1) to nonlinear
dynamic analysis is straightforward and its omission does not affect
the evaluations presented.

The DDM is a two-phase process akin to the assembly and stress
recovery phases of the ordinary finite-element response (Zhang and
Der Kiureghian 1993). For frame finite elements formulated in end
forces, q, and deformations, v, in a basic reference system free of
rigid body displacement modes (Fig. 1), the conditional derivative
of basic forces ∂q=∂θjv, which has the same physical interpretation
as ∂Pr=∂θjU but at the element level, must be transformed and as-
sembled into the right-hand side of Eq. (1) during Phase I. After the
solution of Eq. (1), the sensitivity of element deformations, ∂v=∂θ,
is obtained in Phase II by selection and transformation of entries in
∂U=∂θ. The element deformation sensitivity is necessary to update
constitutive models for path-dependent response and for recovering
unconditional derivatives of the element response, e.g., forces or
plastic rotations.

Matrix Condition Numbers

Much like the regular finite-element response, a stable solution to
Eq. (1) depends on the condition number, κ, of the tangent stiffness
matrix, KT . The condition number of a matrix is equal to the ratio
of its largest to smallest singular values (Golub and Van Loan 1996;

Demmel 1997; Trefethen and Bau III 1997) or equivalently the
product of maximum singular values of the matrix and its inverse

κðAÞ ¼ σmaxðAÞ
σminðAÞ

¼ σmaxðAÞσmaxðA�1Þ ð2Þ

For a symmetric matrix, the condition number can be expressed in
eigenvalues. Awell-conditioned matrix has a low condition number
(κ ≥ 1:0), whereas a singular matrix has κ ¼ ∞. A matrix is said to
be ill-conditioned if its condition number approaches 1=εmachine, in
which εmachine is machine precision in finite arithmetic.

For any linear system Ax ¼ b, the condition number of the co-
efficient matrix A provides a bound on how much the solution vec-
tor xwill change with respect to perturbations of the right-hand side
vector, b

∥Δx∥
∥x∥ ≤ κðAÞ ∥Δb∥

∥b∥ ð3Þ

An alternative interpretation of this equation is that the condition
number gives the maximum number of significant digits, d, lost in
the solution to Ax ¼ b

d ≤ log10κðAÞ ð4Þ
The actual number of digits lost in the solution of realistic finite-
element problems is typically much less than that indicated by the
condition number (Cook et al. 2002). Stiffness matrices assembled
during nonlinear analysis of frames can be ill-conditioned because
of differing units assigned to the nodal equations, distortions of the
element mesh, the use of penalty functions to enforce multipoint
constraints, the loss of an element’s load carrying capacity, or
the onset of geometric instability. The following sections develop
the condition number associated with two DDM formulations of
force-based element response sensitivity.

Force-Based Response Sensitivity Equations

To apply the DDM to force-based elements, it is necessary to differ-
entiate the governing equations of equilibrium and compatibility
with respect to an uncertain parameter of the structural model.
The equations that govern force-based frame element response
are summarized first, followed by their differentiation with respect
to an uncertain model parameter.

Governing Equations

Force-based elements satisfy equilibrium of section and basic
forces in strong form in which the homogeneous solution is given
by the interpolation matrix, bðxÞ

sðxÞ ¼ bðxÞqþ spðxÞ ð5Þ
in which q = vector of basic forces; and sðxÞ contains the internal
section forces along the element, as shown in Fig. 1 for a simply
supported basic system. The vector spðxÞ represents the particular
solution for section forces because of member loads applied in the
basic system.

Compatibility between section and element deformations, eðxÞ
and v, respectively, is satisfied in integral form

v ¼
Z

L

0
bTðxÞeðxÞdx ð6Þ

For numerical implementation, this integral is evaluated over N in-
tegration points, each with location xi and weight wi, in the element
domain ½0;L�

Fig. 1. Simply supported basic system for plane frame elements and
section response quantities
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v ¼
XN
i¼1

bTi eiwi ð7Þ

in which evaluation of section response at the ith integration point
is abbreviated, e.g., ei ≡ eðxiÞ.

The partial derivative of the element deformations in Eq. (7)
with respect to basic forces gives the element flexibility matrix

f ¼ ∂v
∂q ¼

XN
i¼1

bTi fsibiwi ð8Þ

in which fsi ¼ ∂ei=∂si = section flexibility matrix. The element
flexibility matrix is inverted to obtain the basic stiffness matrix,
k ¼ f�1, which is subsequently assembled into the tangent stif-
fness matrix of Eq. (1). The variational basis for force-based
elements is described by Hjelmstad and Taciroglu (2005) and
details on the numerical implementation of these elements within
a displacement-driven finite-element framework are given by
Neuenhofer and Filippou (1997).

Differentiation of Governing Equations

The equilibrium relationship in Eq. (5) is differentiated with respect
to θ, an uncertain parameter of the structural model

∂si
∂θ ¼ bi

∂q
∂θ þ

∂bi
∂θ qþ ∂spi

∂θ ð9Þ

The derivative of basic forces, ∂q=∂θ, generally depends on every
model parameter, whereas the derivative of the force interpolation
matrix, ∂bi=∂θ, is generally nonzero for only geometric and
numerical integration parameters, e.g., plastic hinge lengths, of
the element. The derivative ∂spi=∂θ will be nonzero when θ repre-
sents a member load or geometric parameter of the element.

In addition, the compatibility equation of Eq. (7) is differenti-
ated with respect to θ

∂v
∂θ ¼

XN
i¼1

bTi
∂ei
∂θ wi þ

XN
i¼1

∂bTi
∂θ eiwi þ

XN
i¼1

bTi ei
∂wi

∂θ ð10Þ

in which the last summation involving ∂wi=∂θ accounts for uncer-
tain integration weights of the element.

The general form of the element constitutive relationship
expresses the basic forces as a nonlinear function of the element
deformations and the parameter, θ, according to q≡ qðvðθÞ; θÞ.
Taking the derivative of this relationship with respect to θ gives

∂q
∂θ ¼ k

∂v
∂θ þ

∂q
∂θ jv ð11Þ

in which k ¼ ∂q=∂v = basic stiffness matrix.
At the constitutive level, the section forces, s, at any loca-

tion, x, along the element are expressed as a nonlinear function
of the section deformation, e, and the parameter, θ, through
sðxÞ≡ s½x; eðx; θÞ; θ�. The derivative of this relationship at the ith
integration point is

∂si
∂θ ¼ ksi

∂ei
∂θ þ ∂si

∂θ jei ð12Þ

in which ksi ¼ ∂si=∂ei is the section stiffness matrix.
Two approaches to manipulating Eqs. (9)–(12) were developed

by Scott et al. (2004) and Conte et al. (2004) to incorporate force-
based elements within a DDM-based framework for response sen-
sitivity analysis. Both approaches were limited to the case in which
θ represents a material parameter, where the derivatives ∂bi=∂θ and

∂wi=∂θ are zero. To provide a complete evaluation of the numerical
stability of each formulation, these derivatives are assumed to be
nonzero.

Consistent Formulation of Force-Based Response
Sensitivity

Scott et al. (2004) formulated response sensitivity equations for
force-based elements by combining derivatives of the governing
equations of equilibrium, compatibility, and constitution in a man-
ner that is consistent with the element response. The equations
summarized in this section provide a basis for numerical analysis
of the inconsistent formulation presented in the following section
and are used in the implementation of force-based DDM sensitivity
in OpenSees (McKenna et al. 2000).

The derivation begins by solving for ∂ei=∂θ in Eq. (12), then
combining Eqs. (9) and (11) with this result

∂ei
∂θ ¼ fsibik

∂v
∂θ þ fsi

�
bi
∂q
∂θ jv þ

∂bi
∂θ qþ ∂spi

∂θ � ∂si
∂θ jei

�
ð13Þ

This equation is used during Phase II to update the sensitivity of
path-dependent section response, and it is required to find the con-
ditional derivative of basic forces in Phase I. To this end, Eq. (13) is
inserted in Eq. (10); then, with the definition of the element flex-
ibility matrix in Eq. (8) and the identity fk ¼ I, terms involving
∂v=∂θ cancel and the following expression is obtained

XN
i¼1

bTi fsi

�
bi
∂q
∂θ jv þ

∂bi
∂θ qþ ∂spi

∂θ � ∂si
∂θ jei

�
wi

þ
XN
i¼1

�∂bTi
∂θ eiwi þ bTi ei

∂wi

∂θ
�

¼ 0 ð14Þ

After inversion of the element flexibility matrix, the conditional
derivative of the basic forces is

∂q
∂θ jv ¼ k

XN
i¼1

bTi fsi

�∂si
∂θ jei �

∂bi
∂θ q� ∂spi

∂θ
�
wi

� k
XN
i¼1

�∂bTi
∂θ eiwi þ bTi ei

∂wi

∂θ
�

ð15Þ

which is assembled into the right-hand side of Eq. (1) during
Phase I of DDM computations. For any one parameter, θ, most
terms on the right-hand side of this equation will be zero.

Numerical Stability

From Eqs. (13) and (15), it is observed that the numerical stability
of solving for the conditional derivative of basic forces and the un-
conditional derivative of section deformations depends on the con-
dition numbers of the basic stiffness matrix, k, and section stiffness
matrices, ksi. Condition numbers for the section stiffness matrices
will be the same as those for the section flexibility matrices that
appear in Eqs. (13) and (15). As a result, the numerical stability
is related to the maximum condition number between the basic
stiffness matrix and the section stiffness matrices

κf b ¼ max½κðkÞ;max
N

i¼1
κðksiÞ� ð16Þ

For a linear-elastic prismatic Bernoulli frame element of length L in
a simply supported basic system, the basic stiffness matrix is
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k ¼
EA=L 0 0

0 4EI=L 2EI=L

0 2EI=L 4EI=L

2
64

3
75 ð17Þ

in which E = elastic modulus; A = cross-section area; and I =
second moment of the cross-section area. Because of matrix sym-
metry, the singular values of k are the same as its eigenvalues
EA=L, 2EI=L, and 6EI=L. The resulting condition number is

κðkÞ ¼ maxð6I;AÞ
minð2I;AÞ ð18Þ

which can be expressed in the section radius of gyration, r2 ¼ I=A.
Similarly, the condition number of the section stiffness matrix,
ks ¼ diag½EA; EI �, whose singular values are EA and EI, is

κðksÞ ¼
maxðI;AÞ
minðI;AÞ ð19Þ

which is equal to the radius of gyration if r2 > 1 and 1=r2 other-
wise. Following Eq. (16), the union of these min =max expressions
gives the condition number of the force-based formulation in the
radius of gyration

κf b ¼

8>><
>>:

1=r2; r2 ≤ 1=3

3; 1=3 < r2 ≤ 1=2

6r2; r2 > 1=2

ð20Þ

This numerical analysis for a linear-elastic prismatic frame
element represents the best case scenario, i.e., a lower bound on
the condition number, for the response of a material nonlinear
frame element. Condition numbers of the element and section
stiffness matrices generally increase during a nonlinear analysis be-
cause σmin tends to decrease rapidly, whereas σmax stays relatively
unchanged when plastic hinges form, concrete crushes, and strain
hardening initiates (Lee and Filippou 2009).

Inconsistent Formulation of Force-Based Response
Sensitivity

In the force-based response sensitivity formulation of Conte et al.
(2004), an auxiliary element-level system of linear equations is
formed to solve for derivatives of both the element and section re-
sponse. The number of simultaneous equations depends on the
number of integration points, N; the number of section forces,
NSR; and the number of element basic forces, NBF .

The formulation begins by combining the derivatives of the sec-
tion equilibrium and constitutive relationships of Eqs. (9) and (12),
respectively

ksi
∂ei
∂θ � bi

∂q
∂θ ¼ � ∂si

∂θ jei þ
∂bi
∂θ qþ ∂spi

∂θ ð21Þ

The derivative of the element compatibility relationship in Eq. (10)
is rewritten to isolate ∂ei=∂θ on the left-hand side

XN
i¼1

bTi
∂ei
∂θ wi ¼

∂v
∂θ �

XN
i¼1

∂bTi
∂θ eiwi �

XN
i¼1

bTi ei
∂wi

∂θ ð22Þ

The linear algebraic equations in Eqs. (21) and (22) can be written
as a system of NNSR þ NBF simultaneous equations for unknown
derivatives ∂ei=∂θ and ∂q=∂θ of section deformations and basic
forces, respectively

ks1 0 … 0 �b1

0 ks2 … 0 �b2

..

. ..
. . .

. ..
. ..

.

0 0 … ksN �bN

w1bT1 w2bT2 … wNbTN 0

2
666666664

3
777777775

∂e1=∂θ
∂e2=∂θ

..

.

∂eN=∂θ
∂q=∂θ

2
666666664

3
777777775

¼

�∂s1=∂θje1 þ ð∂b1=∂θÞqþ ∂sp1=∂θ
�∂s2=∂θje2 þ ð∂b2=∂θÞqþ ∂sp2=∂θ

..

.

�∂sN=∂θjeN þ ð∂bN=∂θÞqþ ∂spN=∂θ
∂v=∂θ�P

N
i¼1

�
∂bTi∂θ eiwi þ bTi ei

∂wi∂θ

�

2
66666666664

3
77777777775

ð23Þ

For notational convenience, this system of equations is denoted
Sx ¼ p. During Phase I calculations, the term ∂v=∂θ in the
right-hand side vector p is replaced by the zero vector so that
the unknown vector x contains the sought after conditional deriva-
tive, ∂q=∂θjv in its last NBF rows. Similar to the right-hand side of
Eq. (15), most terms in p will be zero for any one parameter of the
structural model.

Condition Number

To assess the numerical stability of this sensitivity formulation, the
condition number of the S matrix in Eq. (23) is computed from its
singular values according to Eq. (2). For realistic physical proper-
ties, the trailing NBF rows and columns of S are close to zero rel-
ative to the section stiffness matrices on the diagonal, as observed
in Fig. 2(a), in which the components of this matrix are plotted for a
linear-elastic prismatic frame element with five Gauss-Lobatto in-
tegration points. As a result, the singular values of the section stiff-
ness matrices will compose the largest singular values of S

σmaxðSÞ ¼ max
N

i¼1
σmaxðksiÞ ð24Þ

Similar inferences to determine the smallest singular value of S
from Fig. 2(a) are not readily apparent, so the relationship
σmaxðS�1Þ ¼ 1=σminðSÞ will be utilized. Closed-form inversion
of S would be impractical; instead, the force-based response sen-
sitivity equations from the consistent formulation described in the
previous section will be employed for a direct solution to the in-
verse of S.

The leading NNSR rows of S�1 are found by substituting
Eq. (15) into Eq. (13) for each integration point

∂ei
∂θ ¼ fsibik

XN
j¼1

bTj fsj

�∂sj
∂θ jej �

∂bj
∂θ q� ∂spj

∂θ
�
wj

� fsi

�∂si
∂θ jei �

∂bi
∂θ q� ∂spi

∂θ
�

þ fsibik
�∂v
∂θ �

XN
i¼1

�∂bTi
∂θ eiwi � bTi ei

∂wi

∂θ
��

ð25Þ

Then, the trailing NBF rows of S�1 are found by substituting
Eq. (15) into Eq. (11)
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∂q
∂θ ¼ k

XN
i¼1

bTi fsi

�∂si
∂θ jei �

∂bi
∂θ q� ∂spi

∂θ
�
wi þ k

�∂v
∂θ �

XN
i¼1

�∂bTi
∂θ eiwi � bTi ei

∂wi

∂θ
��

ð26Þ

Writing out Eq. (25) for all N integration points and then combining these equations with Eq. (26) gives a closed-form expression for S�1

S�1 ¼

fs1ðI� b1kbT1 fs1w1Þ �fs1b1kbT2 fs2w2 … �fs1b1kbTN fsNwN fs1b1k

�fs2b2kbT1 fs1w1 fs2ðI� b2kbT2 fs2w2Þ … �fs2b2kbTN fsNwN fs2b2k

..

. ..
. . .

. ..
. ..

.

�fsNbNkbT1 fs1w1 �fsNbNkbT2 fs2w2 … fsNðI� bNkbTNfsNwNÞ fsNbNk

�kbT1 fs1w1 �kbT2 fs2w2 … �kbTNfsNwN k

2
666666664

3
777777775

ð27Þ

in which I = NSR × NSR identity matrix. Signs have been flipped on
coefficients in the leading NNSR columns of S�1 for consistency
with the right-hand side vector in Eq. (23).

It is observed that all block submatrices of S�1, except for the
basic stiffness matrix, k, on the last diagonal block, are on the order
of either “flexibility” or “stiffness times flexibility,” and thus
several orders of magnitude less than the basic stiffness matrix
for realistic physical properties. As a result, for realistic physical
properties, the singular values of k will compose the largest singu-
lar values of S�1

σmaxðS�1Þ ¼ σmaxðkÞ ð28Þ
This is confirmed in Fig. 2(b), in which the basic stiffness coeffi-
cients on the last block diagonal dominate the topology of S�1.

With the largest singular values of S and its inverse defined in
section and basic stiffness matrices according to Eqs. (24) and (28),
respectively, the condition number of S is

κðSÞ ¼ ½max
N

i¼1
σmaxðksiÞ�σmaxðkÞ ð29Þ

For a linear-elastic prismatic Bernoulli frame element, this condi-
tion number can be expressed as a function of the section radius of
gyration

κðSÞ ¼

8>>><
>>>:

ðEAÞ2
L ; r2 ≤ 1=6

6E2IA
L ; 1=6 < r2 ≤ 1

6ðEIÞ2
L ; r2 > 1

ð30Þ

As in the previous section, the condition number is developed here
for a linear-elastic element to provide a lower bound on condition-
ing for material nonlinear analyses. The condition number dictated
by Eq. (30) is plotted in Fig. 3 for a range of radii of gyration along
with the condition number associated with the consistent sensitivity
formulation [Eq. (20)]. For the selected physical properties of the
simply supported basic system (L ¼ 8:0 m, E ¼ 2:0e8 kPa, and
A ¼ 0:01 m2), Fig. 3 indicates that the inconsistent formulation
of force-based response sensitivity analysis can lose up to 13 sig-
nificant digits because of round off error.

The ill-conditioning of the inconsistent formulation can be mi-
tigated by viewing Eqs. (21) and (22) as an equality constrained
least-squares problem. To this end, Eq. (21) represents an under-
determined system whose solution is minimized subject to the con-
straints of Eq. (22). As shown in Appendix I, solution of these
equations through the nullspace method (Bjorck 1996; Golub
and Van Loan 1996) results in a condition number on the order
of E instead of the E2 indicated in Eq. (30). The following pertur-
bation analysis shows the effects of ill-conditioning in forming and
solving the square system of equations in Eq. (23), which was the
approach proposed in Conte et al. (2004).

Fig. 2.Magnitude of matrix components for inconsistent response sen-
sitivity formulation; linear-elastic prismatic frame element of length
L ¼ 8:0 m with section response determined at five Gauss-Lobatto
points with E ¼ 2:0e8 kPa, A ¼ 0:01 m2, and r2 ¼ 0:04 m2
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Perturbation Analysis

To demonstrate the actual effects of an ill-conditioned S matrix in
solving the system of Eq. (23), the right-hand side vector is formed
for a parameter, θ, of a single element in the simply supported basic
system. The physical properties are L ¼ 8:0 m, E ¼ 2:0e8 kPa,
and A ¼ 0:01 m2; and the radius of gyration is set to r2 ¼
0:04 m2, making the condition number of S equal to 5.0e11 accord-
ing to Eq. (30). A uniformly distributed load of 15 kN=m is applied
so that member loads are included in the analysis.

For any right-hand side and solution vectors obtained through
Eq. (23), the actual number of digits lost is computed according to
Eqs. (3) and (4) for unit perturbations of each equation

dj ¼ ⌈log

�∥Δxj∥
∥x∥ ∥p∥

�
⌉ ð31Þ

in which p and x = right-hand side and unknown vectors, respec-
tively, in Eq. (23). The vectorΔxj is the solution to SΔxj ¼ Δpj, in
which Δpj is all zero except for a one in the jth row.

The response sensitivity is computed with respect to the element
length, making ∂L=∂θ ≠ 0 so that all rows of the right-hand side
vector in Eq. (23) will be nonzero during Phase I and Phase II cal-
culations. The resulting number of digits lost is plotted in Fig. 4, in
which it is seen that the solution vector is relatively insensitive to
perturbations in the leading NNSR entries of p, i.e., to perturbations
in the derivatives of section-level response. On the other hand, the
solution is extremely sensitive to perturbations of element-level
derivatives in the last NBF rows of p, in which a unit change in
the right-hand side leads to a relative change of 2:831 × 105 in
magnitude of the solution vector. According to Eq. (31), six digits
are lost because of perturbations of element-level derivatives in the
right-hand side of Eq. (23), effectively precluding the inconsistent
formulation from single precision arithmetic in which only seven
digits of precision are available (IEEE 2008).

In the case in which θ represents a section constitutive param-
eter, results nearly identical to those shown in Fig. 4 are obtained.
During Phase I calculations, the final NBF rows of the right-hand
side vector are identically equal to zero and thus not subject to any
round off errors. During Phase II calculations, however, round off

errors in the global solution of Eq. (1) can lead to relatively large
errors in recovering the unconditional derivatives, ∂ei=∂θ and
∂q=∂θ, through the solution to Eq. (23) at the element level. This
is an important consideration for path-dependent nonlinear analy-
ses in which the derivative of section deformations, ∂ei=∂θ, de-
pends on all parameters of the structural model, even those that do
not belong to the element. Thus, the results shown in Fig. 4 are an
unbiased presentation of the numerical instability inherent in the
sensitivity formulation of Conte et al. (2004) for uncertain material
and geometric parameters of a structural model.

Reinforced Concrete Column

To demonstrate further the ill-conditioning of the inconsistent re-
sponse sensitivity formulation, the load-displacement response of a
reinforced concrete column is computed and the evolution of con-
dition numbers is tracked. The structural model is on the basis of
specimen 7 in the tests of Tanaka and Park (1990) and is chosen
because of its observed loss of load carrying capacity. Column di-
mensions and cross-section details are shown in Fig. 5. It is antici-
pated that as a plastic hinge forms during the pushover analysis, the
section stiffness of the hinge region will approach singularity and
affect the conditioning of the element response.

Fig. 3. Condition number of consistent and inconsistent force-based
response sensitivity formulations for a linear-elastic prismatic frame
element with varying radius of gyration and E ¼ 2:0e8 kPa,
A ¼ 0:01 m2, and L ¼ 8:0 m

Fig. 4. Digits lost in inconsistent force-based response sensitivity for-
mulation because of perturbations of each equation in the linear system
of Eq. (23); frame element (NSR ¼ 2, NBF ¼ 3) with N ¼ 5 integration
points

Fig. 5.Geometry and reinforcing details of reinforced concrete column
example
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The column response is computed by using one force-based
frame element with four Gauss-Lobatto integration points. Fiber
discretization of the cross section captures the effects of axial-
moment interaction. Concrete fibers have a compressive strength
of f 0c ¼ 32 MPa with confining effects determined according to
Mander et al. (1988), whereas the reinforcing steel is bilinear with
elastic modulus E ¼ 200;000 MPa; yield stress f y ¼ 510 MPa;
and 1% strain hardening. A compressive axial load equal to
3,540 kN (30% of the gross section capacity) is held constant dur-
ing the pushover analysis. The cross section is 550 mm2, giving a
radius of gyration r2 ¼ 0:02521 m2. By using the gross section
properties and cracked concrete modulus, lower bounds on the con-
dition numbers associated with the force-based element and the in-
consistent response sensitivity formulation are computed as 39.67
and 3:120 × 1012, respectively, according to Eqs. (20) and (30).

The load-displacement response of the column under a
displacement-controlled analysis in OpenSees (McKenna et al.
2000) is shown in Fig. 6(b), in which peak lateral capacity is
reached at approximately 15-mm lateral displacement. The stiffness
matrix at each of the four Gauss-Lobatto points is recorded at every
time step to form the S matrix and compute its condition number
along with the condition number associated with the underlying
force-based element response, both by using the condition number
function, cond(), in MATLAB 7.11.

As the column loses stiffness during the pushover analysis be-
cause of the formation of a plastic hinge at its base, the magni-
tude of the force-based formulation condition number spikes to
2:515 × 105 then returns to the neighborhood of its estimated lower
bound (39.67), as shown in Fig. 6(b). This condition number re-
mains several orders of magnitude less than that for the inconsistent
sensitivity formulation, which ranges from 3:396 × 1012 to 1:535 ×
1013 (lower bound is 3:120 × 1012). A spike is not observed in the
history of κðSÞ because it is the product of maximum singular val-
ues of the basic and section stiffness matrices, instead of the ratio of
maximum to minimum singular values of these matrices.

Conclusions

The DDM maintains numerical consistency with the underlying
finite-element response; however, this is not the case if the element-
level response sensitivity solution is ill-conditioned. This was
shown for a force-based element response sensitivity formulation
(Conte et al. 2004) in which the associated condition number is
equal to the product of the largest singular values of the basic
and section stiffness matrices, whereas the conditioning of the
underlying force-based element response depends only on the ratio
of singular values of these matrices. The circumstances under
which numerical instabilities can arise in the incosistent formu-
lation depend on the right-hand side vector of Eq. (23) and are sum-
marized as follows:
• When the parameter θ corresponds to an uncertain section-level

constitutive property or member load, no ill-conditioning of the
system in Eq. (23) during Phase I occurs because all terms in the
trailing NBF rows of the right-hand side vector are zero.

• When θ corresponds to an uncertain nodal coordinate at the ele-
ment ends or an element integration parameter, e.g., plastic
hinge length, the system in Eq. (23) is ill-conditioned during
Phase I because the terms ∂bi=∂θ and ∂wi=∂θ are nonzero in
the trailing NBF rows of the right-hand side vector in this case.

• The system in Eq. (23) is always ill-conditioned during Phase II
because the element deformation sensitivity, ∂v=∂θ, is nonzero
in general for all types of parameters when the constitutive re-
sponse is path dependent.

Thus, the inconsistent formulation provides well-conditioned re-
sults during Phase I for only section-level parameters owing to con-
stitutive properties or member loads. Because of its consistency
with the element response, these numerical issues are not present
in the force-based element response sensitivity formulation devel-
oped by Scott et al. (2004), for which well-conditioned results are
attained during both Phases I and II for all types of uncertain
material, geometric, or load parameters. Similar numerical analyses
for other finite-element formulations and constitutive models
should be carried out to ensure consistency is preserved for the reli-
ability, optimization, and system identification applications that
rely on the accurate and efficient computation of response sensitiv-
ity to converge to an optimal solution point.

Appendix I. Equality Constrained Least-Squares
Approach

An equality constrained least-squares problem is posed as

min jjAx� bjj2 subject to Bx ¼ d ð32Þ

in which Ax ¼ b ¼ system of underdetermined equations; and
Bx ¼ d ¼ system of linear constrain equations. In the context
of the inconsistent response sensitivity formulation, A and b re-
present the NNSR equations in Eq. (21), whereas B and d encom-
pass the NBF equations in Eq. (22), which can each be extracted
from the leading NNSR and trailing NBF rows of the matrix-vector
system in Eq. (23).

The nullspace method (Bjorck 1996; Golub and Van Loan 1996)
uses QR factorization to reformulate a constrained least-squares
problem into an equivalent unconstrained problem. The first step
in the nullspace method is to find the full QR factorization of
BT , as defined in Eq. (22)

BT ¼ Q
R

0

" #
ð33Þ

(a)

(b)

Fig. 6. Reinforced concrete column example: (a) load-displacement
response; (b) condition number of force-based element response and
inconsistent response sensitivity formulation
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in which Q ¼ Neqn × Neqn; and R ¼ NBF × NBF . Then, the col-
umns of theAmatrix defined in Eq. (21) are rotated by the orthogo-
nal matrix Q and partitioned

AQ ¼ ½A1 A2 � ð34Þ
in which A1 ¼ NNSR × NBF; and A2 ¼ NNSR × NNSR. With this
transformed system, the solution for x is

x ¼ Q
y
z

� �
ð35Þ

in which y is found by linear solution with the upper-triangular
R matrix

RTy ¼ d ð36Þ
in which R has the same condition number as B after the QR fac-
torization. It is also noted that y ¼ d ¼ 0 in the conditional deriva-
tive case for Phase I calculations.

Because of a sufficient number of constraint equations, the
lower dimension least-squares problem of the nullspace method

min jjA2z� ðb� A1yÞjj2 ð37Þ
can be made zero, giving a second system of NNSR linear equations
for z

A2z ¼ b� A1y ð38Þ
The y and z vectors are then transformed back to the original space
according to Eq. (35).

The stability of the nullspace method depends on the condition
numbers of B and A2, owing to the solution to the linear systems in
Eqs. (36) and (38) (Bjorck 1996). The condition number κðBÞ is on
the order of the element length, whereas κðA2Þ is on the order of the
largest singular value of all section stiffness matrices, i.e.

κðA2Þ≈max
N

i¼1
σmaxðksiÞ ð39Þ

For a linear-elastic prismatic frame element, this gives the condition
number

κðA2Þ≈maxðEA;EIÞ ð40Þ
Although this is a more stable approach than solving the linear sys-
tem of equations in Eq. (23), the condition number still depends on
the elastic modulus, E, as opposed to E2.
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Notation

The following symbols are used in this paper:
b = section force interpolation matrix;
e = section deformation vector;
f = element flexibility matrix;
fs = section flexibility matrix;

KT = structural tangent stiffness matrix;
k = element basic stiffness matrix;

ks = section stiffness matrix;
P = structural load vector;
Pr = structural resisting force vector;
q = element basic force vector;
s = section force vector;
sp = section force vector because of member loads;
U = structural displacement vector;
v = element deformation vector;
w = element integration weight;
κ = matrix condition number; and
σ = matrix singular value.
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