
1

mjb – March 29, 2017

Oregon State University
Computer Graphics

1

OpenMP Case Study:
Bubble Sort

Mike Bailey

mjb@cs.oregonstate.edu

Oregon State University

bubblesort.pptx

mjb – March 29, 2017

Oregon State University
Computer Graphics

2A Special Parallel Design Pattern

Implementing a Bubble Sort in parallel is an example of a
special design pattern called Even-Odd, or Red-Black

2

mjb – March 29, 2017

Oregon State University
Computer Graphics

3

#include <algorithm>
. . .

for(int i = 0; i < N; i++)
{

bool stop = true;

for(int j = 0; j < N-1; j++)
{

if(B[j] > B[j+1])
{

std::swap(B[j], B[j+1]);
stop = false;

}
}

if(stop)
break;

}

6 5 4 3 2 1

5 4 3 2 1 2

4 3 2 1 3 3

3 2 1 4 4 4

2 1 5 5 5 5

1 6 6 6 6 6

original 0 1 2 3 4
Step #

Non-threaded Bubble Sort

N = 6

mjb – March 29, 2017

Oregon State University
Computer Graphics

4

#include <algorithm>
. . .

for(int i = 0; i < N; i++)
{

bool stop = true;

if(B[0] > B[1])
{

std::swap(B[0], B[1]);
stop = false;

}

if(B[1] > B[2])
{

std::swap(B[1], B[2]);
stop = false;

}

if(B[2] > B[3])
{

std::swap(B[2], B[3]);
stop = false;

}

. . .

if(stop)
break;

}

Why Can’t This Version of the Bubble Sort Be Run in Parallel?

Let’s unroll the inner (j) loop so we can see
what the for-loop really looks like.

Suppose each of these if-blocks gets
assigned to a different thread (remember that
OpenMP tries to assign different for-loop
passes to different threads).

Remembering that we have no explicit
control over thread scheduling, notice that
both the first and second if-blocks are both
reading from and writing to B[1]. There is no
synchronization to control in which order this
is happening. We have a classic Race
Condition.

The solution is, in one pass, allow a single
thread access to B[0] and B[1], another
thread access to B[2] and B[3], another
thread access to B[4] and B[5], etc.

Then, in the next pass, allow a single thread
access to B[1] and B[2], another thread
access to B[3] and B[4], another thread
access to B[5] and B[6], etc.

3

mjb – March 29, 2017

Oregon State University
Computer Graphics

5

#include <algorithm>
. . .

for(int i = 0; i < N; i++)
{

int first = i % 2; // 0 if i is 0, 2, 4, ...
// 1 if i is 1, 3, 5, ...

#pragma omp parallel for default(none),shared(A,first)

for(int j = first; j < N-1; j += 2)
{

if(A[j] > A[j+1])
{

std::swap(A[j], A[j+1]);
}

}
}

6 5 5 3 3 1 1

5 6 3 5 1 3 2

4 3 6 1 5 2 3

3 4 1 6 2 5 4

2 1 4 2 6 4 5

1 2 2 4 4 6 6

original 0 1 2 3 4 5
Step #

Threaded Bubble Sort

N = 6

mjb – March 29, 2017

Oregon State University
Computer Graphics

6

6 5 4 3 2 1

5 4 3 2 1 2

4 3 2 1 3 3

3 2 1 4 4 4

2 1 5 5 5 5

1 6 6 6 6 6

original 0 1 2 3 4
Step #

6 5 5 3 3 1 1

5 6 3 5 1 3 2

4 3 6 1 5 2 3

3 4 1 6 2 5 4

2 1 4 2 6 4 5

1 2 2 4 4 6 6

original 0 1 2 3 4 5
Step #

A Comparison

ThreadedNon-threaded

N = 6

4

mjb – March 29, 2017

Oregon State University
Computer Graphics

7OpenMP Performance as a Function of Array Size

Threads

Array Size

M
eg

aN
um

be
rs

S
or

te
d

P
er

 S
ec

on
d

mjb – March 29, 2017

Oregon State University
Computer Graphics

8OpenMP Performance as a Function of # of Threads

Array Size

Threads

M
eg

aN
um

be
rs

S
or

te
d

P
er

 S
ec

on
d

