OpenMP Case Study:
Bubble Sort

Mike Bailey

mjb@cs.oregonstate.edu

Oregon State University

mepE
5 1T 2 8 4 &

Oregon State University
Computer Graphics
—_ bubblesort.pptx mjb — March 29, 2017

—'Nwhwﬂ‘\i

A Special Parallel Design Pattern 2

Implementing a Bubble Sort in parallel is an example of a
special design pattern called Even-Odd, or Red-Black

Oregon State University
Computer Graphics
pE mjb — March 29, 2017

Non-threaded Bubble Sort 3

#include <algorithm>

for(inti=0;i<N;i++)

{

bool stop = true;
for(intj=0;j < N-1; j++)
{

if(B[j] > B[j+1])

std::swap(B[j], B[j+1]);

stop = false;
}
}
if(stop)
break;

Oregon State University
Computer Graphics

Step #
original

6

o P, N W b~ O1e
o Ul PN W~
o O A W E N

o U~ W N PR

R N w b~ O
o O A PN

mjb — March 29, 2017

Why Can’t This Version of the Bubble Sort Be Run in Parallel? 4

S

#include <algorithm>
for(inti=0;i<N;i++)
{

bool stop = true;

if(B[O] > B[L1])

std::swap(B[O],
stop = false;

if(B[1]le—BF21
{
std::swap(B[1ﬁ{

stop = false;

}
ift B[2] > B[3])
{

std::swap(B[2], B[3]);
stop = false;

if(stop)
break;

-

Let’s unroll the inner (j) loop so we can see
what the for-loop really looks like.

Suppose each of these if-blocks gets
assigned to a different thread (remember that
OpenMP tries to assign different for-loop
passes to different threads).

Remembering that we have no explicit
control over thread scheduling, notice that
both the first and second if-blocks are both
reading from and writing to B[1]. There is no
synchronization to control in which order this
is happening. We have a classic Race
Condition.

The solution is, in one pass, allow a single
thread access to B[0] and B[1], another
thread access to B[2] and B[3], another
thread access to B[4] and B[5], etc.

Then, in the next pass, allow a single thread
access to B[1] and B[2], another thread
access to B[3] and B[4], another thread
access to B[5] and B[6], etc.

mjb — March 29, 2017

Threaded Bubble Sort

N=6
Step #
#include <algorithm> original 0 ! 2 8 4 °
for(inti=0; i<N; i++) 6 (5 S (3 3 c 1
intfirst=i%2; //0ifiis0,2, 4, .. 5 6 (3 5 (l (2
I1ifiis1,3,5, ...
#pragma omp parallel for default(none),shared(Afirst) 4 (3 6 (1 5 C 3
for(intj=first; j<N-1; j+=2) 3 4 (1 6 (2 (4
it ALj] > A[+1]) 2 1\4 £2\6 f4\5
std::swap(A[j], A[j+1]); l 2 2 (4 4 6
, }
A Comparison 6
N=6
Step # Step #
original 0 1 2 3 4 original 0 1 2 3 4 5
6 5 4 3 2 1 6 553311
5 4 3 2 1 2 5 6 3 51 3 2
4 3 21 3 3 4 3 6 15 2 3
3 2 1 4 4 4 3 4 1 6 2 5 4
2 1 55 5 §5 2 1 4 2 6 4 5
1 6 6 6 6 6 1 2 2 4 4 6 6
Non-threaded Threaded

Oregon State University
Computer Graphics

mijb — March 29, 2017

OpenMP Performance as a Function of Array Size 7

MegaNumbers Sorted Per Second

/

5.0
1.0
Threads
—— |
EXil
-2
——1
2.0

1.0
1 2000 4000 a000 RO00 10000 12000 14000 16000
Array Size
O State Uni t
]SU e Gy e
mijb — March 29, 2017
OpenMP Performance as a Function of # of Threads 8
5.0
e}
c
o
@
o 40 Array Size
o)
o —8—16000
e}
Q ==3000
£
o e 1000
] 3.0
2 =2 (0000
@
_g == 1000
2 =500
% 2.0
Q . h
=
1.0 + T 1
1 2 a4
Threads

JSU

Oregon State University
Computer Graphics

mjb — March 29, 2017

