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A Special Parallel Design Pattern 2

Implementing a Bubble Sort in parallel is an example of a
special design pattern called Even-Odd, or Red-Black
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Non-threaded Bubble Sort 3

#include <algorithm>

for(inti=0;i<N;i++)

{

bool stop = true;
for(intj=0;j < N-1; j++)
{

if( B[j] > B[j+1])

std::swap( B[j], B[j+1] );

stop = false;
}
}
if(stop)
break;
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Why Can’t This Version of the Bubble Sort Be Run in Parallel? 4

S

#include <algorithm>
for(inti=0;i<N;i++)
{

bool stop = true;

if( B[O] > B[L1])

std::swap( B[ O],
stop = false;

if( B[ 1 ]le—BF21
{
std::swap( B[ 1ﬁ{

stop = false;

}
ift B[2] > B[3] )
{

std::swap( B[ 2], B[3] );
stop = false;

if( stop)
break;

-

Let’s unroll the inner (j) loop so we can see
what the for-loop really looks like.

Suppose each of these if-blocks gets
assigned to a different thread (remember that
OpenMP tries to assign different for-loop
passes to different threads).

Remembering that we have no explicit
control over thread scheduling, notice that
both the first and second if-blocks are both
reading from and writing to B[1]. There is no
synchronization to control in which order this
is happening. We have a classic Race
Condition.

The solution is, in one pass, allow a single
thread access to B[0] and B[1], another
thread access to B[2] and B[3], another
thread access to B[4] and B[5], etc.

Then, in the next pass, allow a single thread
access to B[1] and B[2], another thread
access to B[3] and B[4], another thread
access to B[5] and B[6], etc.
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Threaded Bubble Sort

N=6
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std::swap( A[j], A[j+1] ); l 2 2 (4 4 6
, }
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OpenMP Performance as a Function of Array Size 7
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OpenMP Performance as a Function of # of Threads 8
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