
mjb – May 6, 2015 1

OpenGL Texture-Mapping Made Simpler

Introduction

Texture mapping is a computer graphics capability in
which a separate image, referred to as the texture, is
stretched onto a piece of 3D geometry and follows it
however it is transformed. This image is also known
as a texture map. This can be most any image, but
its pixel dimensions must be a power of two. (This
restriction has been lifted on some graphics cards,
but just to be safe….) The X and Y dimensions do
not need to be the same power of two, just a power
of two. So, a 128x512 image would be OK, a
129x511 image would not.

Also, to prevent confusion, the texture pixels are not called pixels. A pixel is a dot in the final screen
image. A dot in the texture image is called a texture element, or texel. Similarly, to avoid terminology
confusion, a texture’s width and height dimensions are not called X and Y. They are called S and T. A
texture map is not generally indexed by its actual resolution coordinates. Instead, it is indexed by a
coordinate system that is resolution-independent. The left side is always S=0., the right side is S=1., the
bottom is T=0., and the top is T=1. Thus, you do not need to be aware of the texture’s resolution when
you are specifying coordinates that point into it. Think of S and T as a measure of what fraction of the
way you are into the texture.

The mapping between the geometry of the 3D object and the S and T of the texture map works like this:

T=1.

S=0.

T=0.

S=1.

(S0,T0)

(S1,T1)
(S3,T3)

(S4,T4)

(S2,T2)

Interpolated (S,T) =
(.78, .67)

(.78,.67) in S and T =
(199.68, 171.52) in texels

199 200

171

172

256 x 256 Texture Image 3D Polygon

(199.68, 171.52)

mjb – May 6, 2015 2

You specify an (s,t) pair at each vertex, along with the vertex coordinate. At the same time that OpenGL
is interpolating the coordinates, colors, etc. inside the polygon, it is also interpolating the (s,t) coordinates.
Then, when OpenGL goes to draw each pixel, it uses that pixel’s interpolated (s,t) to lookup a color in the
texture image.

Getting a Texture for Your Program

Here are two ways to get a texture image for your program:

Create the texture yourself. There are different ways to store this information, depending on whether
you are storing 1, 2, 3, or 4 values per texel. To create 3 values (RGB) per texel, for example:

unsigned char Texture[][3] =
{
 { R0, G0, B0 },
 { R1, G1, B1 },
 { R2, G3, B2 },
 •••
};

where:

R0, G0, B0 the RGB values for the top-row, first-texel in the texture map, each in the
range 0-255.

R1, G1, B1 the RGB values for the top-row, second texel in the texture map.

or, to create 4 values (RGBA) per texel, for example:

unsigned char Texture[][4] =
{
 { R0, G0, B0, A0 },
 { R1, G1, B1, A1 },
 { R2, G3, B2, A2 },
 •••
};

where:

R0, G0, B0, A0 the RGBA values for the top-row, first-texel in the texture map, each in
the range 0-255.

R1, G1, B1, A1 the RGBA values for the top-row, second texel in the texture map.

Read the texture from an image file:

unsigned char *BmpToTexture();
unsigned char *Texture;
int width, height;

mjb – May 6, 2015 3

•••
Texture = BmpToTexture("filename.bmp", &width, &height);

This routine can be found as the bmptotexture.c file. The file filename.bmp needs to be created by
something that writes uncompressed 24-bit color BMP files, or converted to the uncompressed BMP
format by a tool such as ImageMagick’s convert or Adobe Photoshop.

Preparing to Draw:

1. Define the texture wrapping parameters. This will control what happens when a texture

coordinate greater than 1.0 or less than 0.0 is encountered:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, wrap);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, wrap);

where wrap is:

GL_REPEAT specifies that this pattern will repeat (i.e., wrap-around) if transformed
texture coordinates less than 0.0 or greater than 1.0 are encountered.

GL_CLAMP specifies that the pattern will “stick” to the value at 0.0 or 1.0.

 Clamping Repeating

2. Define the texture filter parameters. This will control what happens when a texture is scaled up

or down.

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, filter);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, filter);

where filter is:

mjb – May 6, 2015 4

GL_NEAREST specifies that point sampling is to be used when the texture map needs to
be magnified or minified.

GL_LINEAR specifies that bilinear interpolation among the four nearest neighbors is

to be used when the texture map needs to be magnified or minified.

 Nearest Bilinear

3. Define the texture environment properties.

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, mode);

There are several modes that can be used. Two of the most useful are:

GL_REPLACE specifies that the 3-component texture will be applied as

an opaque image on top of the polygon, replacing the
polygon’s specified color.

GL_MODULATE specifies that the 3-component texture will be applied as

piece of colored plastic on top of the polygon. The
polygon’s specified color “shines” through the plastic
texture. This is very useful for applying lighting to
textures: paint the polygon white with lighting and let it
shine up through a texture.

mjb – May 6, 2015 5

 Replace Modulate

 Modulate with a White Cube Modulate with a Green Cube

4. Tell the system what the current texture is:

int level, ncomps, width, height, border;
unsigned char *Texture;
. . .
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexImage2D(GL_TEXTURE_2D, level, ncomps, width, height, border,
 GL_RGB, GL_UNSIGNED_BYTE, Texture);

where:

mjb – May 6, 2015 6

level is used with mip-mapping. Use 0 for now.

ncomps number of components in this texture: 3 if using RGB, 4 if using

RGBA.

width width of this texture map, in pixels.

height height of this texture map, in pixels.

border width of the texture border, in pixels. Use 0 for now.

Texture the name of an array of unsigned characters holding the texel

information.

 Note that you can get away with specifying this ahead of time only if you are using a single
texture. If you are using multiple textures, you must specify them in Display() right before
you need them. See the section below about binding textures.

In Display():

1. If you are using multiple textures, set the current texture using glTexImage2D()or by binding

the correct one.

2. Enable texture mapping:

glEnable(GL_TEXTURE_2D);

3. Draw your polygons, specifying s and t at each vertex:

glBegin(GL_POLYGON);
 glTexCoord2f(s0, t0);
 glNormal3f(nx0, ny0, nz0);
 glVertex3f(x0, y0, z0);

 glTexCoord2f(s1, t1);
 glNormal3f(nx1, ny1, nz1);
 glVertex3f(x1, y1, z1);

 . . .
glEnd();

If this geometry is static (i.e., will never change), it is a good idea to put this all into a display list.

4. Disable texture mapping:

glDisable(GL_TEXTURE_2D);

mjb – May 6, 2015 7

Transforming Texture Coordinates

In addition to the projection and modelview matrices, OpenGL maintains a transformation for texture
map coordinates S and T as well. You use all the same transformation routines you are used to:
glRotatef(), glScalef(), glTranslatef(), but you must first specify the Matrix Mode:

glMatrixMode(GL_TEXTURE);

The only trick to this is to remember that you are transforming the texture coordinates, not the texture
image. Transforming the texture image forward is the same as transforming the texture coordinates
backwards:

 Scale by 0.5 Scale by 1. Scale by 2.

mjb – May 6, 2015 8

Scale by 5.

Rotate by -45° Rotate by 0° Rotate by +45°

Binding Texture Objects

If your scene has only one texture, this is easy to manage. But, if you have several textures, all to be used
at different times on different objects, it may be important to maximize the efficiency of how you create,
store, and manage those textures. In this case you should use texture objects.

Earlier in these notes, we created a texture by saying:

glTexImage2D(GL_TEXTURE_2D, level, ncomps, width, height, border,
 GL_RGB, GL_UNSIGNED_BYTE, Texture);

This worked, but if you do this for every texture you are managing, then each texture will be downloaded
to the graphics card every time you call Display(). Yuch. You fix this by binding texture objects.
Texture objects leave your textures on the graphics card and then re-uses them, which is always going to
be faster than re-loading them.

Create a texture object by generating a texture name and then bind the texture object to the texture data
and texture properties. The first time you execute glBindtexture(), you are creating the texture
object. Subsequent times you do this, you are making that texture object current. So, for example, you
might say:

GLuint tex0, tex1;

. . .

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

glGenTextures(1, &tex0); // assign binding “handles”
glGenTextures(1, &tex1);

. . .

glBindTexture(GL_TEXTURE_2D, tex0); // make tex0 texture current
 // and set its parameters

mjb – May 6, 2015 9

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glTexImage2D(GL_TEXTURE_2D, 0, 3, 256, 128, 0, GL_RGB,
 GL_UNSIGNED_BYTE, TextureArray0);

glBindTexture(GL_TEXTURE_2D, tex1); // make tex1 texture current
 // and set its parameters

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glTexImage2D(GL_TEXTURE_2D, 0, 3, 512, 512, 0, GL_RGB,

GL_UNSIGNED_BYTE, TextureArray1);

Then, later on in Display():

glEnable(GL_TEXTURE_2D);

glBindTexture(GL_TEXTURE_2D, tex0);
glBegin(GL_QUADS);
 . . .
glEnd();

glBindTexture(GL_TEXTURE_2D, tex1);
glBegin(GL_TRIANGLE_STRIP);
 . . .
glEnd();

What is “Binding” All About?

The OpenGL Rendering Context contains all the characteristic information necessary to produce an image
from geometry. This includes transformations, colors, lighting, textures, where to send the display, etc.

The OpenGL term “binding” refers to “attaching” or “docking” (a metaphor which I find to be more visually
pleasing) an OpenGL object to the Context. You can then assign characteristics, and they will “flow” through
the Context into the object.

mjb – May 6, 2015 10

