
This guide is intended to fill the gaps between the Vulkan documentation and the rest of the GLFW

documentation and is not a replacement for either. It assumes some familiarity with Vulkan concepts like

loaders, devices, queues and surfaces and leaves it to the Vulkan documentation to explain the details of

Vulkan functions.

To develop for Vulkan you should install an SDK for your platform, for example the LunarG Vulkan SDK.

Apart from the headers and libraries, it also provides the validation layers necessary for development.

The GLFW library does not need the Vulkan SDK to enable support for Vulkan. However, any Vulkan-

specific test and example programs are built only if the CMake files find a Vulkan SDK.

For details on a specific function in this category, see the Vulkan reference. There are also guides for the

other areas of the GLFW API.

Introduction to the API

Window guide

Context guide

Monitor guide

Input guide

To include the Vulkan header, define GLFW_INCLUDE_VULKAN before including the GLFW header.

#define GLFW_INCLUDE_VULKAN

#include <GLFW/glfw3.h>

If you instead want to include the Vulkan header from a custom location or use your own custom Vulkan

header then do this before the GLFW header.

GLFW: Vulkan guide file:///Y:/GLFW/glfw-3.2.1.bin.WIN64/glfw-3.2.1.bin.WIN64/docs/html...

1 of 5 1/29/2018, 12:56 PM

#include <path/to/vulkan.h>

#include <GLFW/glfw3.h>

Unless a Vulkan header is included, either by the GLFW header or above it, any GLFW functions that take

or return Vulkan types will not be declared.

The VK_USE_PLATFORM_*_KHR macros do not need to be defined for the Vulkan part of GLFW to work.

Define them only if you are using these extensions directly.

If you are linking directly against the Vulkan loader then you can skip this section. The canonical desktop

loader library exports all Vulkan core and Khronos extension functions, allowing them to be called directly.

If you are loading the Vulkan loader dynamically instead of linking directly against it, you can check for the

availability of a loader with glfwVulkanSupported.

if (glfwVulkanSupported())

{

// Vulkan is available, at least for compute

}

This function returns GLFW_TRUE if the Vulkan loader was found. This check is performed by glfwInit.

If no loader was found, calling any other Vulkan related GLFW function will generate a

GLFW_API_UNAVAILABLE error.

Querying Vulkan function pointers

To load any Vulkan core or extension function from the found loader, call glfwGetInstanceProcAddress.

To load functions needed for instance creation, pass NULL as the instance.

PFN_vkCreateInstance pfnCreateInstance = (PFN_vkCreateInstance)

glfwGetInstanceProcAddress(NULL, "vkCreateInstance");

Once you have created an instance, you can load from it all other Vulkan core functions and functions

from any instance extensions you enabled.

PFN_vkCreateDevice pfnCreateDevice = (PFN_vkCreateDevice)

glfwGetInstanceProcAddress(instance, "vkCreateDevice");

This function in turn calls vkGetInstanceProcAddr . If that fails, the function falls back to a platform-

GLFW: Vulkan guide file:///Y:/GLFW/glfw-3.2.1.bin.WIN64/glfw-3.2.1.bin.WIN64/docs/html...

2 of 5 1/29/2018, 12:56 PM

specific query of the Vulkan loader (i.e. dlsym or GetProcAddress). If that also fails, the function

returns NULL . For more information about vkGetInstanceProcAddr , see the Vulkan documentation.

Vulkan also provides vkGetDeviceProcAddr for loading device-specific versions of Vulkan function.

This function can be retrieved from an instance with glfwGetInstanceProcAddress.

PFN_vkGetDeviceProcAddr pfnGetDeviceProcAddr = (PFN_vkGetDeviceProcAddr)

glfwGetInstanceProcAddress(instance, "vkGetDeviceProcAddr");

Device-specific functions may execute a little bit faster, due to not having to dispatch internally based on

the device passed to them. For more information about vkGetDeviceProcAddr , see the Vulkan

documentation.

To do anything useful with Vulkan you need to create an instance. If you want to use Vulkan to render to a

window, you must enable the instance extensions GLFW requires to create Vulkan surfaces.

To query the instance extensions required, call glfwGetRequiredInstanceExtensions.

uint32_t count;

const char** extensions = glfwGetRequiredInstanceExtensions(&count);

These extensions must all be enabled when creating instances that are going to be passed to

glfwGetPhysicalDevicePresentationSupport and glfwCreateWindowSurface. The set of extensions

will vary depending on platform and may also vary depending on graphics drivers and other factors.

If it fails it will return NULL and GLFW will not be able to create Vulkan window surfaces. You can still use

Vulkan for off-screen rendering and compute work.

The returned array will always contain VK_KHR_surface , so if you don't require any additional

extensions you can pass this list directly to the VkInstanceCreateInfo struct.

VkInstanceCreateInfo ici;

memset(&ici, 0, sizeof(ici));

ici.enabledExtensionCount = count;

ici.ppEnabledExtensionNames = extensions;

...

Additional extensions may be required by future versions of GLFW. You should check whether any

extensions you wish to enable are already in the returned array, as it is an error to specify an extension

more than once in the VkInstanceCreateInfo struct.

GLFW: Vulkan guide file:///Y:/GLFW/glfw-3.2.1.bin.WIN64/glfw-3.2.1.bin.WIN64/docs/html...

3 of 5 1/29/2018, 12:56 PM

Not every queue family of every Vulkan device can present images to surfaces. To check whether a

specific queue family of a physical device supports image presentation without first having to create a

window and surface, call glfwGetPhysicalDevicePresentationSupport.

if (glfwGetPhysicalDevicePresentationSupport(instance, physical_device,

queue_family_index))

{

// Queue family supports image presentation

}

The VK_KHR_surface extension additionally provides the

vkGetPhysicalDeviceSurfaceSupportKHR function, which performs the same test on an existing

Vulkan surface.

Unless you will be using OpenGL or OpenGL ES with the same window as Vulkan, there is no need to

create a context. You can disable context creation with the GLFW_CLIENT_API hint.

glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);

GLFWwindow* window = glfwCreateWindow(640, 480, "Window Title", NULL, NULL);

See Windows without contexts for more information.

You can create a Vulkan surface (as defined by the VK_KHR_surface extension) for a GLFW window

with glfwCreateWindowSurface.

VkSurfaceKHR surface;

VkResult err = glfwCreateWindowSurface(instance, window, NULL, &surface);

if (err)

{

// Window surface creation failed

}

It is your responsibility to destroy the surface. GLFW does not destroy it for you. Call

vkDestroySurfaceKHR function from the same extension to destroy it.

GLFW: Vulkan guide file:///Y:/GLFW/glfw-3.2.1.bin.WIN64/glfw-3.2.1.bin.WIN64/docs/html...

4 of 5 1/29/2018, 12:56 PM

Last update on Thu Aug 18 2016 for GLFW 3.2.1

GLFW: Vulkan guide file:///Y:/GLFW/glfw-3.2.1.bin.WIN64/glfw-3.2.1.bin.WIN64/docs/html...

5 of 5 1/29/2018, 12:56 PM

