12/29/2022

1 From the Quick Reference Card 2

(\ [Even though Vulkan is up to 1.3, the most current Vulkan Reference card is version 1.1 |
Vulikan.

Vulkan 1.1 Reference Guide

Vulkan Pipeline Diagram (5]

Data Buffers e Tl e
S

Descriptor Sets

Uniform Buffer

Uniform Texel Buffers

Compute shader

Oregon State
University
Mike Bailey

mib@cs.oregonstate.edu

Storage Bufters

(— Sampled mages
—s

Storage Texel Buffers

Storage Images

are handled by the varous i

7 - -
3 https://www.khronos.org/files/vulkan11-reference-guide.pdf
University University
Computer Graphics Computer Graphics
b —Docamar 26,2022 b Bocarbar 2 2022
Terminology Issues 3 Creating and Filling Vulkan Data Buffers 4

buferUsage
queveFamiyindices
size (byles)

A Vulkan Data Buffer is just a group of contiguous bytes in GPU memory. They
have no inherent meaning. The data that is stored there is whatever you want it
to be. (This is sometimes called a “Binary Large Object”, or “BLOB".)
It is up to you to be sure that the writer and the reader of the Data Buffer are
interpreting the bytes in the same way!

Vulkan calls these things “Buffers”. But, Vulkan calls other things “Buffers”, too,
such as Texture Buffers and Command Buffers. So, | sometimes have taken to memoryType
calling these things “Data Buffers” and have even gone so far as to extend
some of Vulkan’s own terminology:

typedef VkBuffer VkDataBuffer; LogicaDevice. ViAllocatoMomory()_|

bufferMemoryHandle

This is probably a bad idea in the long run.

ey State D State gpuAddress.
University University
Computer Graphics Computer Graphics
o Decerber 26,2022 i ecember 26,2022 |
Creating a Vulkan Data Buffer 5 Allocating Memory for a Vulkan Data Buffer, Binding a 6

Buffer to Memory, and Writing to the Buffer

VkBuffer Buffer; Il or "VkDataBuffer Buffer" VkMemoryRequirements
result = vkGetBufferMemoryReqyirements(LogicalDevice, Buffer, OUT &vmr);
VkBufferCreateInf§_vbci; >

vbci.sType R_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
vbci.pNext = nullptr;

VkMemoryAllocatelnfo Cvmai,

vbciflags = 0; vmai.sType = VK_STRUCT|UR YPE_MEMORY_ALLOCATE_INFO;

vbci.size in bytes >> vmai.pNext = nuliptr;

vbci.usage of: >> vmai.flags = 0;
VK_USAGE_TRANSFER_SRC_BIT vmai.allocationSize = vmr.size;

VK_USAGE_TRANSFER_DST_BIT vmai.memoryTypelndex = FindMemoryThatlsHostVisible();
VK_USAGE_UNIFORM_TEXEL_BUFFER_BIT

VK_USAGE_STORAGE_TEXEL_BUFFER_BIT “or” these bits together

VK_USAGE_UNIFORM_BUFFER_BIT to specify how this

VK_USAGE_STORAGE\ BUFFER_BIT buffer will be used VkDeviceMemory

VK_USAGE_INDEX_BURFER_BIT result = vkAllocateMemory(LogicalDgvige, | ai, PALLOCATOR, OUT &vdm);
VK_USAGE_VERTEX_BUFFER_BIT

VK_USAGE_INDIRECT_BYFFER_BIT result = vkBindBufferMemory(LogicalDgvjce, Buffer, IN vdm, 0); 11 0is the offset

vbci.sharingMode = << one of: >>'
VK_SHARING_MODE_EXCIUSIVE
VK_SHARING_MODE_CONCURRENT

vbci.queueFamilyindexCount = 0;

vbci.pQueueFamilylndices = (const ioNt32_t) nullptr;

result = vkMapMemory(LogicalDevice, IN vdm, 0, VK_WHOLE_SIZE, 0, &ptr);

<< do the memory copy >>
result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &Buffer);

o Dre| result = vkUnmapMemory(LogicalDevice, IN vdm);
TVETSITY N VTSI
Computer Graphics Computer Graphics
iy - Deconter 26,2022 e |

12/29/2022

Finding the Right Type of Memory 7 Finding the Right Type of Memory 8
int int
FindMemoryThatlsHostVisible() FindMemoryThatlsDeviceLocal()
VkPhysicalDeviceMemoryProperties vpdmp; VkPhysicalDeviceMemoryProperties vpdmp;
vkGetPhysicalDeviceMemoryProperties(PhysicalDevice, OUT &vpdmp); vkGetPhysicalDeviceMemoryProperties(PhysicalDevice, OUT &vpdmp);
for(unsigned int i = 0; i < vpdmp.memoryTypeCount; i++) for(unsigned int i = 0; i < vpdmp.memoryTypeCount; i++)
{

VkMemoryType vmt = vpdmp, VkMemoryType vmt = vpdmp. i

3 1
¥ ¥

if((vmt.propertyFlags & MEMORY_PROPERTY_HOST_VISIBLE_|)1=0) if((vmt.propertyFlags ._MEMORY_PROPERTY_DEVICE_LOCAL_|

{ {

return i; return i;

} }

return -1; return -1;

Dregon State Dregon
University University
Computer Graphics Computer Graphics
b _Deconar 26,2022 e |
Finding the Right Type of Memory 9 Memory-Mapped Copying to GPU Memory, Example | 10
VkPhysicalDeviceMemoryProperties vpdm

p;
vkGetPhysicalDeviceMemoryProperties(PhysicalDevice, OUT &vpdmp);

void *mappedDataAddr;

fﬂzﬂr:?rt;fyovpesi vkMapMemory(LogicalDevice, myBuffer.vdm, 0, VK_WHOLE_SIZE, 0, OUT (void *)&mappedDataAddr);
Memory 1: DeviceLocal memcpy(mappedDataAddr, &VertexData, sizeof(VertexData));

Memory 2: HostVisible HostCoherent

Memory 3: HostVisible HostCoherent HostCached vkUnmapMemory(LogicalDevice, myBuffer.vdm);

Memory 4: DevicelLocal HostVisible HostCoherent
Memory 5: Devicelocal

4 Memory Heaps:

Heap 0: size = 0xdbb00000 DeviceLocal
Heap 1: size = 0xfd504000

Heap 2: size = 0x0d600000 DeviceLocal
Heap 3: size = 0x02000000 DeviceLocal

These are the numbers for the Nvidia AG000 cards

2 Dregon State
University University
Computer Graphics Computer Graphics
i - Decamber 26, 2022 e |
Memory-Mapped Copying to GPU Memory, Example II " Sidebar: The Vulkan Memory Allocator (VMA) 12

struct vertex *vp;
The Vulkan Memory Allocator is a set of functions to simplify your view of allocating
vkMapMemory(LogicalDevice, IN myBuffer.vdm, 0, VK_WHOLE_SIZE, 0, OUT (void *)&vp); buffer memory. | am including its github link here and a little sample code in case you
want to take a peek.

for(inti = 0; i < numTrianglesInObjFile; i++) /I number of triangles
https:/github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator

for(intj=0;j<3;j++) 11 3 vertices per triangle
This repositoryalso includes a smattering of documentation.
vp->position = gim::vec3(...);
vp->normal = glm::vec3(. ;
vp->color = gim:vec3(...);
vp->texCoord = glm:vec2(. .
VpH+;

See our class VMA noteset for more VMA details

}

vkUnmapMemory(LogicalDevice, myBuffer.vdm);

DregonState

versity Iversity
Computer Graphics Computer Graphics
o - Decerber 26,2022 b _Decenter 26,2022

12/29/2022

Sidebar: The Vulkan Memory Allocator (VMA)

#define VMA_IMPLEMENTATION
#include “vk_mem_alloc.h”

VkBufferCreatelnfo vbei;

VmaAllocationCreatelnfo vaci;
vaci.physicalDevice = PhysicalDevice;
vaci.device = LogicalDevice;
vaci.usage = VMA_MEMORY_USAGE_GPU_ONLY;

VmaAllocator y
vmaCreateAllocator(IN &vaci, OUT &var);

VkBuffer
VmaAllocation

Buffer;
van;
vmaCreateBuffer(IN var, IN &vbci, IN &vaci, OUT &Buffer. OUT &van, nullptr);

void *mappedDataAddr;
vmaMapMemory(var, van, OUT &mappedDataAddr);

memcpy(mappedDataAddr, &VertexData, sizeof(VertexData));

vmaUnmapMemory(var, van);

T
Oregon State

University
Computer Graphics

See our class VMA noteset for more VMA details

mib — Docormbor 26, 2022

Something I've Found Useful 14

| find it handy to encapsulate buffer information in a struct:

typedef struct MyBuffer
{
VkDataBuffer buffer;
VkDeviceMemory vdm;
VkDeviceSize size; /l'in bytes
} MyBuffer;
/I example:
MyBuffer MyObjectUniformBuffer;

It's the usual object-oriented benefit — you can pass around just one
data-item and everyone can access whatever information they need.

It also makes it impossible to accidentally associate the wrong
VkDeviceM y and/or VkDeviceSize with the wrong data buffer.

nState

University
Computer Graphics

b - Dacenbar 26, 2022 |

Initializing a Data Buffer

It's the usual object-oriented benefit — you can pass around just one
data-item and everyone can access whatever information they need.

VkResult
Init05DataBuffer(VkDeviceSize size, VkBufferUsageFlags usage, OUT MyBuffer * pMyBuffer)
{
vbci.size = pMyBuffer->size = size;
result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &pMyBuffer->buffer);

pMyBuffer->vdm = vdm;

Oregon State

University
Computer Graphics

mib — Decerber 26, 2022

Here are C/C++ structs used by the Sample Code to hold some uniform variables'é

struct sceneBuf

gim:: matd.

struct objectBut
{

gim: matd
gim: matd

uProjection;
View,

uSceneOrient:
uLightPos:
uLighGoior.
ULIGaKKS:
uTirme:

uModet
UNormal;
uClor,
UShininess:

The uNormal is set to:

glm::inverseTranspose(uView * uSceneOrient * uModel)

mats uProjection
ma uview
mad uSceneOnent
veod uLightPos;
veod uLightColor:
vecd ulightaKaKs:
foat wTime;

) Scene;

matd uModel;
matd ubormal
vecd wColor,
foat uShininess.
}Object.

Eayoutl $10140, S8t = 1, binding = 0) unorm seeneBul
{

Iayout{ 51140, set = 2, binding = 0) uniform objectBul
{

Computer Graphies

Here’s the associated GLSL shader code to access those uniform variables:

transformed by the uNormal

In the vertex shader, each object vertex gets transformed by:
uProjection* uView * uSceneOrient * uModel

In the vertex shader, each surface normal vector gets

b Decerter 26,2022 |

Filling those Uniform Variables

const float EYEDIST = 3.0f;

const double FOV = gIm:radians(60.); // field-of-view angle in radians
glm::vec3 eye(0.,0.,EYEDIST);

gim::vec3 look(0.,0.,0.
glm::vec3 up(0.,1.,0.);

ive(FOV, ble)Height, 0.1, 1000.);
Il account for Vulkan’s LH screen coordinate system
glm::lookAt(eye, look, up);

gimzmatd(1.);

Scene.uProjection
Scene.uProjection[1][1]
Scene.uView
Scene.uSceneOrient

Object.uModelOrient = gim::mat4(1.); 11 identity
Object.uNormal = glm::inverseTranspose(Scene.uView * Scene.uSceneOrient * Object.uModel)

This code assumes that this line:
#define GLM_FORCE_RADIANS

is listed before GLM is #included!

Oregon State

Computer Graphics

b - Decerrbor 26, 2022

" phyButferovdm = vim;
This C struct is holding the original
data, written by the application.
T Moy,
ffs,a, Copy The Data Bufferin GPU memory is
tion

struct objectBuf

Object;

The Parade of Buffer Data

MyBuffer

MyObjectUniformBuffer;

The MyBuffer does not hold any actual data itself. It
just information about what is in the data buffer

" vbci sizm = phyButter-»size = size;

n
InitOSDataBufter(VkDovicaSize 2o, VhButerisagsFlags usags, QLT MyBuer pMyBIter)
{

" rosut = CroatoButr (LogialDevic, IN bvoci, PALLOCATGR, OLT &phiyBufter->buter)

holding the copied data. It is

readable by the shaders

bpoct uModelOriont = gim-math{ 1.),

W iderty
u

Qboct uNormai

DregonState

Computer Graphics

uniform objectBuf Object;

matd
mata
wecd

float
} Ctject,

ayout{ 514140, set = 2, binding = 0) unform objecte]
{

uModel,
uNormal

iColor
uShininess;

12/29/2022

Filling the Data Buffer

typedef struct MyBuffer
{

VkDataBuffer buffer;
VkDeviceMemory wim;
VkDeviceSize size; /finbytes
} MyBuffer;
i example:
MyBuffer m
Inito5UniformBuffer(sizeof(Object), ouT bjectUniformBuffer);

Fillo5DataBuffer(MyOb}AUniformBu fer, IN (void *) &Object);

struct objectBuf

uShininess;

Creating and Filling the Data Buffer — the Details

VkResult
Init05DataBuffer(VkDeviceSize size, VkBufferUsageFlags usage, OUT MyBuffer * pMyBuffer)

VkResult result

vbei.size = pMyBuffer->size
vbci.usage = usage;
vbcisharingMode = VK_SHARINGNODE_EXCLUSIVE;
Vbci.queueFamilylndexCount = 0;
vbei.pQueueFamilylndices >_t*)nullptr;
result = vkCreateBuffer (LogicalDevice, IN &bci, PALLOCATOR, OUT &pMyBuffer->buffer);

VkMemoryRequirements
VkGetBufierMemoryRequirements(JiodTcaDevice, IN pMyBufter->bufter, OU

Z >

REXTYPE_MEMORY_ALLOCATE_INFO;

Fumr), I fills vmr

VkMemoryAliocatelnfo
vmai.sType = VK_STRUG;
vmai.pNext = nullpt
vmai.allocationSize = viirsize;

mai Typelndex = Fi

VkDeviceMemory
result = vkAllocateMemor
pMyBuffer->vdm = vff;

result = vkBindBufferMemory(LogicalDevice, pMyBuffer->buffer, IN vdm, OFFSET_ZERO);
retum result;
of }

“onpurer-rrapr

Oregon S
University
Computer Graphics
o —Dacenber 26,2022
Creating and Filling the Data Buffer — the Details 21
VkResult

Fillo5DataBuffer(IN MyBuffer myBuffer, IN
{

I the size of the data had better match e size that was used to Init the buffer!

void * pGpuMemory;
vkMapMemory(LogicalDevice,

myBuffer.vdm, 0, VK_WHOLE_SIZ| oUT &pGpuMemory 1D

0°and 0 are offset and
memcpy(pGpuMemory, data, (size_t)myBuffer.size);

vkUnmapMemory(LogicalDevice, IN myBuffer.vdm);
return VK_SUCCESS;

Remember - to Vulkan and GPU memory, these are just bits. It is up to you to
handle their meaning correctly.

Oregon State

University
Computer Graphics

20

b —Dacenbar 26, 2022 |

