(Vu iKan.

Introduction

Oregon State
University
Mike Bailey

@ ®®© mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

Oregon State
University
Computer Graphics
Intro.pptx mjb — June 26, 2020

Acknowledgements

Ali Alsalehy
Natasha Anisimova
Jianchang Bi
Christopher Cooper
Richard Cunard
Braxton Cuneo
Benjamin Fields
Trevor Hammock
Zach Lerew

Victor Li

Alan Neads

Raja Petroff

Bei Rong
Lawrence Roy

Lily Shellhammer
Hannah Solorzano
Jian Tang

Glenn Upthagrove
Logan Wingard

Oregon State
University
Computer Graphics

First of all, thanks to the inaugural class of 19
students who braved new, unrefined, and just-
in-time course materials to take the first
Vulkan class at Oregon State University —
Winter Quarter, 2018. Thanks for your
courage and patience!

G

E‘

Oregon State
University

Second, thanks to NVIDIA for all
of their support!

NVIDIA.

Third, thanks to the Khronos Group for the
great laminated Vulkan Quick Reference
Cards! (Look at those happy faces in the
photo holding them.)

KHRCONOS

GROUP

mjb — June 26, 2020

History of Shaders 3

2004: OpenGL 2.0 / GLSL 1.10 includes Vertex and Fragment Shaders

2008: OpenGL 3.0 / GLSL 1.30 adds features left out before

2010: OpenGL 3.3 / GLSL 3.30 adds Geometry Shaders

2010: OpenGL 4.0 / GLSL 4.00 adds Tessellation Shaders

2012: OpenGL 4.3 / GLSL 4.30 adds Compute Shaders

2017: OpenGL 4.6 / GLSL 4.60

1R
There is lots more detail at:
B8

Oi’ngHSF;te https://www.khronos.org/opengl/wiki/History of OpenGL
niversi
Computer Graphics

mjb — June 26, 2020

History of Shaders 4

2014: Khronos starts Vulkan effort

2016: Vulkan 1.0

2016: Vulkan 1.1

2020: Vulkan 1.2

There is lots more detail at:
Elg,

Oregon State https://en.wikipedia.org/wiki/Vulkan (API)
University
Computer Graphics

mjb — June 26, 2020

Everything You Need to Know is Right Here ... Somewhere

sicColorBlendFactor S e =
wmethmg TronsfOfmafon .
StaiEs modeivlew

é mformatlc')n =

rm ry
n:Ie e

J S = driver. erices r

QE'W*

Command
e %’BUﬁerSth'”gS

it 2 \ f‘f‘ t rmes
} 5 Shadet{‘} ©=six D13

,_./ ,B uffer S used

). 2 . ’ " GLsL unique
X l man # lot ; :

h 1 1\;r1| = i
af# lee final gets call 2% Eieni g = ,_'." et 3T ' =
Say 5

ayou i

i
-\"‘-
created friamic =

coordln_atés

unctlcns

mjb — June 26, 2020

Top Three Reasons that Prompted the Development of Vulkan 6

1. Performance
2. Performance

3. Performance

Vulkan is better at keeping the GPU busy than OpenGL is. OpenGL drivers need
to do a lot of CPU work before handing work off to the GPU. Vulkan lets you get
more power from the GPU card you already have.

This is especially important if you can hide the complexity of Vulkan from your
customer base and just let them see the improved performance. Thus, Vulkan

has had a lot of support and interest from game engine developers, 3™ party
software vendors, etc.

<o As an aside, the Vulkan development effort was originally called “gINext”, which
created the false impression that this was a replacement for OpenGL. It's not.
B8

Oregon State
University
Computer Graphics
mjb — June 26, 2020

OpenGL 4.2 Pipeline Flowchart 7

~,
OpenGL 4.2 Pipeline Overview
Transform
% Tessellation Feedback
Processing
Skip draw Ma primitive generated No stream genarated
A
Condtianal Samples (Tesseliation Y\ (rimitive Processing &
Rendering Gu
(2.18) ery Invocations
Skip draw :
Ml Transfol
Geom| m
Per-patch data smmga} Faedback Object
I Transform
Feadback Buffer
Element Aray | |- Tess Control Primilive) Primitives = 0
Buffer (2.9.7) Shading Generalion
(2.12.1) (2.12.2)
Indirect Draw Primitive Primittve Count Primltive
Buffer (2.9.8) Per-paich data Assembly Query (2.18) Clipping (2.20)
Transform
Feedback Perspactive
Primitives Division
Written (2.18)
N0 parspective
= | >
stream_id >0 stream_id =0
&)
. e T J
(Rastenze Y 5 gi F g ™ Processing snading (GLSL specification)
Anglaand Exponential Functions
FrameBufler F";‘* ?‘f;":’f"qé‘. :’“’"‘:‘:n Blending {4.1.7) Fé“ F"’.":f‘ff ([®2)]
Obisct (4.4) sl ing (2.10) Objact (%4} Functions (8.
Floating-point pack
Clipped Diegard Common Functions and unpack Functions:
pat (8.3) (8.4}
9 Selecting
[Buffers for J Geometry mea] @.m Flwpiiaing {&SD
2= Ry
Veclor Ineger Functiona
Unifoern buffer Funclions (8.7) (8.8
Fine Canirol of
buffer updates Atomic-Counter
4.2.2) Textura Function (8.9) Functions {8.10)
[5"‘:_“:';'“ e Fragment Processing
811) Functions (8.12)
Muttisample Read and copy
Fragment O, 2
@.1.3) pes) [Nwe functions (8. 13] [Poridrind
Shader Memary
0 Fail Atomic Counter Cuntml Functions Control Functions
Add. Multisamgle 815, 18]
: FrameBufier
Frag Operations
@1.11) } Sl
C . A N v 7
om

mjb — June 26, 2020

Why is it so important to keep the GPU Busy? 8

NVidia Titan V Specs vs. Titan Xp, 1080 Ti

Titan V Tesla V100 Tesla P100 GTX1080Ti GTX 1080
GPU GV100 GV100 GP100 Cut-Down Pascal GP102 Pascal GP104-400 Pascal
Transistor Count 21.1B 21.1B 15.3B 12B 7.2B
Fab Process 12nm FFN 12nm FFN 16nm FinFET 16nm FINFET 16nm FinFET
CUDA Cores | Tensor Cores 5120/640 5120/ 640 358410 358410 2560170
TMUs 320 224 224 160
ROPs ? 9 (?) 88 64
Core Clock 1200MHz 1328MHz - 1607MHz
Boost Clock 1455MHz 1370MHz 1480MHz 1600MHz 1733MHz
FP32 TFLOPs 15TFLOPs 14TFLOPs 10.6TFLOPs ~11.4TFLOPs 9TFLOPs
Memory Type HBM2 HBM2 HBM2 GDDR5X GDDR5X
Memory Capacity 12GB 16GB 16GB 11GB 8GB
Memory Clock 1.7Gbps HBM2 1.75Gbps HBM2 ? 11Gbps 10Gbps GDDR5X
Memory Interface 3072-bit 4096-bit 4096-bit 352-bit 256-bit
Memory Bandwidth 653GB/s 900GB/s ? ~484GBs 320.32GB/s

Total Power Budget (" TDP") 250W 250W 250w 180W

1x 8-pin 1x 8-pin
1x 6-pin : 1x 6-pin
Release Date 12/07/2017 4Q16-1Q17 TBD 52712016

Power Connectors 1x 8-pin

Reference: $700
Release Price $3000 $10000 $700 MSRP: $600
Now: $500

The nVidia Titan V graphics card is not targeted at gamers, but rather at scientific and machine/deep leaming applications. That does not,
however, mean that the card is incapable of gaming, nor does it mean that we can't extrapolate future key performance metrics for Volta.
The Titan V is a derivative of the earlier-released GV100 GPU, part of the Tesla accelerator card series. The key differentiator is that the Titan
V ships at $3000, whereas the Tesla V100 was available as part of a $10,000 developer kit. The Tesla V100 still offers greater memory
capacity by 4GB — 16GB HBM2 versus 12GB HBM2 — and has a wider memory interface, but other core features remain matched or nearly
matched. Core count, for one, is 5120 CUDA cores on each GPU, with 640 Tensor cores (used for Tensorflow deep/machine learmning
workloads) on each GPU.

mjb — June 26, 2020

Who was the original Vulcan? 9

From WikiPedia:

“Vulcan is the god of fire including the fire of volcanoes,
metalworking, and the forge in ancient Roman religion and myth.
Vulcan is often depicted with a blacksmith's hammer. The
Vulcanalia was the annual festival held August 23 in his honor.
His Greek counterpart is Hephaestus, the god of fire and
smithery. In Etruscan religion, he is identified with Sethlans.
Vulcan belongs to the most ancient stage of Roman religion:
Varro, the ancient Roman scholar and writer, citing the Annales
Maximi, records that king Titus Tatius dedicated altars to a series
of deities among which Vulcan is mentioned.”

https://en.wikipedia.org/wiki/Vulcan_(mythology)

Oregon State
University

Computer Graphics
mjb — June 26, 2020

Why Name it after the God of the Forge? 10

mjb — June 26, 2020

Who is the Khronos Group? 11

The Khronos Group, Inc. is a non-profit member-funded industry
consortium, focused on the creation of open standard, royalty-free
application programming interfaces (APIs) for authoring and accelerated
playback of dynamic media on a wide variety of platforms and devices.
Khronos members may contribute to the development of Khronos API
specifications, vote at various stages before public deployment, and
accelerate delivery of their platforms and applications through early
access to specification drafts and conformance tests.

CC JLLADA. Dataformat (EGL. RNEE

@QronXR) OlpenVX. GyeL

Oregon State
University
Computer Graphics

mjb — June 26, 2020

Playing “Where’s Waldo” with Khronos Membership 12

PROMOTER MEMBERS AMD“'l Apple ARM GO gle
KHRCONOS QD Q3 (intel) NOKIA QuALCOMM

GROUFP HUAWEI imagination

Over 100 b Idwid @D
o e SAMSUNG SONY [VALVE m,%A_ Psiicon

%l &

=
- 3D Incorporated 0 A\MOTIVE "‘ ’Q> m amazon com AL AxeLL corrPoraTiON AXIS‘ % ;:’:' BINOMIAL
Adobe “COETE pinecone

B]_ZZQBB mncou @BRENWILL cadence CAN®NICAL CEVA (44 ©codeplay’ CrQ (

|||||||||||||

co = e
Coordinate ', RE 35 passauLT catAPULT |:ll'|'ll=° ETIRI =/ dﬂu;c " HARMAN lrl.-slplllt\h?m!t AY HveEREAL

e . Digital p— AL N
Qigalia Ipeacteor musmzense PRI gkDAB KOU @ LG 4520 Lok);
matrox MAXON LY GRSAIRY BE Microsofy 8 :1-::;:0“ @ Movidius oz Ila M owmen
NEC MO © ocuus D([E] B Panasonic PIXAR BI11T*

ON Somiconductor

o 3 STREAM
"é RAZ=R 0 RENESAS Rocke, e//ns tlwémgl;lwﬁmumv Seﬂs‘bs £Sfﬁcon Studio ﬁ #3SPREADTRUM COMPUTING
WEe TAMPERE TECHNISCHE : " 3 e
G SYNOPSYS TAkumi £¥ e B W0, @8 thinci M@sicon tobjl TOSHIBA umbirn
| s () vmware € XILINX. Q) zSpace

' < "-"":‘.f.' U f Universit
Qunity (1 Bluney BTN WY vy
@&m

Oregon State
University
Computer Graphics

mjb — June 26, 2020

Who’s Been Specifically Working on Vulkan? 13

- BROADCOM

imagination - NVIDIA.

<

NVIDIA.

Oregon State
University
Computer Graphics

imagination CRYZNGINZ
LUN Am MoltenVK OThe Forge

Sascha
Willems

@ UXZDEED
X

UNREAL
encine

mjb — June 26, 2020

Vulkan 14

* Originally derived from AMD’s Mantle API

» Also heavily influenced by Apple’s Metal APl and Microsoft's DirectX 12
» Goal: much less driver complexity and overhead than OpenGL has

» Goal: much less user hand-holding

» Goal: higher single-threaded performance than OpenGL can deliver

» Goal: able to do multithreaded graphics

* Goal: able to handle tiled rendering

Urasa

Oregon State
University
Computer Graphics
mjb — June 26, 2020

Vulkan Differences from OpenGL 15

* More low-level information must be provided (by you!) in the application, rather
than the driver

« Screen coordinate system is Y-down

* No “current state”, at least not one maintained by the driver

« All of the things that we have talked about being d?/p’teca«ted in

OpenGL are really deprecated in Vulkan: built-in pipeline

transformations, begin-end, fixed-function, etc.
* You must manage your own transformations.
» All transformation, color and texture functionality must be done in shaders.

« Shaders are pre-"half-compiled” outside of your application. The compilation
process is then finished during the runtime pipeline-building process.

-
Oregon State
University
Computer Graphics
mjb — June 26, 2020

The Basic OpenGL Computer Graphics Pipeline, OpenGL-style

Vertex,
Normal,
Color

!

MC wWC

Transform

I Model ‘ —

Framebuffer

(v

Oregon State
University
Computer Graphics

EC EC
View —p| Per-vertex — Projection >
Transform Lighting Transform
\ 4
‘_ Rasterization
Fragment
: <
Processing,
Texturing,
Per-fragment
Lighting

16

MC = Model Vertex Coordinates
WC = World Vertex Coordinates
EC = Eye Vertex Coordinates

20

T o ooTT

=y

=

The Basic Computer Graphics Pipeline, Shader-style

17

gl_Vertex, gl_ModelViewMatrix,
gl_Normal, gl_ProjectionMatrix,
gl_Color Per-vertex in variables gl_ModelViewProjectionMatrix Uniform Variables

| l |

l

MC WC EC EC gl_Position,
i Model — View > Per-vertex > Projection Per-vertex:ut variables
. Transform Transform Lighting Transform
Vertex Shader
\ 4

Fragment Shader

Rasterization

Fragment +
; <
Framebuffer gl_FragColor T:;?f.;::gg' Per-fragment in variables
u] ’
| Per-fragment
Lighting <= Uniform Variables

(v

Oregon State
University

MC = Model Vertex Coordinates
WC = World Vertex Coordinates
Computer Graphics EC = Eye Vertex Coordinates

V]

The Basic Computer Graphics Pipeline, Vulkan-style

Per-vertex in variables

}

18

Uniform Variables

|

Vertex Shader

gl_Position,
Per-vertex out variables
>

v

Framebuffer

(v

Oregon State
University
Computer Graphics

Output color(s)

Rasterization

Fragment Shader

< A 4
Per-fragment in variables

<¢—= Uniform Variables

mjb — June 26, 2020

Moving part of the driver into the application

Complex drivers lead to
driver overhead and
cross vendor
unpredictability

Error management is
always active

Driver processes full
shading language source

Separate APIs for
desktop and mobile
markets

Oregon State
University
Computer Graphics

CrenGL.

(Vu liKan.

Application

Traditional
graphics
drivers include
significant
context, memory
and error
management

Application
responsible for
memory
allocation and
thread
management to
generate
command buffers

Direct GPU
Control

GPU

GPU

Khronos Group

Simpler drivers for low-
overhead efficiency and
cross vendor portability

Layered architecture so
validation and debug
layers can be unloaded
when not needed

Run-time only has to
ingest SPIR-V
intermediate language

Unified API for mobile,
desktop, console and
embedded platforms

mjb — June 26, 2020

Vulkan Highlights: Command Buffers

« Graphics commands are sent to command buffers
« E.g., vkCmdDoSomething(cmdBuffer, ...

* You can have as many simultaneous Command Buffers as you want

20

- Buffers are flushed to Queues when the application wants them to be flushed

« Each command buffer can be filled from a different thread

CPU Thread Cmd buffer
CPU Thread Cmd buffer
Pov: CPU Thread Cmd buffer
[/ et
I CPU Thread Cmd buffer
Oregon State
University

Computer Graphics

mjb — June 26, 2020

Vulkan Highlights: Pipeline State Objects 21

* In OpenGL, your “pipeline state” is the combination of whatever your current
graphics attributes are: color, transformations, textures, shaders, etc.

« Changing the state on-the-fly one item at-a-time is very expensive

« Vulkan forces you to set all your state variables at once into a “pipeline state object”
(PSO) data structure and then invoke the entire PSO at once whenever you want to
use that state combination

» Think of the pipeline state as being immutable.

« Potentially, you could have thousands of these pre-prepared pipeline state objects

(v

Oregon State
University

Computer Graphics
mjb — June 26, 2020

Vulkan: Creating a Pipeline

which stage (VERTEX, etc.)

VkSpecializationInfo

VkShaderModule

\

VkPipelineShaderStageCreatelnfo

binding
stride :
inputRate Io_catllon
binding

format

‘/ offset

VkVertexInputBindingDescription

pd

VkVertexinputAttributeDescription

/

VkGraphicsPipeIineCreateInf\

VkPipelineColorBlendAttachmentState

/// VkPipelineVertexInputStateCreatelnfo Topology
Shader stages «— VkPipelinelnputAssemblyStateCreatelnfo /
Vertexlnpu’[State / — -
InputAssembly State 4| Viewport | m,inlii)e[’)th’
Tesselation State | — VkViewportStateCreatelnfo [« P maxDo tr;
Viewport State «—| \ P
Rasterization State €—~—{____ | . . Scissor
MultiSample State VkPipelineRasterizationStateCreatelnfo \ \ offset
DepthStencil State €—_ T i extent
ColorBlend State ——— VkPipelineDepthStencilStateCreatelnfo ocl:u”m?\;ljc?de
Dynamic State P fr)(/)%tFace
Pipeline layout . .
RenderPass lineWidth
basePipelineHandle
basePipelinelndex
depthTestEnable
\ VkPipelineColorBlendStateCreatelnfo depthWriteEnable
A4 depthCompareOp

stencilTestEnable
stencilOpStateFront
stencilOpStateBack

vkCreateGraphicsPipeline()

Oregon State
University
Computer Graphics

\ VkPipelineDynamicStateCreatelnfo

\

Array naming the states that can be set dynamically

blendEnable

srcColorBlendFactor
dstColorBlendFactor

colorBlendOp
srcAlphaBlendFactor
dstAlphaBlendFactor

alphaBlendOp

colorWriteMask

22

mjb — June 26, 2020

Querying the Number of Something

23

uint32_t count;
result = vkEnumeratePhysicalDevices(Instance, OUT &count, OUT (VkPhysicalDevice *)nullptr);

VkPhysicalDevice * physicalDevices = new VkPhysicalDevice[count |;
result = vkEnumeratePhysicalDevices(Instance, OUT &count, OUT physicalDevices);

This way of querying information is a recurring OpenCL and Vulkan pattern (get used to it):

How many total Where to
there are put them
result = vkEnumeratePhysicalDevices(Instance, &count, nullptr);
result = vkEnumeratePhysicalDevices(Instance, &count, physicalDevices);
Oregon State
University

Computer Graphics

mjb — June 26, 2020

Co

Vulkan Code has a Distinct “Style” of Setting Information in structs 24
and then Passing that Information as a pointer-to-the-struct

VkBufferCreatelnfo
vbci.sType = VK_STRU
vbci.pNext = nullptr;
vbci.flags = 0;
vbci.size = << buffer size in bytes >>
vbci.usage = VK_USAGE_UNIFORM_B .
vbci.sharingMode = VK_SHARING_MODE_BEXCLUSIVE;
vbci.queueFamilylndexCount = 0O;
vbci.pQueueFamilylndices = nullptr;

TYPE_BUFFER_CREATE_INFO;

VK _RESULT result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &Buffer);

VkMemoryRequirements vmr;

result = vkGetBufferMemoryRequirements(LogicalDevice, Buffer, OUT &vmr); I fills vmr

VkMemoryAllocatelnfo
vmai.sType = VK_STRUCTURE_XYPE_MEMORY_ALLOCATE_INFO;
vmai.pNext = nullptr;
vmai.flags = 0;
vmai.allocationSize = vmr.size;
vmai.memoryTypelndex = 0;

result = vkAllocateMemory(LogicalDevice, IN &vmai, PALLOCATOR@MatrixBuﬁerMemowH@;

result = vkBindBufferMemory(LogicalDevice, Buffer, MatrixBufferMemoryHandle, 0);

PUTCT OTapIrcs
mjb — June 26, 2020

Vulkan Quick Reference Card — | Recommend you

Oregon State
University

Vulkan 1.1 Reference Guide

Vulkan® iz a graphics and compute API consisting of procedures and
functions to specify shader programs, compute kernels, objects,
and operations involved in producing high-quality graphical images,
specifically color images of three-dimensional objects. Vulkan is
also a pipeline with programmable and state-driven fixed-function
stages that are invoked by a set of specific drawing operations.

Specification and additional resources at
www.khronos.org/vulkan

Vuiikan. KHRCONOS

Color coded names as follows: function names and structure names
[n.n.n] Indicates sections and text in the Vulkan API 1.1 Specification.
X3 Indicates a page in this reference guide for more information.

B Indicates reserved for future use.
piNext must either be NULL, or paint to a valid structure which extends the base
structure according to the valid usage rules of the base structure.

Return Codes [2.7.3]

Return codes are reported via VkResult retum values.
Success Codes

Sticcess codes are nan-negatve

VK_SUCCESS VE_NOT_READY
VK_TIMEQUT VIE_EVENT_{SET, RESET]

VK INCOMPLETE VK SUBOFTIMAL KHR
Emor Codes.

Error codesare

negative.
VK_ERROR_OLIT_OF_{HOST, DEVICE} MEMORY
VK_ERROR_{INITIALIZATION, MERAORY_MAP} FAILED
\K_ERROR_DEVICE_LOST

VK_ERROR_{EXTENSION, FEATURE, LAYER]_NOT_PRESENT
VK_ERROR_INCOMPATIBLE_DRIVER
VK_ERROR_TOD_MANY_OBIECTS
\K_ERROR_FORMAT_NOT_SUFPORTED
\/K_ERADR_FRAGMENTED_POOL

\IK_ERROR_OUT_OF POOL MEMORY
VK_ERROR_INVALID_EXTERNAL HANDLE
\IK_ERROR_SURFACE LOST KHR

V/K_ERROR_NATIVE WINDOW._IN_USE KHR
VK_ERROR_OUT_OF_DATE_KHR
\/k_ERROR_INCOMPATIBLE_DISPLAY_KHR

-

Command Function Pointers and Instances [3]

Command Function Pointers [3.1]
PFN_vkVeidFunction vkGetinstanceProcAddr{
Wkinstance instonce, const char* pNome};

PFN kamdFunman vkGetDeviceProcAddr|
Device device, const char* phome]);
Pm_vk\-cmanmun is:
typedef void{VKAPI_PTR® PN wkVisigFanction)(void);

Instances [3.2]
VERzsult vkEnumerateinstanceVersion|
uint32_t* pApiVersion),

VkResult vkCreatelnstance(
const VkinstanceCreatelnfo® pCreateinfo,
const VkAliocationCallbacks* pAliocator,
Vkinstance* pinstonce];

typedef struct VkinstanceCreatelnfo {
VkStructureType sType;
const void® pNext;
Vklnsﬁa[ecrealeﬁags flags; B9
rconst VkApplicationinfo* pAppficationinfo;
wint32 Ienub}edluyerﬂounr
const char* const*® ppEnabiedlayerNames;

uim32_t enabledExtensionCount;

«const char® const* ppEnabledExtensionNomes;
} VkinstanceCreatelnfo;

typedef struct VkApplicationinfo [
VikStructureType sType; 303
«const void* phext;
«const char® pdpplicationName;
uint32_t applicationVersion;
«const char* pEnginchiame;
uint32_t engineVersion;
uint32_t apiVersion;
}VkApplicationinfa;

woid vkDestroyinstance]
VEkinstance instonge,
const V!m\ln:auoncallham‘ pAllocator]; [XE1

Queues [4.3]
typedef struct VkDeviceQueueCreateinfo |
VStructureType sType; 25

«const void* pNexi;
VtDewteQueuenraa(EF\ugsﬂog;
uint32_t queueFamilyindex;
uint32_t queveCount;

Devices and Queues [a]

Physical Devices [4.1]

VikResult vkEnumEraIEthslcaIDevl[eﬂ
Wkinstar
wint32_t I pPﬁysmiDemeCaunz
VkPhysicalDewice" pPhysicalDevices);

wvoid viGet PhysicalDeviceProperties(
WVkPhysicalDevice physicalDevice,
WkPhysicalDeviceProperties® pPrapemes}, [oita)

void vh‘Ge(Ph\rslmlDethMpmeslf
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties2® pPropertics);

typedef struct VkPhysicalDeviceProperties2 {
WVkStructureType sType;
woid* pNext;
WkPhysicalDeviceProperties properties, A1
1 VkPhysicalDeviceProperties2;
piNext must be NULL or point to one of
ViPhysicalDevicelDProperties 371
ViPhysicalDeviceMaimenance3Froperies [¥1]

VkEhysicalDevicePoint ippingProperdes (2]
VikPhysics|DevieeProtectzdiiemonyProperties [EH
ikPhysiczlDeviceSubgroupProperties E¥

void vkGetPhysicalDeviceQueueFamilyProperties|
VkPhys\mlMlcepnynmmewm
wint32_t* pQueveFamilyPropertyCount,
WkQueteFamilyPropertes®

pQueucFamilyProperties);

woid i iceQueneFamily ies2|
WPhysrcalBevi[a physicaiDevioe,
wint32_t* pQueveFamilyPropertyCount,
WiQueueFamilyProperties2* plueueFamilyProperties);

1ypedef struct VkQueueFamilyProperties {
WkQueueFlags queueFlags;
uint32_t quéveCount,
uint32_t fimestompVoiidBits;
VKEXtEnt3D mmmmqumnsfeernqumy,
1 VkQueuweFamilyProperties;
queuerlags:
VK_OUEUE_X_BIT where Xis GRAPHICS, COMPUTE,
TRANSFER, PROTECTED, SPARSE_BINDING

typedef struct \I'kQueueFiml!vagemes? i
VeStructureType sType; (T3
woid* pNext; YkQueueFamilyProperties
gueveFomilyProperties;
1 VkQueueFamilyPropertiesZ;

Devices [4.2]
VkResult viEnumeratePhysicalDeviceGroups(
Vkinstance instance,
uint32 1* i;thstfD(merupCuum
WkPhysicalDeviceGroupProperties®
pPhysicalDeviceGroupProperties);

typedef struct U‘kPnyytaIDew(eGmuqunemes {
VkStmnureTypeﬂype
void® pNext,
uint32_t phy'um]ﬂew\emanr
VkPhysicalDevice physicolDevices]

VK_MAX_DEVICE_GROUP_SIZE];

VkBeol32 subsetdllocation;
ViPhysicalDeviceGroupProperties;

Device Creation Lﬂ.?.l]

VkResult vkCreateDevi
‘VkPhysicalDevice physicalDevice,
tonst VkDeviceCreatelnfo* pCreatelnfo,
const VkAllocationCalibacks* pAllocator, TFEL
VkDevice® pDevice);

typedef struct ViDeviceCreatelnfo {
VkStructureType sType; [E5
const void* pNext;
VkDeviceCreateFlags flogs; BT
uint32_t queveCreateinfoCou
mnsleDewteQuEueEreatelnfu pQueveCreoteinfos;
uint32_t enabledLoyerCouni
const char* const* ppfnnb!edlﬂyerh'umﬂ
uint32_t enabfedbxtensionCount;
const char* const*

const fioat* pl:
} VkDeviceQueueCreateinfo;
fiags: VK_DEVICE_QUEUE_CREATE_PROTECTED BIT
void vkGetDeviceQueue{VkDevice device,
uint32_t queeFamilyindex, uint32_t queveindex,
VkQueue® pQueue);
void vkGetDeviceQueue2{VkDevice device,
const VkDeviceQueuelnfo2* pQueaeinfo,
VkQueue® pQueue};
typeder struct VkDeviceQueuelnfo? |
VkStructureType sType; (59
«const veid* pNext;
VkDeviceQueueCreateFlags flogs;
uint32_t queveFamilyindex; uint32_t queveindex;
1 VkDeviceQueuelnfo2;
flngs: VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT

Command Buffers [5]
Also ses Command Buffer iferydle dizgram. £33

Command Pools [5.2]

VikResult vkCreateCommandPool(
VkDevice device,
const VkCommandPooiCreatelnfo® pCreatelnfo,
const VkAliocatienCalibacks*® pAllocator, [XE]
VkCommandPool® pCommandPool},

typedef struct VkCommandPoolCreatelnfo |
VkstructureType sType; [E5
mn';l void* pNext;

const VkPhysicalDeviceFeatures* pfnabledFeatures; 301

} VkDeviceCreatelnfo;
phext must be NULL or paint to one of:
VkDeviceGroupDeviceCreatelnfo [£5]
ViPhysicalDevice 168/t StorageFeatures [
VkPhysicalDeviceFaatures? [XT]
VPhysical DeviceMuhtiviewFeatures EXT]
ViPhysicalDeviceProtectedMemornyFeatures [T5
VkPhysicalDeviceSamplerYcborConversionFeatures (X0
VkPhysicalDeviceVariablePoimerfeatures
typedei struct ViDeviceGroupDeviceCreateinio |
VkStructureType sType; (X0
const void® pNext,
uint32, Ipuvnmlﬂevr:\scgun
const VkPhysicalDevice* pFﬂysrrafDeths
} VkDeviceGroupDeviceCreateinfo;

Device Destrumon [4 2.4]

const VkAllocationCalibacks® pAtioaator); (3

CreateFlags fings;
«mﬁl _t queweFamilyindex;
Y VkCemmandPoolCreateinfo;
fings: VK_COMMAND_POOL_CREATE_ X_BIT where Xis
PROTECTED, RESET_COMMAND_BUFFER, TRANSIENT
void vkTrimCommandPool (ViDevice device,
VkCommandPool commandPool,
VkCommandPoolfrimFlags flags); B0
VEkResult vikResetCommandPoal(
VkDevice device, VkCommandPeol commandPoal,
VkCommandPooiResetFlags flogs);
flogs: VK_COMMAND_POOL_RESET_RELEASE -
RESOURCES BIT

void vkDestroyCommandPool{
VkDevice device, VkCommandPool commandPooi,
const VkAlincationCallbacks® pAllacator}; (23]

Continued on next page >

Print This! 25

Computer Graphics https://lwww.khronos.org/files/vulkan11-reference-guide.pdf

mjb — June 26, 2020

Vulkan Quick Reference Card 26

Vulkan 1.1 Reference Guide

Vulkan Pipeline Diagram [9]

I Draw e { indirect Buffer | d Dispatch I
L3
l Input Assembler] index Buffer
: r
| Vertex Shader I‘i Vertex Buffer
|
1 T -
‘ Tessellation Control Shader |<_ : Descriptor Sets i
I
= ; .* oe : Push Constants
[‘ Primitive Generator | 1 [
¥ - Uniform Buffer :
Tessellation Evaluation Shader : Uniform Texel Buffers L +
| —_— C te Shad
5 :1 : sampled Images - Skl
‘ Geometry Shader ii » Storage Buffers e
3 Storage Texel Buffers :! some Vulkan commands specify geometric objects

[to be drawn or computational work to be performed,
» Storage Images b while others specify state controlling how objects
are handled by the various pipeline stages, or control
data transfer between memory organized as images
and buffers. Commands are effectively sent through

I
x
i
i

5

>

o I
i
I
I

[Vertex Post-Processing

- -

[Rasterization

¥ a processing pipeline, either a graphics pipeline or a

r&ﬁy Per-Fragment Tests |« » Depth/Stencil Attachments compute pipeline.
¥ - .

| Fragment Shader F:I"I_ Input Attachments : |§ R RE
¥ [shader Stage

| Late PDSt-F{:ng'IEI'It Tests i"' [storage images

I_ Blending .!: }i Color Attachments I

g5

Oregon State https://www.khronos.org/files/vulkan11-reference-guide.pdf
University
Computer Graphics

mjb — June 26, 2020

Vulkan Highlights: Overall Block Diagram 21

Application
Instance Instance
Physical Physical Physical
Device Device Device
Logical Logical Logical Logical Logical
Device Device Device Device Device
_11 o B 1 T T
Command Buffer
[<}] Q Q Q Q [<}] Q [<}] [<}]
=} = = = = = = =} =}
e B & 2113 = 2119 < Command Buffer
(e} (] (] (] (] (e} (] (e} (e}
Command Buffer
Oregon State

University
Computer Graphics
mjb — June 26, 2020

Oregon State
University
Computer Graphics

Vulkan Highlights: a More Typical Block Diagram

Application

¥

Instance

'

Physical
Device

!

Logical
Device

}

Command Buffer

Command Buffer

f1f

Command Buffer

28

mjb — June 26, 2020

Urasa

Oregon State
University
Computer Graphics

Steps in Creating Graphics using Vulkan

i e o

Create the Vulkan Instance

Setup the Debug Callbacks

Create the Surface

List the Physical Devices

Pick the right Physical Device
Create the Logical Device

Create the Uniform Variable Buffers
Create the Vertex Data Buffers
Create the texture sampler

. Create the texture images

. Create the Swap Chain

. Create the Depth and Stencil Images
. Create the RenderPass

. Create the Framebuffer(s)

. Create the Descriptor Set Pool

. Create the Command Buffer Pool

. Create the Command Buffer(s)

. Read the shaders

. Create the Descriptor Set Layouts

. Create and populate the Descriptor Sets
. Create the Graphics Pipeline(s)

. Update-Render-Update-Render- ...

29

mjb — June 26, 2020

Vulkan GPU Memory 30

* Your application allocates GPU memory for the objects it needs

» To write and read that GPU memory, you map that memory to the CPU
address space

* Your application is responsible for making sure that what you put into that
memory is actually in the right format, is the right size, has the right
alignment, etc.

Urasa

Oregon State
University
Computer Graphics
mjb — June 26, 2020

Vulkan Render Passes 31

« Drawing is done inside a render pass
« Each render pass contains what framebuffer attachments to use

« Each render pass is told what to do when it begins and ends

(v

Oregon State
University
Computer Graphics
mjb — June 26, 2020

Vulkan Compute Shaders 32

« Compute pipelines are allowed, but they are treated as something
special (just like OpenGL treats them)

« Compute passes are launched through dispatches

« Compute command buffers can be run asynchronously

(v

Oregon State
University
Computer Graphics
mjb — June 26, 2020

Vulkan Synchronization 33

» Synchronization is the responsibility of the application

« Events can be set, polled, and waited for (much like OpenCL)
» Vulkan itself does not ever lock — that’s your application’s job
» Threads can concurrently read from the same object

» Threads can concurrently write to different objects

(v

Oregon State
University
Computer Graphics
mjb — June 26, 2020

Vulkan Shaders

e GLSL is the same as before ... almost

» For places it's not, an implied
#define VULKAN 100
is automatically supplied by the compiler

* You pre-compile your shaders with an external compiler

34

* Your shaders get turned into an intermediate form known as SPIR-V (Standard

Portable Intermediate Representation for Vulkan)

» SPIR-V gets turned into fully-compiled code at runtime

 The SPIR-V spec has been public for years —new shader languages are surely being

developed

* OpenCL and OpenGL have adopted SPIR-V as well

External

GLSL Source =— GLSL

Compiler

Develop Time
D

— SPIR-V ——

Advantages:

Compiler in
driver

Run Time

Vendor-specific
code

Cd

Software vendors don’t need to ship their shader source

Software can launch faster because half of the compilation has already taken place

This guarantees a common front-end syntax
This allows for other language front-ends

Your Sample2019.zip File Contains This

hare Wiew

Mame =
NE
Debug
glm
glm.0.9.8.5
glm-0.9.9-a2
[3°] ERRORS.pptx
@: frag.spv
B glfw3.h
BEE glfw3.lib
u glslangValidator
e glslangValidator.exe
u glslangValidator.help
[] Makefile
| puppy.bmp
M puppy.jpg
l puppy0.bmp
| puppy0.jpg
*+ sample.cpp

L

*+ samplesave.cpp

7 Samplesin

¥ Sample.voproj

B Sample.vcxeproj filters
PRy Samplevecxproj.user
" sampled8.pdf

" sampleld. pdf

= samplelpdf

[] sample-camp.comp
E} sample-comp.spy

.E. sample-frag.frag

» This PC » mijb (Wguille\bailey\users) (Y:) » Vulkan » Sample2019 »

Date modified

9/4/2019 234 PM
6/29/2012 10:46 AM

1/10/2018 9:07 AM

12/26/2017 10:48 AM
8/18/2016 5:06 AM
27312017 5:24 PM
B/15/2017 1233 PM
10/6/2017 2:31 PM
1/31/2018 11:41 AM
1/10/2018 8:13 AM

1/10/2018 &:13 AM

1272772017 G:A7 AM
6/29/2018 9:49 AM

1/9/2018 17:28 AM

[t
=
Med
[=]
[==}
Il
e
(]
=)
=

2/18/2018 10:32 AM

Type

File folder
File folder
File folder
File folder
File folder

Microsoft PowerP...

SPV File
C/C++ Header
Otbject File Library
File
Application
HELP File

File

BIMP File

PG File

BMP File

JPG File

C++ Source

C++ Source

Microsoft Visual 5...

VC++ Project

VC++ Project Filte...

Per-User Project O...

Adobe Acrobat D...
Adobe Acrobat D...

Adobe Acrobat D...

COMP File
SPV File
FRAG File

729 KB
2KB

149 KB
240 KB
1,817 KB
1,633 KB
6 KB
1KB
3073 KB
443 KB
3,073KE
455 KB
138 KB
135KB
2KB
7KE
1KB
1KB

24 KB
B3 KB

94 KB
2KB
4KB
2KB

Ug

The “19” refers to the version of Visual Studio, not the year of development.

Comp

ULLI Ul aPlllUD

35

AS AS
mjb — June 26, 2020

