(Vul\i(an@

Introduction

Oregon State
University
Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0

International License

ot
a*.s
Oregon State
Universil
Computer Graphics
Intro.pptx mib - June 26, 2020
Acknowledgements 2

First of all, thanks to the inaugural class of 19
students who braved new, unrefined, and just-
in-time course materials to take the first
Vulkan class at Oregon State University —
Winter Quarter, 2018. Thanks for your
courage and patience!

Oregon State

Ali Alsalehy
Natasha Anisimova
Jianchang Bi
Christopher Cooper
Richard Cunard
Braxton Cuneo
Benjamin Fields
Trevor Hammock
Zach Lerew

Victor Li

University
Alan Neads

Second, thanks to NVIDIA for all)
of their support!
Raja Petroff

Bei Rong NVIBIA.
Lawrence Roy

Lily Shellhammer
Hannah Solorzano
Jian Tang

Glenn Upthagrove
Logan Wingard

Third, thanks to the Khronos Group for the
great laminated Vulkan Quick Reference
Cards! (Look at those happy faces in the
photo holding them.)

Oregon State
University
Computer Graphics

KHRONQSS

mijb — June 26, 2020

12/29/2022

History of Shaders

‘ 2004: OpenGL 2.0 / GLSL 1.10 includes Vertex and Fragment Shaders ‘

| 2008: OpenGL 3.0 / GLSL 1.30 adds features left out before |

| 2010: OpenGL 3.3/ GLSL 3.30 adds Geometry Shaders |

‘ 2010: OpenGL 4.0 / GLSL 4.00 adds Tessellation Shaders ‘

| 2012: OpenGL 4.3/ GLSL 4.30 adds Compute Shaders |

‘ 2017: OpenGL 4.6 / GLSL 4.60

There is lots more detail at:

0{}’350“5}‘“? https://www.khronos.org/opengl/wiki/History of OpenGL
niversi
Computer Graphics

mjb — June 26, 2020

History of Shaders

‘ 2014: Khronos starts Vulkan effort ‘

| 2016:Vukan1.0 |

| 2016:Vulkan 1.1 |

| 2020:Vulkan12 |

There is lots more detail at:

Oregon State https://len.wikipedia.org/wiki/Vulkan (API)
University
Computer Graphics

mijb — June 26, 2020

12/29/2022

Everything You Need to Know is Right Here ... Somewhere 5

mjb — June 26, 2020

Top Three Reasons that Prompted the Development of Vulkan 6

1. Performance
2. Performance

3. Performance

Vulkan is better at keeping the GPU busy than OpenGL is. OpenGL drivers need
to do a lot of CPU work before handing work off to the GPU. Vulkan lets you get
more power from the GPU card you already have.

This is especially important if you can hide the complexity of Vulkan from your
customer base and just let them see the improved performance. Thus, Vulkan
has had a lot of support and interest from game engine developers, 3™ party
software vendors, etc.

As an aside, the Vulkan development effort was originally called “gINext”, which
created the false impression that this was a replacement for OpenGL. It’s not.

Oregon State
University
Computer Graphics

mjb — June 26, 2020

12/29/2022

12/29/2022

OpenGL 4.2 Pipeline Flowchart 7

‘OpenGL 42 Pipeline Overview

Skipcrom

form ()
(> Raswiaaton (>4 Frogment
sing J

Raserisaon dscard

o | — Tessetation (e —
Rendocny Query
@) | < — Vctiors:

§s® swam =)

L
(Geometry
s {8 | e Pl et
5 Bl || =
e T B e |
&= ? —
(" Primitive | PriMmitives = 0

[‘

o

Vertox Shadng

1 1)
|
I A
e ey e
@ [—

= (P
l Mm.wmr Object(4.4) st 1.9)
E~=~1;1 Focues) |1
aon

S .
Transtom
Foodback
primives

{_witen 2 18)

(Tess Evaluation

Shadng
ey J

e >0 sveom 18=0

ing (GLSL specifcation)

j () [ann
)) SEeass)
o ort ok
Common Funcions. [m: mwk Fummns
Input S 4y
WYFW‘,& MalruFmdmi{!ﬂ)
= J)
e
o
[" o [
E-mnrmwmmﬁ)\ Funcimmary) —Caper

—_— ()
=)wamr

i

Scisor Tost
12 Undorm bufer

oo

= ‘
o m,mm\ e
FrameBufier 818

oty

Com

b = June 76, 2020

Why is it so important to keep the GPU Busy? 8

NVidia Titan V Specs vs. Titan Xp, 1080 Ti

Titan ¥ TeslaViod TeslaP100 GTX 1080 Ti GTX 1080
GPU GV100 GV100 GP100 Cut-Down P GP102 Pascal GP104-400 Pascal
Transistor Count 21.18 2118 15.38 128 7.28
Fab Process 120mFFN 120m FFN 160m FinFET 160m FInFET 16nm FinFET
fensor Cores 5120/640 5120/640 958410 358410 256010
320 224 24 160
? 96(7) 88 64
Core Clack 1200MHz 1328MHz 1607MHz
Boost Clock 1455MHz 1370MHz 1480MHz 1600MHz 1733MHz
FP32 TFLOPs 1STFLOPs 14TFLOPs 106TFLOPS ~11 4TFLOPs 9TFLOPs
Memory Type HBM2 HBM2 HBM2 GDDRS5X GDDRSX
Memory Capacity 1268 16G8 1668 11GB 8GB
Memory Clock 1.7Gbps HBM2 1.75Gbps HBM2 7 11Gbps 10Gbps GDDRSX
3072-bit 4096-bit 4096-bit 3s2-bit 256-bit
Memory Bandwidth 653GB/s 900GBIs 7 ~484GBs 320.32GB/s

Total Power Budget ("TDP") 250W 250W 300W 180W

1xB-pin

Power Connectors oo

7 i 1x 8-pin

Release Date 1200712017 4Q16-1Q17 5212016

Reference: $700
Release Price MSRP: $600

Now: $500
The nVidia Ttan s not ta but rather at scientific and machine/deep leaming appiications. That does not,
however, mean that the card is incapable of gaming, nor does it mean that we can't extrapolate future key performance metrics for Volta.
The Titan V is a derivative of the earlier-released GV100 GPU, part of t tor card series. The key differentiator is that the Tan

the Tesla V100 was available as part of a $10,000 developer kit. The Testa V100 still offers greater memory

capacity by 4G HBM s 12GB HBM2 — and has a wider memory interface, but other core matched or nearly
matched. Core count, for one, is 5120 GUDA cores on each GPU, with 640 Tensor cores (used for Tensorflow deep/machine learming
wotkloa

mijb — June 26, 2020

Who was the original Vulcan? 9

From WikiPedia:

“Vulcan is the god of fire including the fire of volcanoes,
metalworking, and the forge in ancient Roman religion and myth.
Vulcan is often depicted with a blacksmith's hammer. The
Vulcanalia was the annual festival held August 23 in his honor.
His Greek counterpart is Hephaestus, the god of fire and
smithery. In Etruscan religion, he is identified with Sethlans.
Vulcan belongs to the most ancient stage of Roman religion:
Varro, the ancient Roman scholar and writer, citing the Annales
Maximi, records that king Titus Tatius dedicated altars to a series
of deities among which Vulcan is mentioned.”

https://en.wikipedia.org/wiki/Vulcan_(mythology)

A==
Oregon State
University
Computer Graphics

mjb - June 26, 2020

Why Name it after the God of the Forge? 10

Drego State
University
Computer Graphi

mjb — June 26, 2020

12/29/2022

Who is the Khronos Group? 1

The Khronos Group, Inc. is a non-profit member-funded industry
consortium, focused on the creation of open standard, royalty-free
application programming interfaces (APIs) for authoring and accelerated
playback of dynamic media on a wide variety of platforms and devices.
Khronos members may contribute to the development of Khronos API
specifications, vote at various stages before public deployment, and
accelerate delivery of their platforms and applications through early
access to specification drafts and conformance tests.

CC JLLADA. DataFormat EGL.

OpenVX.. - @CL

Oregon State
University
Computer Graphics

mjb — June 26, 2020

Playing “Where’s Waldo” with Khronos Membership 12
PROMOTER MEMBERS AMD:' App'e ARM GO g|e
KHROS N O S \"’ Ou| intel) NOKIA QUuALcomw

HUAWE! Imagination
Over 100 members worldwide

<
Any company is welcome to join SI\MSU NG SONY V A LV E nv%A_ @Slﬂcon

BINOMIAL

N
{%&‘:ﬁ’iﬁ:?:: : Fsesssapr aAPULT o= ':ETJ:‘!

AN
d‘"’"‘ HARMAN JHITACHL W nvpereat

A
_‘Llnaro Lg ‘“""RB

) igalia [P ks ez Pa

STREA

=R O Renesas Ao Ca//'ns :1é " 3ensiCS & siicon Studio ﬁ EASPREADTRUM Contriiine
@ SYNOPSYS' FAkumi $5¥ e :
unity . Buwis TN @waﬁaw °

Oregon State
University
Computer Graphics

@i e @vmware £XILNX. O #space

mijb — June 26, 2020

12/29/2022

Who’s Been Specifically Working on Vulkan? 13

AMDZ1 QI #eroancom

CRYZNGINZ

@ (LUNA i MoltenVK OT'\E Forge @
NVIDIA.

sourc’é’ i @ unity

TORQUE

e
@ Ux3DND N

UNREAL XENKDO

Oregon State
Universil .
Computer Graphics
mjb — June 26, 2020

Vulkan 14

» Originally derived from AMD’s Mantle API

» Also heavily influenced by Apple’s Metal API and Microsoft's DirectX 12
» Goal: much less driver complexity and overhead than OpenGL has

» Goal: much less user hand-holding

» Goal: higher single-threaded performance than OpenGL can deliver

» Goal: able to do multithreaded graphics

» Goal: able to handle tiled rendering

University
Computer Graphics

mjb — June 26, 2020

12/29/2022

12/29/2022

Vulkan Differences from OpenGL 15

* More low-level information must be provided (by you!) in the application, rather
than the driver

« Screen coordinate system is Y-down

* No “current state”, at least not one maintained by the driver

+ All of the things that we have talked about being d@pma«ted in

OpenGL are really deprecatEd in Vulkan: built-in pipeline
transformations, begin-end, fixed-function, etc.

* You must manage your own transformations.
« All transformation, color and texture functionality must be done in shaders.

» Shaders are pre-"half-compiled” outside of your application. The compilation
process is then finished during the runtime pipeline-building process.

=
Oregon State
Universil
Computer Graphics

mjb — June 26, 2020

The Basic OpenGL Computer Graphics Pipeline, OpenGL-style 16
Vertex,
Normal,
Color
MC wc EC EC
Model — View | Per-vertex —_— Projection >
Transform Transform | Lighting Transform
y
Rasterization]
Fragment B s
| Processing,
| Framebuffer Texturing,
| Per-fragment
Lighting
Orcmnttas MC = Model Vertex Coordinates
Uﬁgjver;ity WC = World Vertex Coordinates
Computer Graphics EC = Eye Vertex Coordinates

12/29/2022

The Basic Computer Graphics Pipeline, Shader-style 7

gl_Vertex, gl_ModelViewMatrix,
gl_Normal, gl_ProjectionMatrix,
gl_Color Per-vertex in variables gl_ModelViewProjectionMatrix Uniform Variables
MC WcC EC EC gl_Position,
‘ Model > View > PeAr-ve_rtex > Projection Per-vertex‘out variables
Transform Transform Lighting Transform
Vertex Shader

y

Rasterization I

Fragment Shader

Fragment s
Processing . N

|_FragColor z Per-fi t bl

Framebuffer g € Texturing, er-iragment in variables
| Per-fragment
e e Lighting (&= Uniform Variables

Orcaon State MC = Model Vertex Coordinates

Ur%ver;i WC = World Vertex Coordinates
Computer Graphics EC = Eye Vertex Coordinates

The Basic Computer Graphics Pipeline, Vulkan-style 18
Per-vertex in variables Uniform Variables
gl_Position,
Per-vertex out variables
Vertex Shader
y
Rasterization I
_ y
Output color(s) Fragment Shader Per-fragment in variables
Framebuffer
(== Uniform Variables
Oregon State
University
Computer Graphics
mijb — June 26, 2020

Moving part of the driver into the application 19

Complex drivers lead to
driver overhead and
cross vendor
unpredictability

Error management is
always active

Driver processes full
shading language source

Separate APIs for
desktop and mobile
markets

a*.s

Oregon State
University
Computer Graphics

QoL

(Vu likan.

Application

Traditional
graphics
drivers include
significant
context, memory
and error
management

Application
responsible for
memory
allocation and
thread
management to
generate
command buffers

Direct GPU
Control

GPU

GPU

Khronos Group

Simpler drivers for low-
overhead efficiency and
cross vendor portability

Layered architecture so
validation and debug
layers can be unloaded
when not needed

Run-time only has to
ingest SPIR-V
intermediate language

Unified API for mobile,
desktop, console and
embedded platforms

mjb — June 26, 2020

Vulkan Highlights: Command Buffers

» Graphics commands are sent to command buffers

+ E.g., vkCmdDoSomething(cmdBuffer, ...);

20

* You can have as many simultaneous Command Buffers as you want

» Buffers are flushed to Queues when the application wants them to be flushed

» Each command buffer can be filled from a different thread

[cPuthread | [[—_J[__ [J[_ | ¥ Cmd buffer|
[cPuthread | || I | Cmd buffer |
aﬁ".«:. | CPU Thread I | Cmd bufferl
G [cPuthread | || I || | Cmd buffer |
Oregon State
University

Computer Graphics

mijb — June 26, 2020

12/29/2022

10

Vulkan Highlights: Pipeline State Objects

21

In OpenGL, your “pipeline state” is the combination of whatever your current
graphics attributes are: color, transformations, textures, shaders, etc.

Changing the state on-the-fly one item at-a-time is very expensive

Vulkan forces you to set all your state variables at once into a “pipeline state object”
(PSO) data structure and then invoke the entire PSO at once whenever you want to
use that state combination

Think of the pipeline state as being immutable.

Potentially, you could have thousands of these pre-prepared pipeline state objects

Oregon State

Universil

Computer Graphics

mjb — June 26, 2020

Vulkan: Creating a Pipeline

which stage (VERTEX, etc.)

VkSpecializationInfo |

[vkshadermoaute |

binding
stride
inputRate

e

| VkVertexinputBindingDescription |

| VkPipelineShaderStageCreatelnfo |

Shader stages ‘r/
Vertexinput State
InputAssembly State4—|
Tesselation State
Viewport State «——]
Rasterization State ¢———]
MultiSample State
DepthStencil State ¢——_],
ColorBlend State
Dynamic State
Pipeline layout
RenderPass
basePipelineHandle

1\

1]

basePipelinelndex

22

location

binding
format
offset

e

VkPipelineVertexInputStateCreatelnfo

/ VkVertexinputAttributeDescription

kPipelinelnp

reatelnfo

VkViewportStateCreatelnfo

port

VkPipelineDepthStencilStateCreatelnfo |

VkPipelineRasterizationStateCreatelnfo \

cullMode
polygonMode

frontFace

lineWidth

| W

X ¥, W, h,
minDepth,
maxDepth

offset
extent

\ \ VkPipelineColorBlendStateCreatelnfo |

| VkGraphicsF‘ipe\ineCreatelnf\ | \

depthTestEnable
depthWriteEnable
depthCompareOp
stencilTestEnable

stencilOpStateFront

stencilO|

| VkPipelineColorBlendAttachmentState |

| vkCreateGraphicsPipeline() |

Oregon State
University
Computer Graphics

VkPipelineDynamicStateCreatelnfo |

N

srcAlphaBlend|
dstAlphaBlend|
alphaBlend:

blendEnable
srcColorBlendFactor
dstColorBlendFactor

colorBlendOp

colorWriteMask

Factor
Factor
Op

| Array naming the states that can be set dynamically |

mijb — June 26, 2020

12/29/2022

11

Querying the Number of Something

uint32_t count;
result = vkEnumeratePhysicalDevices(Instance, OUT &count, OUT (VkPhysicalDevice *)nullptr);

VkPhysicalDevice * physicalDevices = new VkPhysicalDevice[count J;
result = vkEnumeratePhysicalDevices(Instance, OUT &count, OUT physicalDevices);

This way of querying information is a recurring OpenCL and Vulkan pattern (get used to it):

How many total Where to
there are put them

result = vkEnumeratePhysicalDevices(Instance, &count, nullptr);

&count, physicalDevices);

Oregon State
University
Computer Graphics

23

mjb — June 26, 2020

Vulkan Code has a Distinct “Style” of Setting Information in structs
and then Passing that Information as a pointer-to-the-struct

24

VkBufferCreatelnfo
vbci.sType = VK_STRU
vbci.pNext = nullptr;
vbci.flags = 0;
vbci.size = << buffer size in bytes >>
vbci.usage = VK_USAGE_UNIFORM_B
vbci.sharingMode = VK_SHARING_MODE_BEXCLUSIVE;
vbci.queueFamilylndexCount = 0;
vbci.pQueueFamilylndices = nullptr;

TYPE_BUFFER_CREATE_INFO;

VK_RESULT result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &Buffer);

VkMemoryRequirements @

result = vkGetBufferMemory!

quirements(LogicalDevice, Buffer, OUT &vmr); // fills vmr

VkMemoryAllocatelnfo (
vmai.sType = VK_STRUC
vmai.pNext = nullptr;
vmai.flags = 0;
vmai.allocationSize = vmr.size;
vmai.memoryTypelndex = 0;

URE XYPE_MEMORY_ALLOCATE_INFO;

result = vkBindBufferMemory(LogicalDevice, Buffer, MatrixBufferMemoryHandle, 0);

result = vkAllocateMemory(LogicalDevice, IN &vmai, PALLOCATORLQUT &MatrixBufferMemoryHandle));

Conlpureroraprme

mijb — June 26, 2020

12/29/2022

12

12/29/2022

Vulkan Quick Reference Card — | Recommend you Print This! 25

Vulkan 1.1 Reference Guide

ol 3 g s compte A corstg o rocecres nd ”
finionsto ot s e, oot opee . CO\fulican. KHRCONOS
pebel i
dtnn sipe

Specification and additional resources at DI it resened for fture e
lkan

Suciure accin o e i usge i of he st e

Return Codes [27.5] Command Function Pointers and Instances (5]
MR s Comman Functon Poiners [3.1] conscar const pptnaneseensontones;
P e et cadd |VisarceCesente;

St SAc, o i e st Wttt

imcureTpe pe, £

s sensance(eyt
e Vinanc o,
s e 1 T ——

insance*posanc)

et s Venstanescto
ViSuucaretio e 155
VestanceCresteFings fags EX1
cons Whoplconti Appicionsf: o phe:
S rovedionrcomt ViDeyeeutuerenerigs foss
o o G const ptanpeonss, s

N R eronaetran o, S

Devices and Queues (4]

e

friomed N
i (e
e o, s
b s ——

it Cemabeiarmetict e
oy e
e s, 3 i

Bt B Rt
et R B o e
e e

it

AP OeErouBPopnes aueucrominde i queeide
sl % 3
ViSuctretie ype, 65 Elen o o Ve DBICE QLR CRETE PROTECTED A1

Devices 421
Vesot
e

EramersephyscaDeviecronss o L DENCE UGS RN

s 1 etDeveeQueselDerce devce,

T IS quseramiides, At qesends,
e e

" werDeveeQueseaDeve devce,

e ibescetievenin

o
S — v,
IO o e, 1 Command Buffers 5]
ittt N
pcalDevicsl - ‘typedef struct ViDeviceCreatelnfo| Command Pools [5.2]
e o S sssomtont
e s et ey s
e [o 1 oo e,
S o W e
[t
Mo
o e e 58
optraniitsensonanes ol
PueseFomiyPropertesy; viceFeatures* pEncbledFeatires, [T) “m?;ﬂ:ﬁ;}ﬁg"‘m
R i =
s e priosiseas N
it ke i
[P 2w

i

o
.

PRCamandoorese

m iy
e it 5
e &
uppeicceseins
oo o psiibryis
W o xomtcy coue, Snvad T
ARSI DRSO I oo, el
omstet e seesemproperics DecetroapDeCe e
et e s oo S s
o Device Desucon (424 Pk
I] et
e s v) 21 ot s e >

\Deves e Vicommansroo commond?oo,

University
Computer Graphics

https://lwww.khronos.org/files/vulkan11-reference-guide.pdf
mjb — June 26, 2020

Vulkan Quick Reference Card 26

Vulkan 1.1 Reference Guide

Vulkan Pipeline Diagram [g]

i Dispatch

Vertex Shader

Vertex Buffer

B e e e T e S e 1
Control Shader \ Descriptor Sets '
! [
- Push Constants *
- Uniform Buffer o
! Uniform Texel Buffers - !
1 1 Compute Shader
Sampled Images ! 1
! i
y shader 4 Storage Buffers ;
H Storage Texel Buffers : Some Vulkan commands specify geometric objects
!) to be drawn or computational work to be performed,
7 = Storage Images hile others specify state controlling how objects
EENEXPost Processing eyl are handled by the various pipeline stages, or control
- data transfer between memory organized as images
and bufers. Commands ae effectively sent through
—+ a processing pipeline, either a graphics pipeline or a
Early Per-Fragment Tests pth/stencil compute pipeline.
[Fixed Function Stage
[shader stage
lLate Post-Fragment Tests [storage images

y . .
Oregonstae NtPS:/Iwww.khronos.org/files/vulkan11-reference-guide.pdf
University
Computer Graphics
mjb — June 26, 2020

13

Vulkan Highlights: Overall Block Diagram 27

Application

Physical Physical Physical
Device Device Device
Logical Logical Logical Logical Logical
Device Device Device Device Device

Queue

1
1—1 Command Buffer I
1—1 Command Buffer I

i ‘—i Command Buffer I

Queue
Queue

Oregon State
Universil

Computer Graphics
mjb — June 26, 2020

Vulkan Highlights: a More Typical Block Diagram 3

Application

Instance

Physical
Device
Logical
Device
4—' Command Buffer I
o
g 4—' Command Buffer I
0““ 4—' Command Buffer I
<
Oregon State
Universil

Computer Graphics

mijb — June 26, 2020

12/29/2022

14

Steps in Creating Graphics using Vulkan 29

Create the Vulkan Instance

Setup the Debug Callbacks

Create the Surface

List the Physical Devices

Pick the right Physical Device
Create the Logical Device

Create the Uniform Variable Buffers
Create the Vertex Data Buffers
Create the texture sampler

10. Create the texture images

11. Create the Swap Chain

12. Create the Depth and Stencil Images
13. Create the RenderPass

14. Create the Framebuffer(s)

15. Create the Descriptor Set Pool

16. Create the Command Buffer Pool
17. Create the Command Buffer(s)

18. Read the shaders

19. Create the Descriptor Set Layouts
20. Create and populate the Descriptor Sets
21. Create the Graphics Pipeline(s)

22. Update-Render-Update-Render- ...

©NOOTrWN =

Oregon State
Universil .
Computer Graphics
mjb — June 26, 2020

Vulkan GPU Memory 30

* Your application allocates GPU memory for the objects it needs

» To write and read that GPU memory, you map that memory to the CPU
address space

* Your application is responsible for making sure that what you put into that
memory is actually in the right format, is the right size, has the right
alignment, etc.

Oregon State
University
Computer Graphics
mijb — June 26, 2020

12/29/2022

15

Vulkan Render Passes 31

+ Drawing is done inside a render pass
« Each render pass contains what framebuffer attachments to use

« Each render pass is told what to do when it begins and ends

Oregon State
University
Computer Graphics
mjb — June 26, 2020

Vulkan Compute Shaders 32

« Compute pipelines are allowed, but they are treated as something
special (just like OpenGL treats them)

+ Compute passes are launched through dispatches

+ Compute command buffers can be run asynchronously

Oregon State
University
Computer Graphics
mijb — June 26, 2020

12/29/2022

16

Vulkan Synchronization 33

« Synchronization is the responsibility of the application

« Events can be set, polled, and waited for (much like OpenCL)
« Vulkan itself does not ever lock — that’s your application’s job
» Threads can concurrently read from the same object

« Threads can concurrently write to different objects

Oregon State
Universil .
Computer Graphics
mjb — June 26, 2020

Vulkan Shaders 34
* GLSL is the same as before ... almost
* Forplaces it's not, an implied
#define VULKAN 100
is automatically supplied by the compiler

* You pre-compile your shaders with an external compiler

* Your shaders get turned into an intermediate form known as SPIR-V (Standard
Portable Intermediate Representation for Vulkan)

» SPIR-V gets turned into fully-compiled code at runtime

» The SPIR-V spec has been public for years —new shader languages are surely being
developed

* OpenCL and OpenGL have adopted SPIR-V as well

External Compiler in e
GLSL Source — GLSL —+ SPIRV — - Vendor-specific
Compiler code

- Run Time
Develop Time
o Advantages:
Software vendors don’t need to ship their shader source
Software can launch faster because half of the compilation has already taken place
This guarantees a common front-end syntax

This allows for other language front-ends

Cq

pONM=

12/29/2022

17

Your Sample2019.zip File Contains This

hare

View

b ThisPC > mib (\guille\baileyusers) (¥:) > Vulkan > Sample2019 >

A % %8

Mame =
vs
Debug
gim
gim0.9.85
gim-0.8.9-a2
{8 ERRORS.ppix
| frag.spv
gifwd.h
8 gifu.iib
glslangValidator

glslangValidator.exe
glslangValidator.help
Makefile
puppy.bmp
puppyipg
Puppy0.bmp
puppyDipg

sample.cop

EECORD

®

EEODAAAHE AR FE

sample.save.cpp
Samplessin
Samplevexproj
Sample.vexprojfilters
Sample.vexprojuser
sampleD8.pdf
sampledd.pdf
samplel0.pdf
sample-comp.comp
sample-comp.spv

= sample-frag.frag

Date modified

1/9/2018 11:26 AM
2/14/2018 12:25 PM
2/14/2018 12:25 PM

2/18/20181 AM

v O
Type Size
File folder
File folder
File folder
File folder
File folder
Microsoft PawerP...

SPV File

C/Co= Header
Object File Library
File

Apglication

HELP File

File

BMP File

JPGFile

BMP File

IPGFile

+ Source
C++ Source

Microsoft Visual 5.

Ve

Project

++ Project Filte..
Per-User Project O

Adobe Acrobat D...
COMP File

SPV File

FRAG File

Search S,

Or =
Ul The “19” refers to the version of Visual Studio, not the year of development. |

omptrerorapre

35

mjb - June 26, 2020

12/29/2022

18

