(Vuri(an@

Introduction

Oregon State
University
Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

On:gn State

University
Computer Graphics

Iniro.pptx

mjb— June 26, 2020

Acknowledgements 2

Ali Alsalehy
Natasha Anisimova
Jianchang Bi
Christopher Cooper
Richard Cunard
Braxton Cuneo
Benjamin Fields
Trevor Hammock
Zach Lerew

Victor Li

Alan Neads

Raja Petroff

Bei Rong
Lawrence Roy

Lily Shellhammer
Hannah Solorzano
Jian Tang

Glenn Upthagrove
Logan Wingard

Oregon State

University
Computer Graphics

First of all, thanks to the inaugural class of 19
students who braved new, unrefined, and just-
in-time course materials to take the first
Vulkan class at Oregon State University —
Winter Quarter, 2018. Thanks for your
courage and patience!

Oregon State
University

Second, thanks to NVIDIA for all)
of their support!

NVIDIA.

Third, thanks to the Khronos Group for the
great laminated Vulkan Quick Reference
Cards! (Look at those happy faces in the
photo holding them.)

KHRCONOS

mjb - June 26, 2020

History of Shaders

| 2004: OpenGL 2.0 / GLSL 1.10 includes Vertex and Fragment Shaders ‘

| 2008: OpenGL 3.0 / GLSL 1.30 adds features left out before |

| 2010: OpenGL 3.3 / GLSL 3.30 adds Geometry Shaders |

| 2010: OpenGL 4.0 / GLSL 4.00 adds Tessellation Shaders ‘

| 2012: OpenGL 4.3 / GLSL 4.30 adds Compute Shaders |

| 2017: OpenGL 4.6 / GLSL 4.60

e
;{i@ There is lots more detail at:

”"CE_" State https://www.khronos.org/opengl/wiki/History of OpenGL

University
Computer Graphics

mjb - June 26, 2020

History of Shaders 4

‘ 2014: Khronos starts Vulkan effort ‘

Uni\)ersity
Computer Graphics

2016: Vukan 1.0 |

2016: Vulkan 11|

2020: Vukan 1.2 |

There is lots more detail at:

https://en.wikipedia.org/wiki/Vulkan_(API)

mjb - June 26, 2020

12/29/2022

Everything You Need to Know is Right Here ... Somewhere 5

Bufferstings

imes

—_, unique

used

really,

time gmat gets

t

mjb = June 26, 2020

Orege

é{;{i@ created the false impression that this was a replacement for OpenGL. It's not.

Top Three Reasons that Prompted the Development of Vulkan 6

1. Performance
2. Performance

3. Performance

Vulkan is better at keeping the GPU busy than OpenGL is. OpenGL drivers need
to do a lot of CPU work before handing work off to the GPU. Vulkan lets you get
more power from the GPU card you already have.

This is especially important if you can hide the complexity of Vulkan from your
customer base and just let them see the improved performance. Thus, Vulkan
has had a lot of support and interest from game engine developers, 3 party
software vendors, etc.

As an aside, the Vulkan development effort was originally called “gINext”, which

University
Computer Graphics

mjb - June 26, 2020

OpenGL 4.2 Pipeline Flowchart 7

e

o

)

=)

e
%ﬁmw“
s

HED)|

-

Cor

5 = June 26, 2020

Computer

Why is it so important to keep the GPU Busy? 8

NVidia Titan V Specs vs. Titan Xp, 1080 Ti

Titan v TestaVi00 TestaP100
V100 G0 P
2118 2118 1598
omFEN tZnmFEN 96om FnfET 160m FET 160m FrFET
1640 51207640 358410 358410 256010
2 24
%)
Core Clock 1328MHz
Boost Clock 1370MHz 14800Hz
FP32 TFLOPS 1STFLOPS MIFLOPs 106TFLOPS
Memory Type HBMZ B2 X GODRSX
Memory Capacity 1668 268
Memory Clock G s 10Gbps GDORSX
Memory Intertacs
Memory Bandwidth
Total Power Budget ("TOP") 2 180w

ix6pn
Power Connectors. ” e
1x6-pin i

Releass Dato 12012017 82772016

Refcsence: $700

mjb - June 26, 2020

12/29/2022

Who was the original Vulcan? 9

From WikiPedia:

“Vulcanis the god of fire including the fire of volcanoes,
metalworking, and the forge in ancient Roman religion and myth.
Vulcan is often depicted with a blacksmith's hammer. The
Vulcanalia was the annual festival held August 23 in his honor.
His Greek counterpart is Hephaestus, the god of fire and
smithery. In Etruscan religion, he is identified with Sethlans.
Vulcan belongs to the most ancient stage of Roman religion:
Varro, the ancient Roman scholar and writer, citing the Annales
Maximi, records that king Titus Tatius dedicated altars to a series
of deities among which Vulcan is mentioned.”

https://en.wikipedia.org/wiki/Vulcan_(mythology)

TR
d
AP
G
Oregon State

Computer Graphics
mjb — June 26, 2020

Who is the Khronos Group? 1

The Khronos Group, Inc. is a non-profit member-funded industry
consortium, focused on the creation of open standard, royalty-free
application programming interfaces (APIs) for authoring and accelerated
playback of dynamic media on a wide variety of platforms and devices.
Khronos members may contribute to the development of Khronos API
specifications, vote at various stages before public deployment, and
accelerate delivery of their platforms and applications through early
access to specification drafts and conformance tests.

CC JLLADA. DataFormat EGL. T NNEF;

Gecisc. OpenVG.

OpenVX. @CL‘

(Opem R,

Oregon State
i
Computer Graphics

mib — June 26, 2020

Why Name it after the God of the Forge? 10
e
e
Orcg(!italc
University
Computer Graphi i dune 26,2020
Playing “Where’s Waldo” with Khronos Membership 12

PROMOTER MEMBERS

AMDZ1 Apple ARM @ Google
KHRONOS 2 o (D nowa Quacomwm

HUAWEI

Over 100 members worldwide

>
Any company is welcome to join SAMSUNG SONY VALVE NVIDIA. @smmﬂ

S\

B imcorporsted () AMOTIVE L\! @))
BlZERD :-'L,“n\;'”,-'i @ERENWILL cadence CANONICAL CEVA (4@ ©cwderiay CrO

(€ coorinne 5) COREAVI 5 caaPUT om=g ETRI

BINOMIAL

. AN
d""" HARMAN .!*.,'""h?h!'\ :: HYPEREAL

LuNAR

Qigalia Ipeucois mussassnne PRMRL akDAB KNU @ LG oHin2re

matron MAXON NS B2 Microsofy JE i @ Movidius Y
NEC Mo © oculus ‘.'D Panasonic PIXAR PILITO" [

M RAZZR ‘ Renesas Fodkpefl NEAME Son £ siicon Studio bd EPISPREADTRUM g&!};{;’v'l"}!\b
@ SYNOPSYS vAkumi ¥ o [50 W ms €8 thinci EXmsicon £obji TOSHIBA ymbirn

Qunity 1 B BTN W ey @kin e Hmwore EXILNX O 2Space

i
Computer Graphics

mjb — June 26, 2020

12/29/2022

Who’s Been Specifically Working on Vulkan? 13

AMDD1 QIIT] aeroadcom

Omz Forge g @I

sourcey . [< unity
R

State

Orego

Computer Graphics
mjb— June 26, 2020

Vulkan

+ Originally derived from AMD’s Mantle API

« Also heavily influenced by Apple’s Metal APl and Microsoft’s DirectX 12
* Goal: much less driver complexity and overhead than OpenGL has

* Goal: much less user hand-holding

* Goal: higher single-threaded performance than OpenGL can deliver

* Goal: able to do multithreaded graphics

* Goal: able to handle tiled rendering

Computer Graphics

mjb — June 26, 2020

Vulkan Differences from OpenGL 15

» More low-level information must be provided (by you!) in the application, rather
than the driver

« Screen coordinate system is Y-down

* No “current state”, at least not one maintained by the driver

« Al of the things that we have talked about being d@p’tecated in

OpenGL are really deprecated in Vulkan: built-in pipeline
transformations, begin-end, fixed-function, etc.

* You must manage your own transformations.
+ All transformation, color and texture functionality must be done in shaders.

» Shaders are pre-"half-compiled” outside of your application. The compilation
process is then finished during the runtime pipeline-building process.
On:g;ﬁ!itatc

iversity
Computer Graphics
mijb — June 26, 2020

The Basic OpenGL Computer Graphics Pipeline, OpenGL-style

Vertex,
Normal,
Color
McC wc EC EC
Model View Per-vertex | _ Projection
Transform Transform Lighting Transform
Fragment
| Processing,
T buffe ! Texturing,
‘ Per-fragment
rEEmmmEEmmAn | Lighting

MC = Model Vertex Coordinates
WC = World Vertex Coordinates
EC = Eye Vertex Coordinates

iversity
Computer Graphics

12/29/2022

12/29/2022

The Basic Computer Graphics Pipeline, Shader-style i The Basic Computer Graphics Pipeline, Vulkan-style 18
gl_Vertex, gl_ModelViewMatrix,
gl_Normal, gl_ProjectionMatrix,
gl_Color Per-vertex in variables gl_ModelViewProjectionMatrix Uniform Variables Per-vertex in variables Uniform Variables
MC wWc EC EC gl_Position, gl_Position,
| Model | i Pe.r-velrtex Projection Per-vertex out variables Per-vertex out variables
Transform | Transform Lighting Transform Vertex Shader
Vertex Shader
Rasterization Rasterization
Fragment Shader
Fragment
. | Processing, — ‘ o I Fragment Shader in vari
I 11T gl_FragColor T e Per-fragment in variables [I utput color(s) Per-fragment in variables
Per-fragment [
Lighting [¢== Uniform Variables (&= Uniform Variables
e MC = Model Vertex Coordinates
University WC = World Vertex Coordinates University
Computer Graphics EC = Eye Vertex Coordinates Computer Graphics

mjb - June 26, 2020

Moving part of the driver into the application 19 Vulkan Highlights: Command Buffers 20

(Vul*kanm

Application

GoerL.
Application

Complex drivers lead to
driver overhead and
cross vendor

drivers for low- .
overhead efficiency and

Graphics commands are sent to command buffers

resp for cross vendor portability . ; .
unpredictability emory E.g., vkCmdDoSomething(cmdBuffer, ...);
E ti Traditional allocation and Layered architecture so . c "
rrorl manage?len is graphics thread validation and debug * You can have as many simultaneous Command Buffers as you want
always active drivers include management to layers can be unloaded
significant generate when not needed « Buffers are flushed to Queues when the application wants them to be flushed
Driver processes full contexdt, memory command buffers
and error - .
shading language source management Direct GPU Run-time only has to + Each command buffer can be filled from a different thread
Control ingest SPIR-V
intermedi I
Separate APIs for
dwskiopana monie | GPU GPU Unifod AP for mobie, [erumess] [JC_JC_JC_1 ¥ Cma bure]
desktop, console and
embedded platforms CPU Thread Cmd buffer
Khronos Group P | | [C1C 1 |
| CPU Thread I | Cmd buffer |
[cpumeas | [JC_JC_J G buffer]

University
Computer Graphics

mjb - June 26, 2020

University
Computer Graphics

mjb - June 26, 2020

Vulkan Highlights: Pipeline State Objects 21

* In OpenGL, your “pipeline state” is the combination of whatever your current
graphics attributes are: color, transformations, textures, shaders, etc.

« Changing the state on-the-fly one item at-a-time is very expensive

« Vulkan forces you to set all your state variables at once into a “pipeline state object”
(PSO) data structure and then invoke the entire PSO at once whenever you want to
use that state combination

« Think of the pipeline state as being immutable.

« Potentially, you could have thousands of these pre-prepared pipeline state objects

University
Computer Graphics
mjb — June 26, 2020

Vulkan: Creating a Pipeline 22

which stage (VERTEX, etc.)

stride

inputRate location

binding
format
offset

— VkVertexinputAttributeDescription
VkPipelineShaderStageCreatelnfo
VkPipelineVertexinputStateCreatelnfo Topology
e
viﬁif.?.';,i{agfaﬁe // VkPipelinelnputAssemblyStateCreatelnfo

InputAssembly State 4= |

Tesselation State

Viewport State 4——|

Raserization State +— Scissor
MuliSample State
DepthStencil State €] extent
EeoBlond State T kPipelineDepthstencilstateCreateinto_| cullMode
Pino oy foniFace
RenderPass
o

basePipelineHandl
basePipelinelndex

varapmcsP\pelmeCrealeln(

‘ binding

Viewport

VKkPipelineCt telnfe

depthCompareOp
stencilTestEnable
stencilOpStateFront

tencilO)
VkPipelineCt
blendEnable
srcColorBlendFactor
dstColorBlendFactor
colorsiendop

sroAlphaBlendFactor
VKPipelineDynamicStateCreatelnfo

alphaBlendOp
colorWriteMask

University
Computer Graphics | Array naming the states that can be set dynamically | o dune 26,2020

Querying the Number of Something 2

uint32_t count;
result = vkEnumeratePhysicalDevices(Instance, OUT &count, OUT (VkPhysicalDevice *)nullptr);

VkPhysicalDevice * physicalDevices = new VkPhysicalDevice[count J;
result = vkEnumeratePhysicalDevices(Instance, OUT &count, OUT physicalDevices);

This way of querying information is a recurring OpenCL and Vulkan pattern (get used to it):

How many total Where to
there are put them
result = vkEnumeratePhysicalDevices(Instance, &count, nullptr);
result = vkEnumeratePhysicalDevices(Instance, &count, physicalDevices);

Oregon State

University
Computer Graphics
mjb - June 26, 2020

Vulkan Code has a Distinct “Style” of Setting Information in structs 24
and then Passing that Information as a pointer-to-the-struct

12/29/2022

VkBufferCreatelnfo
vbci.sType = VK_STRU
vbci.pNext = nullptr;
vbci.flags = 0;
vbci.size = << buffer size in bytes >>
vbci.usage = VK_USAGE_UNIFORM_BUREER BIT;
vbci.sharingMode = VK_SHARING_MODE_BEXCLUSIVE;
vbci.queueFamilylndexCount = 0;
vbci.pQueueFamilyindices = nullptr;

JYPE_BUFFER_CREATE_INFO;

VK_RESULT result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &Buffer);

VkMemoryRequirements

result = vaetBufferMemoryRLquirements(LogicalDevice, Buffer, OUT &vmr); //fills vmr

VkMemoryAllocatelnfo
vmai.sType = VK_STRUC
vmai.pNext = nullptr; J

YPE_MEMORY_ALLOCATE_INFO;

vmai.flags = 0;
vmai.allocationSize = vmr.size;
vmai.memoryTypelndex = 0;

result = vkAllocateMemory(LogicalDevice, IN &vmai, PALLOCATORCQUT &MatrixBufferMemoryHand|e>);

result = vkBindBufferMemory(LogicalDevice, Buffer, MatrixBufferMemoryHandle, 0);

0

Comporerermaprme
o dune 25, 2020

Vulkan Quick Reference Card — | Recommend you Print This! 25

Reference Guide Page 1

o p———
Sttt Vulkan, KHRCON
P gl

naSironesovgushan

Devices and Queves]

Command Buffers 51

OregonState
University https://lwww.khronos.org/files/vulkan11-reference-guide.pdf

Computer Graphics
mjb — June 26, 2020

Vulkan Quick Reference Card

Vulkan 1.1 Reference Guide

Vulkan Pipeline Diagram [9]
s
_Inﬂen Buffer

Tessellation Control Shader

Tessellation Primitive Generator
2

Descriptor Sets
Push Constants,
Uniform Buffer

Tessellation Uniform Texel Buffers

26

Storage Buffers

Storage Texel Buffers

] —.[Compute Shader
T
T
|
1
1

hile oth

Vertex Post-Processing.
Early Per-Fragment Tests

Fragment Shader I

Late Post-Fragment Tests.

compute pipeline.

3 Fved Function stage
[shader stage
[storage mages

Some Vulkan commands specify geometric objects
be dr to

erformed,
how objects

are handled by the various pipeline stages, or control
data transfer between memory organized as images
and buffers. Commands are effectively sent through
a processing pipeline, either a graphics pipeline or a

Oregonstate https://www.khronos.org/files/vulkan11-reference-guide.pdf

Computer Graphics

mjb — June 26, 2020

Vulkan Highlights: Overall Block Diagram

Application

Physical Physical Physical

Device Device Device
Logical Logical Logical Logical Logical
Device Device Device Device Device

Command Buffer

Command Buffer
Command Buffer

Queue
Queue
Queue

OregonState

i
Computer Graphics
mjb - June 26, 2020

Vulkan Highlights: a More Typical Block Diagram

Application

v

Physical
Device

'

Logical
Device

] Command Buffer
Command Buffer
] Command Buffer

Queue

i
Computer Graphics

28

mib — June 26, 2020

12/29/2022

Steps in Creating Graphics using Vulkan

Create the Vulkan Instance

Setup the Debug Callbacks

Create the Surface

List the Physical Devices

Pick the right Physical Device
Create the Logical Device

Create the Uniform Variable Buffers
Create the Vertex Data Buffers
Create the texture sampler

10. Create the texture images

11. Create the Swap Chain

12. Create the Depth and Stencil Images
13. Create the RenderPass

14. Create the Framebuffer(s)

15. Create the Descriptor Set Pool

16. Create the Command Buffer Pool
17. Create the Command Buffer(s)

18. Read the shaders

19. Create the Descriptor Set Layouts
20. Create and populate the Descriptor Sets
21. Create the Graphics Pipeline(s)

22. Update-Render-Update-Render- ...

©CENOOAWN =

Oregon State

University
Computer Graphics

29

mjb— June 26, 2020

Vulkan GPU Memory 30

* Your application allocates GPU memory for the objects it needs

« To write and read that GPU memory, you map that memory to the CPU
address space

< Your application is responsible for making sure that what you put into that
memory is actually in the right format, is the right size, has the right
alignment, etc.

University
Computer Graphics
mjb - June 26, 2020

Vulkan Render Passes

« Drawing is done inside a render pass
« Each render pass contains what framebuffer attachments to use

» Each render pass is told what to do when it begins and ends

tate

University
Computer Graphics

31

mjb - June 26, 2020

Vulkan Compute Shaders 32

« Compute pipelines are allowed, but they are treated as something
special (just like OpenGL treats them)

+ Compute passes are launched through dispatches

» Compute command buffers can be run asynchronously

University
Computer Graphics
mjb - June 26, 2020

12/29/2022

Vulkan Synchronization 33

Synchronization is the responsibility of the application

Events can be set, polled, and waited for (much like OpenCL)
Vulkan itself does not ever lock — that's your application’s job
Threads can concurrently read from the same object

Threads can concurrently write to different objects

University
Computer Graphics

mjb— June 26, 2020

External Compilerin .
GLSL Source —— GLSL —— SPIRV — v Vendor-specific
Compiler code
Run Time

Vulkan Shaders
* GLSLis the same as before ... almost
« For places it's not, an implied
#define VULKAN 100
is automatically supplied by the compiler

* You pre-compile your shaders with an external compiler

* Your shaders get turned into an intermediate form known as SPIR-V (Standard
Portable Intermediate Representation for Vulkan)

* SPIR-V gets turned into fully-compiled code at runtime

* The SPIR-V spec has been public for years —new shader languages are surely being
developed

« OpenCL and OpenGL have adopted SPIR-V as well

Develop Time

S Advantages:

hwN =

Software vendors don’t need to ship their shader source

Software can launch faster because half of the compilation has already taken place
This guarantees a common front-end syntax

This allows for other language front-ends

Or

Your Sample2019.zip File Contains This 35

hare View

b ThisPC > mib (W\guile\bailey\users) (V) > Vulken > Sample2019 » vio
Name = Date modified Tpe Size

s
Debug
gim
gim09es
gim-0.9.8-22

3] ERRORS pptx

@ fragspv

B guzh

B8 gifwd.iib

[glstangVelidator

File folder
File folder
File folder

File folder

oft PowerP.

i
File

[glslangValidator.exe
[glsengalidator.help
[Makefile

[5] puppy-bmp

(51 puppy.ipg

S| puppy0.bmp

& puppyDipg

++ sample.cpp

HELP File

BMP File
PG File

4+ samplesave.cpp
58 Ssmplein
&l Samplevcxproj

5] Ssmpleoxprojiers
) Sampleoxprojuser
= sample08.pdf
" sample0d.pdf
= samplel.pdf

[} sample-comp.comp

COMP File
SPV File
FRAG File 2k8

[sample-comp.spv

B sample-ragfrag

Comy

Lﬂ The “19” refers to the version of Visual Studio, not the year of development. |

(¥
N

leroTaprTes

mjb - June 26, 2020

12/29/2022

