(Vuri(am

The Swap Chain

Oregon State
University
Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

A==
Oregon State
University
Computer Graphics
SwapChain pptx

mjb — December 21, 2022

How OpenGL Thinks of Framebuffers

Update

<
Oregon State
University
Computer Graphics

Refresh

mjb — December 21, 2022

12/29/2022

12/29/2022

3
How Vulkan Thinks of Framebuffers — the Swap Chain
a1
Update B‘ack E Back EEE
> o
Back E /
i Present
Dreg,m) State ;:;’ I!riit
Universil and
Computer Graphics i i :’ i i i i i

mjb — December 21, 2022
What is a Swap Chain? 4

Vulkan does not use the idea of a “back buffer”. So, we need a place to render into
before moving an image into place for viewing. The is called the Swap Chain.

In essence, the Swap Chain manages one or more image objects that form a sequence
of images that can be drawn into and then given to the Surface to be presented to the
user for viewing. Al N

B - B2

T
/

Swap Chains are arranged as a ring buffer

\\"\“l:l- s

Swap Chains are tightly coupled to the window system.

After creating the Swap Chain in the first place, the process for using the Swap Chain is:

1.
2.
3.
4.

Ask the Swap Chain for an image

Render into it via the Command Buffer and a Queue
Return the image to the Swap Chain for presentation
Present the image to the viewer (copy to “front buffer”)

Dreg,m) State
University
Computer Graphics

mjb — December 21, 2022

We Need to Find Out What our Display Capabilities Are 5

VkSurfaceCapabilitieskHR Cvsc;)>—
vkGetPhysicalDeviceSurfaceCapabilitiessSKHR(PhysicalDevice, Surface, OUT &vsc);

VKExtent2D surfaceRes = vsc.currentExtent;
fprintf(FpDebug, "\nvkGetPhysicalDeviceSurfaceCapabilitiesKHR:\n");

VkBool32 supported;
result = vkGetPhysicalDeviceSurfaceSupportKHR(PhysicalDevice, FindQueueFamilyThatDoesGraphics(), Surface, &supported);
if(supported == VK_TRUE)

fprintf(FpDebug, "** This Surface is supported by the Graphics Queue *\n");

uint32_t formatCount;

vkGetPhysicalDeviceSurfaceFormatsKHR(PhysicalDevice, Surface, &formatCount, (VkSurfaceFormatKHR *) nullptr);
VkSurfaceFormatKHR * surfaceFormats = new VkSurfaceFormatKHR[formatCount ;
vkGetPhysicalDeviceSurfaceFormatsKHR(PhysicalDevice, Surface, &formatCount, surfaceFormats);

fprintf(FpDebug, "\nFound %d Surface Formats:\n", formatCount)

uint32_t presentModeCount;

vkGetPhysicalDeviceSurfacePresentModesKHR(PhysicalDevice, Surface, &presentModeCount, (VkPresentModeKHR *) nullptr);
VkPresentModeKHR * presentModes = new VkPresentModeKHR[presentModeCount J;
vkGetPhysicalDeviceSurfacePresentModesKHR(PhysicalDevice, Surface, &presentModeCount, presentModes);

fprintf(FpDebug, "\nFound %d Present Modes:\n", presentModeCount);

4
Oregon State
Universil
Computer Graphics
mjb — December 21, 2022

We Need to Find Out What our Display Capabilities Are 6

VulkanDebug.txt output for an Nvidia A6000:

E* Init08Swapchain ***
vkGetPhysicalDeviceSurfaceCapabilitiesKHR:

minlmageCount = 2 ; maximageCount = 8
currentExtent = 1024 x 1024
minlmageExtent = 1024 x 1024
maxImageExtent = 1024 x 1024
maxlmageArrayLayers = 1
supportedTransforms = 0x0001
currentTransform = 0x0001
supportedCompositeAlpha = 0x0001
supportedUsageFlags = 0x009f

vkGetPhysicalDeviceSurfaceSupportKHR:
** This Surface is supported by the Graphics Queue **

Found 3 Surface Formats:

0: 44 0 VK_COLOR_SPACE_SRGB_NONLINEAR_KHR
1: 50 0 VK_COLOR_SPACE_SRGB_NONLINEAR_KHR
2. 64 0 VK_COLOR_SPACE_SRGB_NONLINEAR_KHR

Found 4 Present Modes:

0: 2 VK_PRESENT_MODE_FIFO_KHR

1: 3 VK_PRESENT_MODE_FIFO_RELAXED_KHR
2: 1 VK_PRESENT_MODE_MAILBOX_KHR

3: 0 VK _PRESENT_MODE_IMMEDIATE_KHR
Uﬁijersity

Computer Graphics

mjb — December 21, 2022

12/29/2022

Here's What the Vulkan Spec Has to Say About Present Modes, |

Orego|

VE_PRESENT MODE IMMEDIATE XHR specifies that the presentation engine does not wait for a vertical
blanking period to update the current image, meaning this mode may result in visible tearing. No mternal
queuing of presentation requests is needed, as the requests are applied immediately.

VE_PRESENT_MODE_MATLBOX_KHR specifies that the presentation engine waits for the next vertical blanking
period to update the current image. Tearing cannot be observed. An internal single-entry queue 1s used to
hold pending presentation requests. If the queue is full when a new presentation request is received, the new
request replaces the existing entry, and any images associated with the prior entrv become available for re-
use by the application. One request is removed from the queue and processed during each vertical blanking
period in which the queue is non-empty.

VE_PRESENT_MODE_FIFO_KHR specifies that the presentation engine waits for the next vertical blanking
period to update the current image. Tearing cannot be observed. An internal queue is used to hold pending
presentation requests. New requests are appended to the end of the queue. and one request is removed from
the beginning of the queue and processed during each vertical blanking period in which the queue is non-
empty. This 1s the only value of presentiode|that 1s required to be supported.

VE_PRESENT_MODE_FIFC_RELAXED EHR specifies that the presentation engine generally waits for the next
vertical blanking period to update the current image_ If a vertical blanking period has already passed since
the last update of the current image then the presentation engine does not wait for another vertical blanking
peniod for the update, meaning this mode may result m visible tearng 1n this case. This mode 1s useful for
reducing visual stutter with an application that will mostly present a new image before the next vertical
blanking period, but may occasionally be late, and present a new image just after the next vertical blanking

1 period. An internal queue is used to hold pending presentation requests. New requests are appended to the

end of the queue, and one request 1s removed from the beginning of the queue and processed during or after
each vertical blanking period in which the queue 1s non-empty.

Universr

Computer

Graphics

mjb — December 21, 2022

Here's What the Vulkan Spec Has to Say About Present Modes, Il

V¥_PRESENT MCDE SHARED DEMAND REFRESH KHR specifies that the presentation engine and application
have concurrent access to a single image, which 1s referred to as a shared presentable image. The
presentation engine is only required to update the current image after a new presentation request is received.
Therefore the application must make a presentation request whenever an update is required. However, the
presentation engine may update the current image at any point, meaning this mode may result in visible
teanng,

VK_PRESENT_MODE_SHARED CONTINUOUS_REFRESH_KHR specifies that the presentation engine and
application have concurrent access to a single image_ which is referred to as a shared presentable image.
The presentation engine periodically updates the current image on its regular refresh cycle. The application
1s only required to make one initial presentation request. after which the presentation engine must update
the current image without any need for further presentation requests. The application can indicate the image
contents have been updated by making a presentation request. but this does not guarantee the timing of
when 1t will be updated. This mode may result in visible tearing if rendering to the 1image 1s not timed
correctly.

Oregon State
University
Computer Graphics

mjb — December 21, 2022

12/29/2022

Creating a Swap Chain 9

| vkGetDevicePhysicalSurfaceCapabilities()

VkSurfaceCapabilities

surface minimageCount
imageFormat maxImageCount
imageColorSpace /—’ currentExtent
imageExtent «— minimageExtent
imageArraylLayers maximageExtent
imageUsage maximageArrayLayers
imageSharingMode supportedTransforms
preTransform currentTransform
compositeAlpha supportedCompositeAlpha
presentMode,
clipped \

| VkSwapchainCreatelnfo |

AN

| vkCreateSwapchain() |

| vkGetSwapChainlmages() |

~

| vkCreatelmageView()

Oregon State
University
Computer Graphics

mjb — December 21, 2022

Creating a Swap Chain 10

VkSurfaceCapabilitiesKkHR VSC;
vkGetPhysicalDeviceSurfaceCapabliftiesKHR(PhysicalDevice, Surface, OUT &vsc);
VkExtent2D surfaceRes = vsc.currentExtent;

VkSwapchainCreatelnfoKHR
vscci.sType = VK_STRUCTUR
vscci.pNext = nullptr;
vscci.flags = 0;
vscci.surface = Surface;
vscci.minlmageCount = 2; Il double buffering
vscci.imageFormat = VK_FORMWAT_B8G8R8A8_UNORM;
vscci.imageColorSpace = VK_COLORSPACE_SRGB_NONLINEAR_KHR;
vscci.imageExtent.width = surfaceRes.\vidth;
vscci.imageExtent.height = surfaceRes eight;
vscci.imageUsage = VK_IMAGE_USRGE_COLOR_ATTACHMENT_BIT;
vscci.preTransform = VK_SURFACE_{RANSFORM_IDENTITY_BIT_KHR;
vscci.compositeAlpha = VK_COMPOSITE_ ALPHA_OPAQUE_BIT_KHR;
vscci.imageArraylLayers = 1;
vscci.imageSharingMode = VK_SHARING_\MODE_EXCLUSIVE;
vscci.queueFamilylndexCount = 0;
vscci.pQueueFamilylndices = (const uint32_t*)nullptr;
vscci.presentMode = VK_PRESENT_MODE_MAILBOX_KHR;
vscci.oldSwapchain = VK_NULL_HANDLE;
vscci.clipped = VK_TRUE;

YPE_SWAPCHAIN_CREATE_INFO_KHR;

result = vkCreateSwapchainKHR(LogicalDevice, IN &vscci, PALLOCATOR, OUT &SwapChain);

O

£=)
University
Computer Graphics
mjb — December 21, 2022

12/29/2022

Creating the Swap Chain Images and Image Views

uint32_t imageCount; /I # of display buffers —2? 37
result = vkGetSwapchainimagesKHR(LogicalDevice, IN SwapChain, OUT &imageCount, (Vkimage *)nullptr);

Presentimages = new Vkimage[imageCount];
result = vkGetSwapchainlmagesKHR(LogicalDevice, SwapChain, OUT &imageCount, Presentimages);

/I present views for the double-buffering:
PresentimageViews = new VklmageView[imageCount];

for(unsigned inti = 0; i < imageCount; i++)

VklmageViewCreatelnfo
vivei.sType = VK_STRUCTUR
vivci.pNext = nullptr;
vivci.flags = 0;
vivci.viewType = VK_IMAGE_VI

" TYPE_IMAGE_VIEW_CREATE_INFO;

_TYPE_2D;
8A8_UNORM;

vivci.components.a = VK_COMPONENT_SWIZZLE_A;
vivci.subresourceRange.aspectMask =VYK_IMAGE_ASPECT_COLOR_BIT;
vivci.subresourceRange.baseMipLevel
vivci.subresourceRange.levelCount = 1;
vivci.subresourceRange.baseArraylLayer
vivci.subresourceRange.layerCount = 1;
vivci.image = Presentimages] i];

result = vkCreatelmageView(LogicalDevice, IN &vivci, PALLOCATOR, OUT &PresentimageViews[i]);

Rendering into the Swap Chain, |

12

VkSemaphoreCreatelnfo

VkSemaphore imageReadySemaphore;
result = vkCreateSemaphore(LogicalDevice, IN &vsci, PALLOCATOR, OUT &imageReadySemaphore);

vsci.sType = VK_STRUCTUR)
vsci.pNext = nullptr;
vsci.flags = 0;

YRE_SEMAPHORE_CREATE_INFO;

uint32_t nextlmagelndex;
uint64_t tmeout = UINT64_MAX;
vkAcquireNextimageKHR(LogicalDevice, IN SwapChain, IN timeout, IN imageReadySemaphore,

IN VK_NULL_HANDLE, OUT &nextimagelndex);

result = vkBeginCommandBuffer(CommandBuffers|[nextimagelndex], IN &vcbbi);

vkCmdBeginRenderPass(CommandBuffers[nextimagelndex], IN &vrpbi,

IN VK_SUBPASS_CONTENTS_INLINE);

vkCmdBindPipeline(CommandBuffers[nextimagelndex], VK_PIPELINE_BIND_POINT_GRAPHICS, GraphicsPipeline);

vkCmdEndRenderPass(CommandBuffers[nextimagelndex]);
vkEndCommandBuffer(CommandBuffers| nextimagelndex]);

OTCEUTTOTITG

University

Computer Graphics

mjb — December 21, 2022

12/29/2022

Rendering into the Swap Chain, Il 13
VkFenceCreatelnfo
vfci.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
vfci.pNext = nullptr;
vfci.flags = 0;
VkFence renderFence;
vkCreateFence(LogicalDevice, &vfci, PALLOCATOR, OUT &renderFence);
VkQueue presentQueue;
vkGetDeviceQueue(LogicalDevice, FindQueueFamilyThatDoesGraphics(), O,
OUT &presentQueue);
VkSubmitinfo
vsi.sType = VK_STRUC\URE_TYPE_SUBMIT_INFO;
vsi.pNext = nullptr;
vsi.waitSemaphoreCount =Y;
vsi.pWaitSemaphores = &imageReadySemaphore;
vsi.pWaitDstStageMask = &wai{AtBottom;
vsi.commandBufferCount = 1;
vsi.pCommandBuffers = &CommapdBuffers[nextimagelndex J;
vsi.signalSemaphoreCount = 0;
vsi.pSignalSemaphores = &SemaphdreRenderFinished;
result = vkQueueSubmit(presentQueue, 1, IN &vsi, IN renderFence); // 1 = submitCount
O
Ull.lVI'.‘lblI._)‘
Computer Graphics
mjb — December 21, 2022
14

Rendering into the Swap Chain, Il

result = vkWaitForFences(LogicalDevice, 1, IN &renderFence, VK_TRUE, UINT64_MAX);

VkPresentinfoKkHR
vpi.sType = VK_STRUCTURE_NKYPE_PRESENT_INFO_KHR;
vpi.pNext = nullptr;
vpi.waitSemaphoreCount = 0;
vpi.pWaitSemaphores = (VkSemap
vpi.swapchainCount = 1;
vpi.pSwapchains = &SwapChain;
vpi.plmagelndices = &nextlmagelnde:
vpi.pResults = (VkResult *) nullptr;

ore *)nullptr;

result = vkQueuePresentKHR(presentQueue, IN &vpi);

Oregon State
University
Computer Graphics

8

mjb — December 21, 2022

12/29/2022

