# Species Distribution Modeling of Citizen Science <br> Data as a Classification Problem with Class-conditional Noise: Supplemental Material 

Rebecca A. Hutchinson ${ }^{1,2} \quad$ Liqiang He ${ }^{1}$<br>Sarah C. Emerson ${ }^{3}$

${ }^{1}$ School of Electrical Engineering and Computer Science
${ }^{2}$ Department of Fisheries and Wildlife
${ }^{3}$ Statistics Department
Oregon State University
Corvallis, OR 97331
\{rah,heli,sarah.emerson\} @oregonstate.edu

## Synthetic data generation process

In the synthetic experiments, all non-intercept coefficients were set to 1 , and we varied the intercept coefficients to achieve different class balances and noise levels. For example, when the class balance was low ( $25 \%$ ), we have

$$
\bar{\psi}=\operatorname{logistic}(f(x))=\operatorname{logistic}\left(\alpha_{0}+\alpha_{1} X_{1}+\alpha_{2} X_{2}+\alpha_{3} X_{3}\right)=0.25 .
$$

Since $\alpha_{1}=\alpha_{2}=\alpha_{3}=1$, the above equation becomes

$$
\bar{\psi}=\operatorname{logistic}\left(\alpha_{0}+X_{1}+X_{2}+X_{3}\right)=0.25
$$

When $X_{1}, X_{2}$, and $X_{3}$ have normal distributions, it is easy to get $\alpha_{0}=-1.91$. The other coefficients are given in Table S1. Given the coefficients, we sample the true and observed labels according to the generative model.

For datasets \#1-7, we used the logistic link function when generating the data. For dataset \#8, we used the probit link. For dataset \#9, we scaled the real values of an input vector $X$ to the probability scale around a given target mean $X_{\text {targ }}$ using the following process. Firstly, we scale the input vector into range of $[0,1]$ :

$$
X_{n e w}=\frac{X-\min (X)}{\max (X)-\min (X)}
$$

Then we scale the range of $X_{\text {new }}$ again to accommodate target mean $X_{\text {targ }}$ :

$$
X_{\text {new }}=2 \times X_{\text {new }} \times \min \left(X_{\text {targ }}, 1-X_{\text {targ }}\right)
$$

Finally, we shift the values around the target mean $X_{\text {targ }}$ :

$$
X_{n e w}=X_{n e w}+X_{\text {targ }}-\operatorname{mean}\left(X_{n e w}\right)
$$

| N.O. | Name | $a_{0 \_} h$ | $a_{0 \_} m$ | $a_{0-} l$ | $b_{0 \_} h$ | $b_{0 \_} m$ | $b_{0 \_} l$ | $c_{0 \_} h$ | $c_{0 \_} m$ | $c_{0 \_} l$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | none-cont-logit | -1.645 | 0 | 1.645 | -0.452 | -1.215 | -2.381 | 0.452 | -1.215 | -2.381 |
| 2 | none-mix-logit | 1.033 | -0.5 | -2.033 | -0.686 | -1.423 | -2.570 | -0.686 | -1.423 | -2.570 |
| 3 | none-cat-logit | -0.228 | -1.5 | -2.272 | -0.5 | -1.629 | -2.747 | -0.5 | -1.629 | -2.747 |
| 4 | noise-cont-logit | -1.645 | 0 | 1.645 | -0.452 | -1.215 | -2.381 | 0.452 | -1.215 | -2.381 |
| 5 | noise-mix-logit | 1.033 | -0.5 | -2.033 | -0.686 | -1.423 | -2.570 | -0.686 | -1.423 | -2.570 |
| 6 | class-cont-logit | -1.645 | 0 | 1.645 | -0.452 | -1.215 | -2.381 | 0.452 | -1.215 | -2.381 |
| 7 | class-mix-logit | 1.033 | -0.5 | -2.033 | -0.686 | -1.423 | -2.570 | -0.686 | -1.423 | -2.570 |
| 8 | noise-mix-probit | 1.033 | -0.5 | -2.033 | -0.686 | -1.423 | -2.570 | -0.686 | -1.423 | -2.570 |
| 9 | noise-mix-scale | 1.033 | -0.5 | -2.033 | -0.686 | -1.423 | -2.570 | -0.686 | -1.423 | -2.570 |

Table S1: Intercept coefficients for the nine different datasets under different class balance and noise levels. " $\mathrm{h}, \mathrm{m}$, l" are used to denote three different levels: "high, medium, low". Datasets \#1, \#4, and \#6 have the same coefficients, because the covariates types are the same. Similarly, datasets \#2, \#5, \#7, \#8, and \#9 have the same coefficients. Dataset \# 3 is used to explore the influence of categorical covariates, so its coefficients are different from the others.


Figure S1: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#1 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $25 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets.


Figure S2: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#1 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $50 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets. While the $C N$ method often exhibits high variability due to identifiability issues, the perfectly symmetric cases have lower variability.


Figure S3: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#1 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $75 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets.

Class balance $=0.25$, dataset \#2, dataset size $=3200$


Figure S4: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#2 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $25 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets.


Figure S5: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#2 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $50 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets. While the $C N$ method often exhibits high variability due to identifiability issues, the perfectly symmetric cases have lower variability.


Figure S6: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#2 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $75 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets.


Figure S7: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#3 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $25 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets.


Figure S8: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#3 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $50 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets. While the $C N$ method often exhibits high variability due to identifiability issues, the perfectly symmetric cases have lower variability.


Figure S9: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#3 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $75 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets.

Class balance $=0.25$, dataset \#4, dataset size $=3200$


Figure S10: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#4 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $25 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets.


Figure S11: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#4 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $50 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets. While the $C N$ method often exhibits high variability due to identifiability issues, the perfectly symmetric cases have lower variability.


Figure S12: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#4 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $75 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets.

Class balance $=0.25$, dataset \#5, dataset size $=3200$


Figure S13: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#5 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $25 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets.


Figure S14: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#5 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $50 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets. While the $C N$ method often exhibits high variability due to identifiability issues, the perfectly symmetric cases have lower variability.


Figure S15: Mean squared error in the class probabilities ( $\psi$ ) for data-generating model \#5 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $75 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets.


Figure S16: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#6 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $25 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets.


Figure S17: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#6 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $50 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets. While the $C N$ method often exhibits high variability due to identifiability issues, the perfectly symmetric cases have lower variability.


Figure S18: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#6 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $75 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets.


Figure S19: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#7 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $25 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets.


Figure S20: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#7 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $50 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets. While the $C N$ method often exhibits high variability due to identifiability issues, the perfectly symmetric cases have lower variability.


Figure S21: Mean squared error in the class probabilities ( $\psi$ ) for data-generating model \#7 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $75 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets.


Figure S22: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#8 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $25 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets.


Figure S23: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#8 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $50 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets. While the $C N$ method often exhibits high variability due to identifiability issues, the perfectly symmetric cases have lower variability.


Figure S24: Mean squared error in the class probabilities ( $\psi$ ) for data-generating model \#8 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $75 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets.


Figure S25: Mean squared error in the class probabilities ( $\psi$ ) for data-generating model \#9 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $25 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets.


Figure S26: Mean squared error in the class probabilities $(\psi)$ for data-generating model \#9 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $50 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets. While the $C N$ method often exhibits high variability due to identifiability issues, the perfectly symmetric cases have lower variability.


Figure S27: Mean squared error in the class probabilities ( $\psi$ ) for data-generating model \#9 for varying levels of false negative rates (FNR) and false positive rates (FPR) when the true class model had $75 \%$ positives. All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets.

| Simulated Species | Variables in Submodels | Average rates |
| :--- | :--- | :--- |
| 1 | $\psi=f(E L E V A T I O N, H U M A N . P O P U L A T I O N)$ | 0.55 |
|  | $\rho=g(D A Y)$ | 0.05 |
|  | $\eta=h(E F F O R T . H R S, T I M E)$ | 0.2 |
| 2 | $\psi=f(E L E V A T I O N, H U M A N . P O P U L A T I O N)$ | 0.55 |
|  | $\rho=g(D A Y, T I M E)$ | 0.1 |
|  | $\eta=h(E F F O R T . H R S, T I M E)$ | 0.4 |

Table S2: Model forms and average rates of class balance/occupancy, false positives, and false negatives for the species simulated from eBird features.

| Model | Variables in Noise Models |
| :---: | :---: |
| 1 | $\begin{aligned} & \rho=g(D A Y, E F F O R T . H R S, E F F O R T . D I S T, N . O B S, T I M E) \\ & \eta=h() \end{aligned}$ |
| 2 | $\begin{aligned} & \rho=g(E F F O R T . H R S, E F F O R T . D I S T, N . O B S, T I M E) \\ & \eta=h(D A Y) \end{aligned}$ |
| 3 | $\begin{aligned} & \rho=g(D A Y, E F F O R T . D I S T, N . O B S, T I M E) \\ & \eta=h(E F F O R T . H R S) \end{aligned}$ |
| 4 | $\begin{aligned} & \rho=g(D A Y, E F F O R T . H R S, N . O B S, T I M E) \\ & \eta=h(E F F O R T . D I S T) \end{aligned}$ |
| 5 | $\begin{aligned} & \rho=g(D A Y, E F F O R T . H R S, E F F O R T . D I S T, T I M E) \\ & \eta=h(N . O B S) \end{aligned}$ |
| 6 | $\begin{aligned} & \rho=g(D A Y, E F F O R T . H R S, E F F O R T . D I S T, N . O B S) \\ & \eta=h(T I M E) \end{aligned}$ |
| 7 | $\begin{aligned} & \rho=g(E F F O R T . D I S T, N . O B S, T I M E) \\ & \eta=h(D A Y, E F F O R T . H R S) \end{aligned}$ |
| 8 | $\begin{aligned} & \rho=g(E F F O R T . H R S, N . O B S, T I M E) \\ & \eta=h(D A Y, E F F O R T \cdot D I S T) \end{aligned}$ |
| 9 | $\begin{aligned} & \rho=g(E F F O R T . H R S, E F F O R T . D I S T, T I M E) \\ & \eta=h(D A Y, N \cdot O B S) \end{aligned}$ |
| 10 | $\begin{aligned} & \rho=g(E F F O R T . H R S, E F F O R T . D I S T, N . O B S) \\ & \eta=h(D A Y, T I M E) \end{aligned}$ |
| 11 | $\begin{aligned} & \rho=g(D A Y, N . O B S, T I M E) \\ & \eta=h(E F F O R T . H R S, E F F O R T . D I S T) \end{aligned}$ |
| 12 | $\begin{aligned} & \rho=g(D A Y, E F F O R T \cdot D I S T, T I M E) \\ & \eta=h(E F F O R T . H R S, N . O B S) \end{aligned}$ |
| 13 | $\begin{aligned} & \rho=g(D A Y, E F F O R T . D I S T, N . O B S) \\ & \eta=h(E F F O R T \cdot H R S, T I M E) \end{aligned}$ |
| 14 | $\begin{aligned} & \rho=g(D A Y, E F F O R T \cdot H R S, T I M E) \\ & \eta=h(E F F O R T \cdot D I S T, N \cdot O B S) \end{aligned}$ |
| 15 | $\begin{aligned} & \rho=g(D A Y, E F F O R T \cdot H R S, N . O B S) \\ & \eta=h(E F F O R T \cdot D I S T, T I M E) \end{aligned}$ |
| 16 | $\begin{aligned} & \rho=g(D A Y, E F F O R T . H R S, E F F O R T . D I S T) \\ & \eta=h(N . O B S, T I M E) \end{aligned}$ |
| 17 | $\begin{aligned} & \rho=g(D A Y, E F F O R T . H R S, E F F O R T . D I S T, N . O B S, T I M E) \\ & \eta=h(E F F O R T . H R S, E F F O R T . D I S T, N . O B S, T I M E) \end{aligned}$ |
| 18 | $\begin{aligned} & \rho=g(D A Y, E F F O R T . H R S, E F F O R T . D I S T, \text { N.OBS,TIME) } \\ & \eta=h(D A Y, E F F O R T . H R S, E F F O R T . D I S T, T I M E) \end{aligned}$ |
| 19 | $\begin{aligned} & \rho=g(D A Y, E F F O R T . H R S, E F F O R T \cdot D I S T, N . O B S, T I M E) \\ & \eta=h(D A Y, E F F O R T . H R S, E F F O R T \cdot D I S T, N . O B S) \end{aligned}$ |
| 20 | $\begin{aligned} & \rho=g(D A Y, E F F O R T . H R S, E F F O R T . D I S T, N . O B S, T I M E) \\ & \eta=h(D A Y, E F F O R T . D I S T, N . O B S, T I M E) \end{aligned}$ |
| 21 | $\begin{aligned} & \rho=g(D A Y, E F F O R T . H R S, E F F O R T . D I S T, N . O B S, T I M E) \\ & \eta=h(D A Y, E F F O R T . H R S, N . O B S, T I M E) \end{aligned}$ |

Table S3: Models considered for the eBird species. Models 1-16 assign each of the five noise features to exactly one of the two submodels. Models 17-21 assign all five noise features to one submodel and all except one feature to the other submodel.

| California |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Common Name | Scientific Name | Report frequency | Model selected | Est. avg. occ. prob. | Est. avg. false neg. prob. | Est. avg. false pos. prob. |
| American crow | Corvus brachyrhynchos | 0.34 | 12 | 0.52 | 0.40 | 0.037 |
| Song sparrow | Melospiza melodia | 0.32 | 7 | 0.52 | 0.37 | 0.013 |
| Red-winged blackbird | Agelaius phoeniceus | 0.23 | 17 | 0.32 | 0.28 | 0.029 |
| Nuttall's woodpecker | Picoides nuttallii | 0.18 | 11 | 0.57 | 0.42 | 0.0058 |
| Western kingbird | Tyrannus verticalis | 0.16 | 18 | 0.38 | 0.36 | 0.031 |
| Western wood pewee | Contopus sordidulus | 0.13 | 13 | 0.43 | 0.39 | 0.038 |
| Northern rough-winged swallow | Stelgidopteryx serripennis | 0.13 | 9 | 0.46 | 0.50 | 0.016 |
| Sim1 | Simulus primus | 0.48 | 7 | 0.56 | 0.17 | 0.054 |
| Sim2 | Simulus secondus | 0.38 | 20 | 0.53 | 0.40 | 0.099 |
| New York |  |  |  |  |  |  |
| Common Name | Scientific Name | Report frequency | Model selected | Est. avg. occ. prob. | Est. avg. false neg. prob. | Est. avg. false pos. prob. |
| Red-winged blackbird | Agelaius phoeniceus | 0.59 | 18 | 0.31 | 0.30 | 0.077 |
| Song sparrow | Melospiza melodia | 0.56 | 5 | 0.50 | 0.15 | 0.021 |
| American crow | Corvus brachyrhynchos | 0.49 | 17 | 0.72 | 0.28 | 0.035 |
| Red-eyed vireo | Vireo olivaceus | 0.26 | 20 | 0.28 | 0.22 | 0.095 |
| Wood thrush | Hylocichla mustelina | 0.21 | 5 | 0.42 | 0.46 | 0.012 |
| Eastern wood pewee | Contopus virens | 0.14 | 2 | 0.40 | 0.32 | 0.051 |
| Indigo bunting | Passerina cyanea | 0.14 | 1 | 0.30 | 0.0 | 0.061 |
| Veery | Catharus fuscescens | 0.13 | 13 | 0.47 | 0.30 | 0.024 |
| Sim1 | Simulus primus | 0.48 | 15 | 0.62 | 0.20 | 0.048 |
| Sim2 | Simulus secondus | 0.40 | 20 | 0.54 | 0.40 | 0.11 |

Table S4: Species modeled with the eBird Reference Dataset. The table also indicates the overall freqency of positive reports of the species in the data, the model selected for the $F P$ method, and the estimated average occupancy (class balance), false negative, and false positive rates. Note that these results deserve further evaluation from an ecological perspecitve; for example, a false negative rate of 0 for the Indigo bunting may be a sign of model overfitting and not a realistic estimate.

| Model | Validation NLL | Test NLL | Test MSE <br> on $\psi$ | Test MSE <br> on $\eta$ | Test MSE <br> on $\rho$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2406.6 | 2278.1 | 0.055 | 0.00042 | 0.0076 |
| $\mathbf{2}$ | 2375.1 | $\mathbf{2 0 3 9 . 6}$ | $\mathbf{0 . 0 2 3}$ | 0.000079 | $\mathbf{0 . 0 0 0 0 7 3}$ |
| 3 | 2449.1 | 2438.1 | 0.078 | 0.018 | 0.0078 |
| 4 | 2398.8 | 2281.3 | 0.056 | 0.00037 | 0.0076 |
| 5 | 2391.0 | 2264.0 | 0.053 | 0.00036 | 0.0076 |
| 6 | 2602.6 | 2264.2 | 0.043 | 0.030 | 0.00074 |
| 7 | $\mathbf{2 2 3 8 . 6}$ | 2065.4 | 0.023 | 0.018 | 0.00023 |
| $\mathbf{8}$ | 2394.6 | 2046.8 | 0.024 | 0.000046 | 0.00011 |
| $\mathbf{9}$ | 2383.1 | 2045.3 | 0.024 | 0.000054 | 0.000098 |
| 10 | 2478.0 | 2215.4 | 0.034 | 0.038 | 0.0022 |
| 11 | 2432.3 | 2300.1 | 0.048 | 0.039 | 0.0025 |
| 12 | 2441.3 | 2409.8 | 0.072 | 0.019 | 0.0078 |
| $\mathbf{1 3}$ | 2404.0 | 2053.0 | 0.025 | $\mathbf{0 . 0 0 0 0 2 1}$ | 0.00014 |
| 14 | 2383.6 | 2268.8 | 0.055 | 0.00031 | 0.0076 |
| 15 | 2329.6 | 2089.9 | 0.026 | 0.019 | 0.00025 |
| 16 | 2430.5 | 2154.0 | 0.028 | 0.028 | 0.00070 |
| $\mathbf{1 7}$ | 2458.0 | 2071.2 | 0.027 | 0.00012 | 0.00031 |
| $\mathbf{1 8}$ | 2345.7 | 2091.7 | 0.030 | 0.00011 | 0.00032 |
| $\mathbf{1 9}$ | 2396.1 | 2058.0 | 0.025 | 0.00011 | 0.00018 |
| $\mathbf{2 0}$ | 2445.0 | 2079.7 | 0.028 | 0.00014 | 0.00032 |
| $\mathbf{2 1}$ | 2425.3 | 2064.3 | 0.026 | 0.00077 | 0.00030 |
| OCC | - | - | 0.093 | 0.00089 | - |
| CN | - | - | 0.070 | 0.086 | 0.0078 |

Table S5: Model selection results for Sim1 in CA. Bold-numbered models (or their symmetric analogs) are consistent with the true data-generating model. Bold values indicate the best value in each column. Here, model 7 is chosen using the validation set even though it is not consistent with the data-generating model. On the test set, model 2 performs best on the class model, but model 7 is nearly tied with it. All $21 F P$ models outperform the $O C C$ model, and all but two outperform the $C N$ model on $\psi$.

| Model | Validation NLL | Test NLL | Test MSE <br> on $\psi$ | Test MSE <br> on $\eta$ | Test MSE <br> on $\rho$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2174.7 | 2170.9 | 0.018 | 0.0028 | 0.034 |
| 2 | 2124.3 | 2218.2 | 0.048 | 0.00070 | 0.019 |
| 3 | 2400.7 | 2452.7 | 0.090 | 0.044 | 0.036 |
| 4 | 2179.4 | 2169.2 | $\mathbf{0 . 0 1 7}$ | 0.0028 | 0.034 |
| 5 | 2178.6 | 2173.0 | 0.019 | 0.0028 | 0.034 |
| 6 | 2549.5 | 2821.9 | 0.16 | 0.061 | 0.020 |
| 7 | 2338.7 | 2545.4 | 0.10 | 0.040 | 0.019 |
| 8 | 2128.4 | 2223.8 | 0.050 | 0.00067 | 0.019 |
| 9 | 2121.8 | 2204.2 | 0.045 | 0.00064 | 0.019 |
| 10 | 2984.8 | 3146.4 | 0.12 | 0.084 | 0.0010 |
| 11 | 2979.9 | 3143.8 | 0.12 | 0.085 | 0.0013 |
| 12 | 2413.4 | 2467.1 | 0.086 | 0.046 | 0.036 |
| 13 | 2125.6 | 2209.5 | 0.046 | 0.00060 | 0.019 |
| 14 | 2181.9 | 2170.6 | 0.018 | 0.0027 | 0.034 |
| 15 | 2371.7 | 2639.1 | 0.12 | 0.042 | 0.019 |
| 16 | 2514.8 | 2705.0 | 0.14 | 0.057 | 0.020 |
| $\mathbf{1 7}$ | 2106.4 | 2119.2 | 0.024 | $\mathbf{0 . 0 0 0 2 7}$ | 0.000096 |
| $\mathbf{1 8}$ | 2100.3 | 2117.4 | 0.023 | 0.00043 | 0.000088 |
| 19 | 2157.4 | 2261.5 | 0.059 | 0.0010 | 0.018 |
| $\mathbf{2 0}$ | $\mathbf{2 0 9 9 . 4}$ | $\mathbf{2 1 1 6 . 5}$ | 0.023 | 0.00044 | 0.00010 |
| $\mathbf{2 1}$ | 2100.3 | 2116.7 | 0.023 | 0.00043 | $\mathbf{0 . 0 0 0 0 6 4}$ |
| OCC | - | - | 0.15 | 0.011 | - |
| CN | - | - | 0.17 | 0.11 | 0.034 |

Table S6: Model selection results for Sim2 in CA. Bold-numbered models (or their symmetric analogs) are consistent with the true data-generating model. Bold values indicate the best value in each column. Here, model 20 is chosen using the validation set, which is consistent with the data-generating model. It also has the best negative log-likelihood on the test set, though model 4 does slightly better on MSE of the class probabilities. All but one of the $F P$ models outperform the $O C C$ model, and they all outperform the $C N$ model on $\psi$.

| Model | Validation NLL | Test NLL | Test MSE <br> on $\psi$ | Test MSE <br> on $\eta$ | Test MSE <br> on $\rho$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2113.0 | 2435.6 | 0.061 | 0.0011 | 0.0090 |
| $\mathbf{2}$ | 2113.7 | 2454.4 | 0.065 | 0.00030 | $\mathbf{0 . 0 0 0 2 4}$ |
| 3 | 2061.4 | 2360.7 | 0.045 | 0.021 | 0.0094 |
| 4 | 2115.9 | 2438.1 | 0.061 | 0.0011 | 0.0089 |
| 5 | 2129.8 | 2444.6 | 0.062 | 0.0010 | 0.0090 |
| 6 | 2095.9 | 2469.3 | 0.062 | 0.027 | 0.00092 |
| 7 | 2043.8 | $\mathbf{2 3 1 7 . 4}$ | $\mathbf{0 . 0 4 0}$ | 0.021 | 0.00046 |
| $\mathbf{8}$ | 2116.7 | 2456.3 | 0.066 | 0.00030 | 0.00028 |
| $\mathbf{9}$ | 2122.7 | 2456.5 | 0.066 | 0.00025 | 0.00056 |
| 10 | 2111.4 | 2507.3 | 0.067 | 0.028 | 0.0099 |
| 11 | 2107.7 | 2475.1 | 0.062 | 0.027 | 0.0098 |
| 12 | 2058.4 | 2374.7 | 0.047 | 0.021 | 0.0095 |
| $\mathbf{1 3}$ | 2124.6 | 2456.3 | 0.066 | $\mathbf{0 . 0 0 0 2 5}$ | 0.00055 |
| 14 | 2129.7 | 2443.8 | 0.062 | 0.0010 | 0.0090 |
| 15 | $\mathbf{2 0 4 1 . 7}$ | 2327.9 | 0.042 | 0.021 | 0.00083 |
| 16 | 2093.2 | 2440.4 | 0.058 | 0.027 | 0.00056 |
| $\mathbf{1 7}$ | 2143.9 | 2484.8 | 0.070 | 0.00036 | 0.0010 |
| $\mathbf{1 8}$ | 2144.6 | 2462.6 | 0.067 | 0.00048 | 0.0011 |
| $\mathbf{1 9}$ | 2121.8 | 2448.1 | 0.065 | 0.00051 | 0.00062 |
| $\mathbf{2 0}$ | 2143.8 | 2467.8 | 0.068 | 0.00051 | 0.0010 |
| $\mathbf{2 1}$ | 2144.2 | 2467.1 | 0.068 | 0.00051 | 0.0010 |
| OCC | - | - | 0.050 | 0.0014 | - |
| CN | - | - | 0.055 | 0.057 | 0.0095 |

Table S7: Model selection results for Siml in NY. Bold-numbered models (or their symmetric analogs) are consistent with the true data-generating model. Bold values indicate the best value in each column. Here, model 15 is chosen using the validation set even though it is not consistent with the data-generating model. On the test set, model 7 performs best on the class model, even though it is not consistent with the data-generating model. Four of the FP models outperform the $O C C$ and $C N$ models on $\psi$.

| Model | Validation NLL | Test NLL | Test MSE <br> on $\psi$ | Test MSE <br> on $\eta$ | Test MSE <br> on $\rho$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2223.6 | 2132.6 | 0.037 | 0.0025 | 0.045 |
| 2 | 2072.1 | 2037.8 | 0.029 | 0.00017 | 0.023 |
| 3 | 2448.2 | 2367.0 | 0.11 | 0.042 | 0.046 |
| 4 | 2227.9 | 2141.3 | 0.039 | 0.0025 | 0.045 |
| 5 | 2223.6 | 2128.2 | 0.036 | 0.0025 | 0.044 |
| 6 | 2378.9 | 2310.5 | 0.076 | 0.053 | 0.025 |
| 7 | 2342.0 | 2265.4 | 0.080 | 0.039 | 0.023 |
| 8 | 2072.0 | 2042.6 | 0.030 | 0.00016 | 0.023 |
| 9 | 2076.0 | 2029.5 | 0.026 | 0.00012 | 0.022 |
| 10 | 2496.4 | 2424.7 | 0.036 | 0.085 | 0.0017 |
| 11 | 2482.7 | 2425.4 | 0.036 | 0.085 | 0.0017 |
| 12 | 2462.7 | 2378.5 | 0.11 | 0.042 | 0.046 |
| 13 | 2072.1 | 2033.9 | 0.028 | $\mathbf{0 . 0 0 0 1 1}$ | 0.022 |
| 14 | 2225.5 | 2136.9 | 0.039 | 0.0024 | 0.045 |
| 15 | 2358.1 | 2272.1 | 0.080 | 0.040 | 0.023 |
| 16 | 2370.7 | 2305.0 | 0.076 | 0.051 | 0.025 |
| $\mathbf{1 7}$ | 2071.5 | 1957.9 | 0.0093 | 0.00013 | 0.00025 |
| $\mathbf{1 8}$ | 2071.8 | $\mathbf{1 9 5 7 . 7}$ | 0.0091 | 0.00014 | 0.00024 |
| 19 | 2075.3 | 2037.4 | 0.029 | 0.00021 | 0.022 |
| $\mathbf{2 0}$ | $\mathbf{2 0 6 7 . 2}$ | 1959.1 | 0.094 | 0.00016 | $\mathbf{0 . 0 0 0 1 5}$ |
| $\mathbf{2 1}$ | 2071.4 | 1957.8 | $\mathbf{0 . 0 0 9 1}$ | 0.00013 | 0.00025 |
| OCC | - | - | 0.034 | 0.016 | - |
| CN | - | - | 0.085 | 0.11 | 0.049 |

Table S8: Model selection results for Sim2 in NY. Bold-numbered models (or their symmetric analogs) are consistent with the true data-generating model. Bold values indicate the best value in each column. Here, model 20 is chosen using the validation set, which is consistent with the data-generating model. Model 18 has the best negative log-likelihood on the test set, and model 21 performs best in terms of MSE on $\psi$ for the test set, but all four consistent models have very similar performance. Eight of the $F P$ models outperform the $O C C$ model, and 19 of them outperform the $C N$ model on $\psi$.

