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Abstract

We consider learning to classify cognitive states of human subjects,
based on their brain activity observed via functional Magnetic Resonance
Imaging (fMRI). This problem is important because such classifiers con-
stitute “virtual sensors” of hidden cognitive states, which may be useful
in cognitive science research and clinical applications. In recent work,
Mitchell, et al. [6,7,9] have demonstrated the feasibility of training such
classifiers for individual human subjects (e.g., to distinguish whether the
subject is reading an ambiguous or unambiguous sentence, or whether
they are reading a noun or a verb). Here we extend that line of research,
exploring how to train classifiers that can be applied across multiple hu-
man subjects, including subjects who were not involved in training the
classifier. We describe the design of several machine learning approaches
to training multiple-subject classifiers, and report experimental results
demonstrating the success of these methods in learning cross-subject
classifiers for two different fMRI data sets.

1 Introduction

The advent of functional Magnetic Resonance Imaging (fMRI) has made it possible to
safely, non-invasively observe correlates of neural activity across the entire human brain at
high spatial resolution. A typical fMRI session can produce a three dimensional image of
brain activation once per second, with a spatial resolution of a few millimeters, yielding
tens of millions of individual fMRI observations over the course of a twenty minute ses-
sion. This fMRI technology holds the potential to revolutionize studies of human cognitive
processing, provided we can develop appropriate data analysis methods.

Researchers have now employed fMRI to conduct hundreds of studies that identify which
regions of the brain are activated on average when a human performs a particular cognitive
task (e.g., reading, puzzle solving). Typical research publications describe summary statis-
tics of brain activity in various locations, calculated by averaging together fMRI observa-
tions collected over multiple time intervals during which the subject responds to repeated
stimuli of a particular type.

Our interest here is in a different problem: training classifiers to automatically decode the



subject’s cognitive state at a single instant or interval in time. If we can reliably train such
classifiers, we may be able to use these as “virtual sensors” of hidden cognitive states, to
observe previously hidden cognitive processes in the brain.

In recent work [6,7,9], Mitchell et al. have demonstrated the feasibility of training such
classifiers (e.g., to distinguish whether the word a person is reading is a noun or a verb).
Whereas their work focussed primarily on training a different classifier for each human sub-
ject, our focus in this paper is on training a single classifier that can be used across multiple
human subjects, including humans not involved in the training process. This is challenging
because different brains have substantially different sizes and shapes, and because differ-
ent people may generate different brain activation given the same cognitive state. Below
we briefly survey related work, describe a range of machine learning approaches to this
problem, and present experimental results showing statistically significant cross-subject
classifier accuracies for two different fMRI studies.

2 Related Work

As noted above, Mitchell et al. [6,7,9] describe methods for training classifiers of cogni-
tive states, focussing primarily on training subject-specific classifiers. More specifically,
they train classifiers that distinguish among a set of predefined cognitive states, based on a
single fMRI image or fixed window of fMRI images collected relative to the presentation
of a particular stimulus. For example, they report on successful classifiers to distinguish
whether the object presented to the subject is a sentence or a picture, whether the sentence
being viewed is ambiguous or unambiguous, whether an isolated word is a noun or a verb,
and whether an isolated noun is about a person, building, animal, etc. They used Gaus-
sian Naive Bayes classifiers, � Nearest Neighbor, and Support Vector Machine classifiers,
and report that dimensionality reduction methods (e.g., feature selection, aggregating fea-
ture values) are essential given the high dimensional, sparse training data. They propose
specific methods for dimensionality reduction that take advantage of data collected during
rest periods between stimuli, and demonstrate that these outperform standard methods for
feature selection such as those based on mutual information. Despite these positive re-
sults, there remain several limitations: classifiers are trained and applied over a fixed time
window of data, classifiers are trained only to discriminate among predefined classes of
cognitive states, and they deal only with single cognitive states rather than multiple states
evolving over time.

In earlier work, Wagner et al. [11] report that they have been able to predict whether
a verbal experience will be remembered later, based on the magnitude of activity within
certain parts of left prefrontal and temporal cortices during that experience. Haxby et al.
[2] show that different patterns of fMRI activity are generated when a subject views a
photograph of a face versus a house, etc., and show that by dividing the fMRI data for each
photograph category into two samples, they could automatically match the data samples
related to the same category. Recent work on brain computer interfaces (see, e.g., [8]) also
seeks to decode observed brain activity (often EEG or direct neural recordings, rather than
fMRI) typically for the purpose of controlling external devices.

3 Approach

3.1 Learning Method

In this paper we explore the use of machine learning methods to approximate classification
functions of the following form
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is a sequence of � fMRI images collected during a contiguous time inter-
val and where CognitiveState is the set of cognitive states to be discriminated. We explore
a number of classifier training methods, including:

� Gaussian Naive Bayes (GNB). This classifier learns a class-conditional Gaussian
generative model for each feature. New examples are classified using Bayes rule
and the assumption that features are conditionally independent given the class
(see, for instance, [5]).
� Support Vector Machine (SVM). We employ a linear kernel Support Vector Ma-

chine (see, for instance, [1]).
� k Nearest Neighbor(kNN). We use � Nearest Neighbor with a Euclidean distance

metric, considering values of 1, 3, and 5 for � (see, for instance, [5]).

Trained classifiers were evaluated using a “leave one subject out” cross validation proce-
dure, in which each of the � human subjects was used as a test subject while training on
the remaining ���

�
subjects, and the mean accuracy over these held out subjects was then

calculated.

3.2 Feature Selection

In general, each input image may contain many thousands of voxels (three dimensional
pixels). We explored a variety of approaches to reducing the dimension of the input feature
vector, including methods that select a subset of available features, methods that replace
multiple feature values by their mean, and methods that use both of these abstractions. In
the latter two cases, we take means over values found within anatomically defined brain
regions (e.g., dorsolateral prefrontal cortex) which are referred to as Regions of Interest, or
ROI’s.

We considered the following feature selection and feature abstraction methods:

� Average. For each ROI, calculate the mean activity over all voxels in the ROI. Use
these ROI means as the input features.
� ActiveAvg(n). For each ROI, select the � most active voxels, then calculate the

mean of their values. Again, use these ROI means as the input features. Here the
“most active” voxels are those whose activity while performing the task varies the
most from their activity when the subject is at rest (see [7] for details).
� Active(n). Select the � most active voxels over the entire brain. Use only these �

voxels as input features.

3.3 Registering Data from Multiple Subjects

Given the different sizes and shapes of different brains, it is not possible to directly map the
voxels in one brain to those in another. We considered two different methods for producing
representations of fMRI data for use across multiple subjects:

� ROI Mapping. Abstract the voxel data in each brain using the Average or Ac-
tiveAvg(n) feature abstraction method described above. Because each brain con-
tains the same set of anatomically defined ROIs, we can use the resulting repre-
sentation of average activity per ROI as a canonical representation across subjects.
� Talairach coordinates. The coordinate system of each brain is transformed (geo-

metrically morphed) into the coordinate system of a standard brain (known as the
Talairach-Tournoux coordinate system [10]). After this transformation, each brain
has the same shape and size, though the transformation is usually imperfect.



There are significant differences in these two approaches. First, note they differ in their
spatial resolution and in the dimension of the resulting input feature vector. ROI Map-
ping results in just one feature per ROI (we work with at most 35 ROIs per brain) at each
timepoint, whereas Talairach coordinates retain the voxel-level resolution (on the order of
15,000 voxels per brain). Second, the approaches have different noise characteristics. ROI
Mapping reduces noise by averaging voxel activations, whereas the Talairach transforma-
tion effectively introduces new noise due to imperfections in the morphing transformation.
Thus, the approaches have complementary advantages and disadvantages. Notice both of
these transformations require background knowledge about brain anatomy in order to iden-
tify anatomical landmarks or ROIs.

4 Case Studies

This section describes two fMRI case studies used for training classifiers (detailed in [7]).
In these case studies, the expected classification accuracy from random guessing is 50%,
given the equal number of examples from both classes.

4.1 Sentence versus Picture Study

In this fMRI study [3], thirteen normal subjects performed a sequence of trials. During
each trial they were first shown a sentence and a simple picture, then asked whether the
sentence correctly described the picture. We used this data set to explore the feasibility of
training classifiers to distinguish whether the subject is examining a sentence or a picture
during a particular time interval.

In half of the trials the picture was presented first, followed by the sentence, which we will
refer to as SP data set. In the remaining trials, the sentence was presented first, followed
by the picture, which we will call PS data set. Pictures contained geometric arrangements
of two of the following symbols: � , � , $. Sentences were descriptions such as “It is true
that the star is below the plus,” or “It is not true that the star is above the plus.”

The learning task we consider here is to train a classifier to determine, given a particular
16-image interval of fMRI data, whether the subject was viewing a sentence or a picture
during this interval. In other words, we wish to learn a classifier of the form:� ��� �	� 
	������
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Picture, Sentence �
where

� �
is the image captured at the time of stimulus (picture or sentence) onset. In this

case we restricted the classifier input to 7 ROIs determined by a domain expert to be most
relevant.

4.2 Syntactic Ambiguity Study

In this fMRI study [4], subjects were presented with ambiguous and unambiguous sen-
tences, and were asked to respond to a yes-no question about the content of each sentence.
The questions were designed to ensure that the subject was in fact processing the sentence.
Five normal subjects participated in this study. In the following, we refer to this study as
SA data set.

We are interested here in learning a classifier that takes as input an interval of fMRI activity,
and determines whether the subject was currently reading an unambiguous or ambiguous
sentence. An example ambiguous sentence is “The experienced soldiers warned about the
dangers conducted the midnight raid.” An example of an unambiguous sentence is “The
experienced soldiers spoke about the dangers before the midnight raid.” We train classifiers
of the form ����� �	��
������
��	��� ��� �

Ambiguous, Unambiguous �



where
� �

is the image captured at the time when the sentence is first presented to the subject.
In this case we restricted the classifier input to 4 ROIs considered to be the most relevant
by a domain expert.

5 Experimental Results

The primary goal of this work is to determine whether and how it is possible to train clas-
sifiers of cognitive states across multiple human subjects. We experimented using data
from the two case studies described above, measuring the accuracy of classifiers trained for
single subjects, as well as those trained for multiple subjects. Note we might expect the
multiple subject classification accuracies to be lower due to differences among subjects, or
to be higher due to the larger number of training examples available.

In order to test the statistical significance of our results, consider the 95% confidence in-
tervals1 associated with training cross-subject classifiers. Assuming that errors on test ex-
amples are i.i.d. Bernoulli(� ) distributed, the number of observed correct classifications
will follow a Binomial( �



� ) distribution, where � is the number of test examples. Table 1

displays the lowest accuracies that are statistically significant at the 95% confidence level,
where the expected accuracy due to chance is 0.5.

Table 1: The lowest accuracies that are significantly better than chance at the 95% level.

SP PS SP+PS SA
# of examples 520 520 1040 100
Lowest accuracy 54.3% 54.3% 53.1% 59.7%

5.1 ROI Mapping

We first consider the ROI Mapping method for merging data from multiple subjects. Table
2 shows the classifier accuracies for the Sentence versus Picture study, when training across
subjects and testing on the subject withheld from the training set. For comparison, it also
shows (in parentheses) the average accuracy achieved by classifiers trained and tested on
single subjects. All results are highly significant compared to the 50% accuracy expected
by chance, demonstrating convincingly the feasibility of training classifiers to distinguish
cognitive states in subjects beyond the training set. In fact, the accuracy achieved on the left
out subject for the multiple-subject classifiers is often very close to the average accuracy of
the single-subject classifiers, and in several cases it is significantly better. This surprisingly
positive result indicates that the accuracy of the multiple-subject classifier, when tested on
new subjects outside the training set, is comparable to the average accuracy achieved when
training and testing using data from a single subject. Presumably this can be explained by
the fact that it is trained using an order of magnitude more training examples, from twelve
subjects rather than one. The increase in training set size apparently compensates for the
variability among subjects.

A second trend apparent in Table 2 is that the accuracies in SP or PS data sets are better
than the accuracies when using their union (SP+PS). Presumably this is due to the fact that
the context in which the stimulus (picture or sentence) appears is more consistent when we
restrict to data in which these stimuli are presented in the same sequence.

1Under cross validation, we learn � classifiers, and the accuracy we reported is the mean accuracy
of these classifiers. The size of the confidence interval we compute is the upper bound of the size of
the true confidence interval of the mean accuracy, which can be shown using the Lagrangian method.



Table 2: Multiple-subject accuracies in the Sentence versus Picture study (ROI mapping).
Numbers in parenthesis are the corresponding average accuracies of single-subject classi-
fiers.

METHOD CLASSIFIER SP PS SP+PS
Average GNB 88.8% (90.6%) 82.3% (79.6%) 74.3% (66.5%)
Average SVM 86.5% (89.0%) 77.1% (83.7%) 75.3% (69.8%)
Average 1NN 84.8% (86.5%) 73.8% (61.9%) 63.7% (59.7%)
Average 3NN 86.5% (87.5%) 75.8% (69.2%) 67.3% (59.7%)
Average 5NN 88.7% (89.4%) 78.7% (74.6%) 68.3% (60.4%)

ActiveAvg(20) GNB 92.5% (95.4%) 87.3% (88.1%) 72.8% (75.4%)
ActiveAvg(20) 1NN 91.5% (94.4%) 83.8% (82.5%) 66.0% (71.2%)
ActiveAvg(20) 3NN 93.1% (95.4%) 86.2% (83.7%) 71.5% (73.2%)
ActiveAvg(20) 5NN 93.8% (95.0%) 87.5% (86.2%) 72.0% (73.2%)

Table 3: Multiple-subject accuracies in the Syntactic Ambiguity study (ROI mapping).
Numbers in parenthesis are the corresponding mean accuracies of single-subject classifiers.
To choose � in ActiveAvg( � ), we explored all even numbers less than 50, and reported the
best.

METHOD CLASSIFIER ACCURACY
Average GNB 58.0% (61.0%)
Average SVM 54.0% (63.0%)
Average 1NN 56.0% (54.0%)
Average 3NN 57.0% (64.0%)
Average 5NN 58.0% (60.0%)

ActiveAvg( � ) GNB 64.0% (68.0%)
ActiveAvg( � ) SVM 65.0% (71.0%)
ActiveAvg( � ) 1NN 64.0% (61.0%)
ActiveAvg( � ) 3NN 69.0% (60.0%)
ActiveAvg( � ) 5NN 62.0% (64.0%)

Classifier accuracies for the Syntactic Ambiguity study are shown in Table 3. Note accu-
racies above 59.7% are significantly better than chance. The accuracies for both single-
subject and multiple-subject classifiers are lower than in the first study, perhaps due in part
to the smaller number of subjects and training examples. Although we cannot draw strong
conclusions from the results of this study, it provides modest additional support for the fea-
sibility of training multiple-subject classifiers using ROI mapping. Note that accuracies of
the multiple-subject classifiers are again comparable to those of single subject classifiers.

5.2 Talairach Coordinates

Next we explore the Talairach coordinates method for merging data from multiple subjects.
Here we consider the Syntactic Ambiguity study only2. Note one difficulty in utilizing the
Talairach transformation here is that slightly different regions of the brain were scanned for
different subjects. Figure 1 shows the portions of the brain that were scanned for two of the
subjects along with the intersection of these regions from all five subjects. In combining
data from multiple subjects, we used only the data in this intersection.

2We experienced technical difficulties in applying the Talairach transformation software to the
Sentence versus Picture study (see [3] for details).



Subject 1 Subject 2 Intersecting all subjects

Figure 1: The two leftmost panels show in color the scanned portion of the brain for two
subjects (Syntactic Ambiguity study) in Talairach space in sagittal view. The rightmost
panel shows the intersection of these scanned bands across all five subjects.

The results of training multiple-subject classifiers based on the Talairach coordinates
method are shown in Table 4. Notice the results are comparable to those achieved by the
earlier ROI Mapping method in Table 3. Based on these results, we cannot state that one
of these methods is significantly more accurate than the other. When using the Talairach
method, we found the most effective feature abstraction approach was the Active( � ) feature
selection approach, which chooses the � most active voxels from across the brain. Note
that it is not possible to use this feature selection approach with the ROI Mapping method,
because the individual voxels from different brains can only be aligned after performing
the Talairach transformation.

Table 4: Multiple-subject accuracies in the Syntactic Ambiguity study (Talairach coordi-
nates). Numbers in parenthesis are the mean accuracies of single-subject classifiers. For �

in Active( � ), we explored all even numbers less than 200, reporting the best.

METHOD CLASSIFIER ACCURACY
Active( � ) GNB 63.0% (72.0%)
Active( � ) SVM 67.0% (71.0%)
Active( � ) 1NN 60.0% (64.0%)
Active( � ) 3NN 60.0% (69.0%)
Active( � ) 5NN 62.0% (69.0%)

6 Summary and Conclusions

The primary goal of this research was to determine whether it is feasible to use machine
learning methods to decode mental states across multiple human subjects. The successful
results for two case studies indicate that this is indeed feasible.

Two methods were explored to train multiple-subject classifiers based on fMRI data. ROI
mapping abstracts fMRI data by using the mean fMRI activity in each of several anatom-
ically defined ROIs to map different brains in terms of ROIs. The transformation to Ta-
lairach coordinates morphs brains into a standard coordinate frame, retaining the approx-
imate spatial resolution of the original data. Using these approaches, it was possible to
train classifiers to distinguish, e.g., whether the subject was viewing a picture or a sentence
describing a picture, and to apply these successfully to subjects outside the training set.
In many cases, the classification accuracy for subjects outside the training set equalled or



exceeded the accuracy achieved by training on data from just the single subject. The re-
sults using the two methods showed no statistically significant difference in the Syntactic
Ambiguity study.

It is important to note that while our empirical results demonstrate the ability to successfully
distinguish among a predefined set of states occurring at specific times while the subject
performs specific tasks, they do not yet demonstrate that trained classifiers can reliably de-
tect cognitive states occurring at arbitrary times while the subject performs arbitrary tasks.
We intend to pursue this more general goal in future work. We foresee many opportunities
for future machine learning research in this area. For example, we plan to next learn mod-
els of temporal behavior, in contrast to the work reported here which considers only data
at a single time interval. Machine learning methods such as Hidden Markov Models and
Dynamic Bayesian Networks appear relevant. A second research direction is to develop
learning methods that take advantage of data from multiple studies, in contrast to the single
study efforts described here.
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