
Chapter 3: Debugging, Testing and Proofs of Correctness 1

Chapter 3: Debugging, Testing and Proving
Correctness

In this chapter we investigate tools that will help you to produce reliable and correct
programs. During development of any program you will undoubtedly need to remove
errors, and this will involve debugging. Once you believe your program (or portions of it)
is correct you will want to increase your confidence in the program by systematic testing.
Typically testing will uncover errors, which will lead to further debugging. Finally, the
most powerful tool you can use to increase your confidence in a program or function is a
proof of correctness. All of these tools are useful, and none should be considered to be a
substitute for the others.

Hints on Debugging

There is no question that programming is a difficult task. Few nontrivial programs can be
expected to run correctly the first time without error. Fortunately, there are many hints
that can be used to help make debugging easier. Here are some of the more useful
suggestions:

• Test small sections of a program in isolation. When you can identify a section of a
program that is doing a specific task (this could be a loop or a function), write a
small bit of code that tests this functionality. Gain confidence in the small pieces
before considering the larger whole.

• When you see an error produced for a given input, try to find the simplest input

that consistently reproduces the same error. Errors that cannot be reproduced are
very difficult to eliminate, and simple inputs are much easier to reason about than
more complex inputs.

• Once you have a simple test input that you know is handled incorrectly, play the

role of the computer in your mind, and simulate execution of this test input. This
will frequently lead you the location of your logical error.

• Think about what occurs before the point the error is noticed. An incorrect result

is simply the symptom, and you must look earlier to find the cause.

• Use breakpoints or print statements to view the state of the computation in the
middle. Starting with an input that produces the wrong result, try to reason
backwards and determine what the values of variables would need to be to
produce the output you see. Then check the state using break points or print
statements. This can help isolate the portion of the program that contains the
error.

• Don’t assume that just because one input is handled correctly that your program is

correct.

Chapter 3: Debugging, Testing and Proofs of Correctness 2

• Use assertions and invariants to reason logically about your program.

• Most importantly, make sure you have the right mindset. Don’t naturally assume

that just because one section of a program works for most inputs, it must be
correct. Question everything. Be open to any possibility. Look everywhere.

Assertions and Invariants

When analyzing algorithms two questions are important: Is the algorithm correct, and
how fast does it run. In this chapter we are describing techniques that can be used to
address the first. The second will be the subject of the next chapter.

One of the most powerful tools used to analyze algorithms is an assertion. An assertion is
simply a comment that explains what you know to be true when execution reaches a
specific point in the program. Assertions can include information you know from a
specific statement, as well as information you know from tracing a flow of control.

For example, suppose you have written the function
shown at the left. The program takes three integer
values representing the sides of a triangle, and is
intended to return a value that is 1 if the triangle is
equilateral, 2 if it is isosceles (two sides equal in
length), and 3 if it is scalene (no sides are equal). How
would you increase your confidence that you have
written the correct function?

Assertions keep track of the information you
know from following a path through the
program. For example, after the first if
statement we know that a is the same as b.
After the second statement we know that b is
the same as c, but we also remember the
information from the first. Since a is equal to
b and b is equal to c, it must be the case that
all three are equal. Along the else path,
however, we know that the original condition
must be false, and so we can carry along that
information. In this program keeping track of this information leads to the discovery of
an error. After the last else statement we know that a is not equal to b and that b is not
equal to c. But this does not imply, as the program is claiming, that all three values are
different. It could still be the case that a is equal to c. The detection of this error has been
simplified by explicitly keeping track of information using assertions.

int triangle(int a, int b, int c) {
 if (a == b)
 if (b == c) return 1;
 else
 return 2;
 else if (b == c)
 return 2;
 else
 return 3;
}

int triangle(int a, int b, int c) {
 if (a == b) /* we know a == b */
 if (b == c) /* we know a==b & b==c */
 return 1;
 else /* we know a==b and b != c */
 return 2;
 else if (b == c) /* we know a!=b and b== c*/
 return 2;
 else /* we know a != b and b != c */
 return 3; /* ERROR! */
}

Chapter 3: Debugging, Testing and Proofs of Correctness 3

Assertions become most useful when they
are combined with loops. An assertion inside
a loop is often termed an invariant, since it
must describe a condition that does not vary
during the course of executing the loop. To
discover an invariant simply ask yourself
why you think a program loop is doing the
right thing, and then try to express “right
thing” as a statement. For example, the
function at right is computing the sum of an
array of values. It does this by computing a
partial sum, a sum up to a given point. So assertion number 3 is the easiest to discover.
Once you discover assertion 3, then assertion 2 becomes clear – it is whatever is needed
to ensure that assertion 3 will be true after the assignment. Assertion 4 is stating the
expected result, while assertion 1 is asserting what is true before the loop begins.

Later in this chapter you will learn how to use invariants and assertions to prove that an
algorithm or program is correct.

Notice how assertions require you to
understand a high level description of what
the algorithm is trying to do, and not
simply a low level understanding of what
the individual statements are doing. For
example, consider the bubble sort algorithm
shown at left. Bubble sort has two nested
loops. The outer loop is the position of the
array being filled. The inner loop is
“bubbling” the largest element into this
position. So once again at the end of the
inner loop you want to make an assertion

not only about the particular values at index locations j and j+1, but about everything the
loop has seen before (namely, the
elements with index values less than
j). Once you identify this assertion,
then the assertion at the beginning of
the loop must be whatever is needed
to prove the assertion at the end of the
loop, and together these must be
whatever is necessary to prove the
assertion at the end of the outer loop.

In Worksheet 4 you will practice
writing invariants and assertions that
could be used to prove the correctness
of a variety of programs.

double sum (double data[], int n) {
 double s = 0.0;
 /* 1. s is the sum of an empty array */
 for (int i = 0; i < n; i++) {
 /* 2. s is the sum of values from 0 to i-1 */
 s = s + data[i];
 /* 3. s is the sum of values from 0 to i */
 }
 /* 4. s is the sum from 0 to n-1 */
 return s;
}

void bubbleSort (double data [], int n) {
 for (int i = n-1; i > 0; i--) {
 for (int j = 0; j < i; j++) {
 // data[j] is largest value in 0 .. j
 if (data[j] > data[j+1])
 swap(data, j, j+1)
 // data[j+1] is largest value in 0 .. j+1
 }
 data[i] is largest value in 0 .. i
 }
 // array is sorted
}

Bubble Sort and Sorting

Bubble sort is the first of many sorting
algorithms we will encounter in this book.
Bubble sort is examined not because it is
useful, it is not, but because it is very simple to
analyze and understand. But there are many
other sorting algorithms that are far more
efficient. You should never use bubble sort for
any real application, since there are many
better alternatives.

Chapter 3: Debugging, Testing and Proofs of Correctness 4

Assertions and the assertion statement

Most programming languages include a statement, often termed the assertion statement,
that performs a task that is similar but not exactly the same as the concept of the assertion
described above. The assertions described here are written as comments, and are not
executed by the program during execution. They need not be written in an executable
form. The assertion statement, on the other hand, takes as argument an expression, and
typically will halt execution and print an error message if the statement is not true. This
can be very useful for verifying that input values satisfy whatever conditions are
necessary for execution. Our square root example from the previous chapter, for example,
could use an assertion statement to check that the input is a positive number:

double sqrt (double val) {
 assert (val >= 0); /* halt execution if value is not legal */

Because assertion statements are executed at run time, and halt execution if they are not
satisfied, they should be used sparingly, but can be useful during debugging. The
wikipedia entry for “assertions” contains a good discussion of assertions as used for
program proofs compared with assertions used for routine error checking.

Introduction to the Binary Search Algorithm

An important algorithm that we will see many times in many different forms is the binary
search algorithm. Binary search is similar to the way you guess a number if somebody
says “I’m thinking of a value between 0 and 100. Can you find my number?” If you have
played this game, you know the optimal strategy is to guess the value in the middle: “Is it
larger or smaller than 50?” Suppose the other person answers “smaller”. Then you again
divide the range: “is it larger or smaller than 25?” By repeatedly apply this technique you
very quickly find the hidden value. The binary search algorithm works in a similar
fashion, but instead of numbers it looks for a specific value in an array of sorted numbers.
Like the guessing game, it starts in the middle of the array, in one question eliminating
one half of the possibilities, then in the next question breaking that subsection in half, and
so on.

One version of the binary search
algorithm is shown at right. Here
n represents the number of values
in the sorted data array, and the
variable test is the value being
searched for. You can verify that
the algorithm is correct using the
following invariant:

Binary Search Invariant: All
values with index positions
smaller than low are less than test,
and all values with index

int binarySearch(double data[], int n, double test) {
 /* data is size n sorted array */
 int low = 0;
 int high = n;
 while (low < high) {
 mid = (low + high) / 2;
 if (data[mid] == test) return 1; /* true */
 if (data[mid] < testValue)
 low = mid + 1;
 else
 high = mid;
 }
 return 0; /* false */
}

Chapter 3: Debugging, Testing and Proofs of Correctness 5

positions larger than or equal to high are larger than or equal to test.

Prove to your satisfaction that the invariant is true at the beginning of the program
(immediately after the assignments to low and high), and that it remains true at the end of
the loop. Note that initially the variable high is not a legal index, and so the set of values
with index positions larger than or equal to high is an empty set. In exercises at the end of
the chapter we will use these to prove the algorithm is correct.

Testing and Boundary Cases

After you have translated an algorithm into a function or program, using assertions and
invariants to increase your confidence in the correctness of your code, you should then
always use testing to further assure yourself that your program works correctly. Testing is
performed at many levels. You can (and
should) test individual functions before you
have a working application. This is termed
unit testing. To perform a test, you need a
main method. This is different from the main
method you will eventually use for your
program. A special purpose main method
used in testing is termed a test harness. The test harness will feed one or more values into
the function under test, and check the result. The box shows a test harness for the
summation program given earlier in this chapter.

You should never content yourself with just one test case. A single test case cannot
exercise all the possible ways a function can be used. As you develop test cases, think
about the input data. If there are limits to the data, try to exercise values that are just at
the edge of the limits. If the program uses conditional statements, use some data values
that evaluate the condition true, and others that evaluate the condition false. This process
is termed boundary testing. For example, think about testing the method min given
earlier. Will the method find the correct value if the minimum is the first element in the
array? If it is the last? If it is in the middle? If all values are the same? What about if
there is only one element? What if there are no elements? Create a test case for each
condition, and verify the result is correct. A collection of test cases is termed a test suite.

int main () {
 double test1 [] = {1.0, 2.0, 3.0}; /* smallest first */
 double test2 [] = {3.0, 2.0, 1.0}; /* smallest last */
 double test3 [] = {2.0, 1.0, 3.0}; /* smallest middle */
 double test4 [] = {3.0, 1.0, 1.0, 2.0}; /* repeated smallest */
 double test5 [] = { }; /* no elements */
 double t1, t2, t3, t4, t5;
 t1 = min(test1, 3);
 t2 = min(test2, 3);
 t3 = min(test3, 3);
 t4 = min(test4, 4);
 printf(“test cases 1, 2, 3, and 4: %g %g %g %g \n”, t1, t2, t3, t4);
 t5 = min(test5, 0); /* should generate assertion error */

int main () {
 double dataSetOne[] = {1.0, 2.0, 3.0, 4.0, 5.0};
 double sm = sum(dataSetOne, 5);
 println(“result 1 should be 15, is: %g “, sm);
 return 0;
}

Chapter 3: Debugging, Testing and Proofs of Correctness 6

 printf(“test case 5: %g \n”, t5);
 return 0;
}

Notice that we expected one of these data sets to halt execution with an assertion error.
After verifying that this is correct, you can comment out that particular test case while the
others are processed.

In the test harness shown above we simply print the result, and count on the programmer
running the test harness to verify the result. Sometimes it is possible to check the result
directly. For example, if you were testing a method to compute a square root you could
simply multiply the result by itself and verify that it produced the original number.

Question: Think about testing a sorting algorithm. Can you write a function that would
test the result, rather than simply printing it out for the user to validate?

Once you are convinced that individual functions are working correctly, the next step is
to combine calls on functions into more complex programs. Again you should perform
testing to increase your confidence in the result. This is termed integration testing. Often
you will uncover errors during integration testing. Once you fix these you should go back
and re-execute the earlier test harness to ensure that the changes have not inadvertently
introduced any new errors. This process is termed regression testing.

Some testing considers only the structure of the input and output values, and ignores the
algorithm used to produce the result. This is termed black box testing. Other times you
want to consider the structure of the function, for example to ensure that every if
statement is exercised both with a value that makes it true and a value that makes it false.
This is termed white box testing. Goals for white box testing should include that every
statement is executed, and that every condition is evaluated both true and false. Other
more complex test conditions can test the boundaries of a computation.

Testing alone should never be used to guarantee a program is working correctly. The
famous computer scientist Edsger Dijkstra pointed out that testing can show the presence
of errors but never their absence. Testing should be used in combination with logical
thought, assertions, invariants, and proofs of correctness. All have a part to play in the
development of a reliable program.

In worksheet 5 you will think about test cases for a variety of simple programs.

More on Program Proofs

We noted earlier in this chapter that the most powerful way to gain confidence in the
correctness of a function or program is to develop a proof that the function is correct. In
this section we will investigate this process in more detail, by examining another classic
algorithm, a sorting algorithm named selection sort. Selection sort is easy to describe,
which is why we study it. But like bubble sort it is also slow, so is not generally used in
practice. In later lessons we will examine faster algorithms.

Chapter 3: Debugging, Testing and Proofs of Correctness 7

double storage []; /* size is n */
 ...
int indexLargest = 0;
for (int i = 1; i <= n-1; i++) {
 if (storage[i] > storage[indexLargest])
 indexLargest = i;
}

How to sort an array using selection sort: Find the index of the largest element in an
array. Swap the largest value into the final location in the array. Then do the same with
the next largest element. Then the next largest, and so on until you reach the smallest
element. At that point the array will be sorted.

To develop this algorithm as executable code the first step is to isolate the smallest
portion of the problem description that could be independently programmed, tested, and
debugged. In this case you might select that first sentence: “find the index of the largest
element in an array”. How do you do that? The best way seems to be a loop.

How do we know this small bit of code is
correct? As we discussed in the previous
lessons, there are two general techniques that
are used, and you should always use both of
them. These two techniques are proofs and
testing.

A proof of correctness is an informal argument that explains why you believe the code is
correct. As you learned earlier, such proofs are built around assertions, which are
statements that describe the relationships between variables when the computer reaches a
point in execution. Using assertions, you simulate the execution of the algorithm in your
mind, and argue both that the assertions are valid, and that they lead to the correct
outcome.

In the code fragment above, we
know that in the middle of
execution the variable i
represents some indefinite
memory location. We have
examined all values up to i, and
indexLargest represents the largest value in that range. The values beyond index i have
not yet been examined, and are therefore unknown. A drawing helps illustrate the
relationships. What can you say about the relationship between i, indexLargest, and the
data array? Invariants are written as comments, as in the following:

double storage [];
 ...
int position = n – 1;
int indexLargest = 0;
for (int i = 1; i <= position; i++) {
 // inv: indexLargest is the index of the largest element in the range 0 .. (i-1)
 // (see picture)
 if (storage[i] > storage[indexLargest])
 indexLargest = i;
 // inv: indexLargest is the index of the largest element in the range 0 .. i
}

QuickTime™ and a
Photo - JPEG decompressor

are needed to see this picture.

Chapter 3: Debugging, Testing and Proofs of Correctness 8

Notice how the invariant that comes after the if statement is a simple variation on the one
that comes before. This is almost always the case. Once you find the pattern, then it
becomes clear what the assertions must be that begin and end the loop. The first asserts
what must be true before the loop starts, and the last must be what we want to be true
after the loop finishes, which is normally the outcome we desire. These could be written
as follows. We have numbered the invariants to help in the subsequent discussion:

double storage [];
 ...
int indexLargest = 0;
int position = n – 1;
// 1. indexLargest is the index of the largest element in the range 0 .. 0
for (int i = 1; i <= position; i++) {
 // 2. indexLargest is the index of the largest element in the range 0 .. (i-1)
 if (storage[i] > storage[indexLargest])
 indexLargest = i;
 // 3. indexLargest is the index of the largest element in the range 0 .. i
}
// 4. indexLargest is index of largest element in the range 0 .. (storage.length-1)

Identifying invariants is the first step. The next step is to form these into a proof that the
program fragment produces the correct outcome. This is accomplished by a series of
small arguments. Each argument moves from one invariant to the next, and use the
knowledge you have of how the programming language changes the value of variables as
execution progresses. Typically these arguments are very simple.

From invariant 2 to invariant 3. Here we assume invariant 2 is true and that we know
nothing more about the variable i. But the if statement is checking the value of storage
location i. If location i is the new largest element the value of indexLargest is changed. If
it is not, then the previous largest value remains the correct index. Hence, if invariant 2 is
true prior to the if statement, then invariant 3 must be true following the statement.

From invariant 3 back to invariant 2. This moves from the bottom of the loop back to the
top. But during this process variable i is incremented by one. So if invariant 3 is true, and
i is incremented, then invariant 2 is asserting the same thing.

All this may seem like a lot of work, but with practice loop invariants and proofs of
correctness can become second nature, and seldom require as much analysis as we have
presented here.

We return now to the development of the selection sort algorithm:

How to sort an array using selection sort: Find the index of the largest element
in an array. Swap this value into the final location in the array. Then do the same
with the next largest element. Then the next largest, and so on until you reach the
smallest element. At that point the array will be sorted.

Chapter 3: Debugging, Testing and Proofs of Correctness 9

Finding the largest value is a task that must be performed repeatedly. It is first performed
to find the largest element in the array, and then the next largest, and then the one before
that, and so on. So again a loop seems to be called for. Since we are looking for the
largest value to fill a given position, let us name this loop variable position. The loop that
is filling this variable looks as follows:

for (position = n – 1; position > 0; position--) {
 // find the largest element in 0 .. position
 int indexLargest = 0;
 ...
 // then swap into place
 swap(storage, indexLargest, position);
 // what is the invariant here?
}

Question: What can you say is true when execution reaches the comment at the end of
the loop? What is true the first time the loop is executed? What can you say about the
elements with index values larger than or equal to position after each succeeding
iteration?

The selection sort algorithm combines the outer loop with the code developed earlier,
wrapping this into a general method that we will name selectionSort.

In worksheets 6 and 7 you gain more experience working with invariants and proofs of
correctness. These will introduce you to yet more sorting algorithms, termed gnome sort
and insertion sort. The latter is very practical, and is often used to sort small arrays. (We
will subsequently describe other algorithms that are even more efficient on large
collections).

Proofs involving Multiple Functions

When a function calls another function, a proof assumes the called function will work as
advertised. Assume that you have
previously verified that the
isPrime function works correctly.
Use this fact to show the
following prints the values of all
the prime numbers from 2 to n:

A special case is the analysis of recursive functions. Here you first argue that the base
case is correct, and then argue that the recursive case
must be correct, assuming that the base case
performs as defined. Provide assertions that
demonstrate the following prints the binary
representation of a number, assuming that the
argument is positive.

void printPrimes (int n) {
 for (int i = 2; i <= n; i++) {
 if (isPrime(i))
 System.out.println(“Number “ + i + “ is prime”);
 }
}

void printBinary (int i) {
 assert (i >= 0);
 if ((i == 0) || (i == 1))
 print(i);
 else {
 printBinary(i/2);
 print(i%2);
 }
}

Chapter 3: Debugging, Testing and Proofs of Correctness 10

Recursion and Mathematical Induction

The analysis of recursive functions frequently mirrors the technique of mathematical
induction. Both work by establishing a base case, then reducing other inputs until they
reach the base case. In the printBinary function shown above, the base cases are the
values zero and one. These are handed as a special case. All other values are handed by
stripping off one binary digit, then invoking the function with a smaller number. Since on
each iteration the number is smaller, it must eventually reach the base case.

To illustrate the similarities, recall the mathematical induction proof that the sum 1 + 2 +
… + n is (n * (n + 1)) / 2. To prove this, we first verify that it is true for simple base
cases, such as n=0, n=1, and n=2. Next, we will assume that it is true for all values
smaller than n, and prove it is true for n. But if we have a sum from 1 to n, we can group
all but the last term together.

1 + 2 + … + n = (1 + 2 + … + (n-1)) + n

Our induction hypothesis tells us that the first part is ((n - 1) * n) / 2. So the entire sum is
((n – 1) * n) / 2 + n. Simple arithmetic then shows that this is (n * (n + 1)) / 2. The
argument shows that the result will hold for all positive integers

Compare the structure of the preceding argument
to the type of analysis you would do on a
recursive function. Suppose, for example, we
want to show that the function shown at right
computes the value a raised to the nth power. To
prove this, we first verify that it works for simple
base cases, such as n=0 and n=1. Next, we will
assume that it works correctly for all values less than n, and prove that the function works
correctly for n. To do this, we note two simple observations. If n is even, then an is the
same as (a*a)(n/2). And if n is odd, then an is the same as a * a(n-1). Since both of these
have exponents that are smaller than n, our assumption tells us that they will be correctly
handled. Therefore the correct result is produced.

In later chapters we will encounter many recursive algorithms, and so it is important to
become comfortable with the technique and understand the analysis of these functions.

Self Study Questions

1. What does it mean to say you are debugging a function?

2. What are some useful hints to help you debug a function or program?

3. What is an assertion?

4. What is an invariant?

double exp (double a, int n) {
 if (n == 0) return 1.0;
 if (n == 1) return a;
 if (0 == n%2) return exp(a*a, n/2);
 else return a * exp(a, n-1);
}

Chapter 3: Debugging, Testing and Proofs of Correctness 11

5. Once you have identified assertions and invariants, how do you create a proof of

correctness?

6. How is an assertion different from an assertion statement?

7. What is testing?

8. What is unit testing?

9. What is a test harness?

10. What is boundary testing?

11. What are some example boundary conditions?

12. What is a test suite?

13. What is integration testing?

14. What is regression testing and why is it performed?

15. What is black box testing?

16. What is white box testing?

17. Give an informal description in English (not code) explaining how the bubble sort

algorithm operates.

18. Give a similar description of the selection sorting algorithm.

19. In what ways does the analysis of recursive algorithms mirror the idea of

mathematical induction?

Exercises

1. Using only the specification (that is, black box testing), what are some test cases for

the sqrt function described in the previous chapter?

2. What would be some good test cases for the min function described in the previous

chapter?

3. Using assertions and invariants, prove that the min function described in the previous

chapter produces the correct result.

Chapter 3: Debugging, Testing and Proofs of Correctness 12

4. The GCD function in the previous chapter required the input values to be positive, but
did not check this condition. Add assertion statements that will verify this property.

5. Prove, by mathematical induction, that the sum of powers of 2 is one less than the

next higher power. That is, for any non-negative integer n:

sum I = 0 to n of 2I equals 2n+1 - 1

Analysis Exercises

1. Compare the selection sort algorithm with the bubble sort algorithm described in

Lesson 4. How are they similar? How are they different?

2. What would be good test cases to exercise the bubble sort algorithm? Explain what

property is being tested by our test cases.

3. What would be good test cases to exercise the selection sort algorithm?

4. From the specifications alone develop test cases for the triangle program. Then

determine what value the program would produce for your test cases. Would your test
cases have exposed the error?

5. What would be good test cases to exercise the binary search algorithm? Explain what

property is being tested by each test case.

6. Using the invariants you discovered earlier, provide a proof of correctness for bubble

sort. Do this by showing arguments that link each invariant to the next.

7. Using the invariant described in the section on binary search, provide a proof of

correctness. Do this by showing the invariant is true at the start of execution, remains
true after each execution of the while loop, and is still true when the while loop
terminates.

8. In worksheet 4 you are asked to develop invariants for a number of functions. Having

done so, number your invariants and provide short proofs for each path that leads
from one invariant to the next.

9. Finish writing the invariants for selection sort, and then provide a proof of correctness

by presenting arguments that link each invariant to the next.

10. Although Euclids GCD algorithm, described in the previous chapter, is one of the

first algorithms, a proof of correctness is subtle. Traditionally it is divided into two
steps. First, showing that the algorithm produces a value that is the divisor of the two
input values. Second showing that it is the smallest such number. We will show how
to do the first. The argument begins with the assumption that the divisor exists, even
if we do not yet know its value. Let us call this divisor d. From basic arithmetic, we

Chapter 3: Debugging, Testing and Proofs of Correctness 13

know that if a and b are integers, and a > b, and d divides both a and b, then d must
also divide (a-b). Using this hint, show that if d is a divisor of n and m when the
function is first called, then d will be a divisor of n and m at each iteration of the
while loop. The algorithm halts when n is equal to m, and so d is a divisor to both.

11. A sorting algorithm is said to be stable if two equal values retain their same relative

ordering after sorting. Can you prove that bubble sort is stable? What about insertion
sort?

12. The wikipedia entry for bubble sort includes a Boolean variable, named swapped, that

is initially false inside the inner loop, and set to true if any two values are swapped.
Explain why this can be used to improve the speed of the algorithm.

13. What is wrong with the following induction proof that for all positive numbers a and
integer n, it must be true that an-1 is 1. For the base case, have that for n = 1, an-1 is a0
which is 1. For the induction case assume it is true for 1, 2, 3, … n. To verify the
condition for n+1, we have

a(n+1) – 1 = an = (an-1 * an-1) / an-2 = 1 * 1 / 1 = 1

14. Explain why the following inductive argument cannot be used to demonstrate that all

horses in a given corral are the same color. Suppose there is one horse in a correct,
and that it is white. Thus, we have a base case, since for N equal to 1, all horses in the
correct are white. Now add a second horse. The corral still contains the first horse, so
we remove it. We have now reduced to our base case, and the horse that we removed
was white, so both horses must be white. So for N equal to 2 we have our proof. We
can continue in this fashion and show, no matter how many horses are in the corral,
that they are all white.

Programming Assignments

1. Create a test harness to test the bubble sort algorithm. Feed the algorithm a variety of

test cases and verify that it produces the correct result? Can you write a function that
verifies the correct result instead of simply printing the values and asking the
programmer if they are correct?

2. Do a similar task for the selection sort algorithm.

3. Compare empirically the running time of bubble sort and insertion sort. Do this by

creating an array of size N containing random values, then time the sorting algorithm
as it sorts the array. Print out the times for values of N ranging from 100 to 1000 in
increments of 100.

4. In the next chapter we will show that the running time of both bubble sort and

selection sort is proportional to the square of the number of elements. You can easily

Chapter 3: Debugging, Testing and Proofs of Correctness 14

see this empirically. Program a test harness that creates an array of random values of
size n. Then time the execution of the bubble sort algorithm as it sorts this random
array. Plot the running times for n = 100, 200, 300 up to 1000, and see what sort of
graph this resembles.

On the Web

Wikipedia includes a very complete discussion of testing under the entry “Software
Testing”. Related entries include “test case”, Unit test”, “integration test”, “white box
testing”, “black box testing”, “debugging” and “Software Verification”. The entry for
“bubble sort” includes an interactive demonstration, as well as detailed discussions of
why it is not a good algorithm in practice. Selection sort is also the topic of a wikipedia
entry. The wikipedia entry on “assertions” contains a link to an excellent article by
computer science pioneer Tony Hoare on the development and use of assertions.

