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Chapter 3: Debugging, Testing and Proving 
Correctness 
 
In this chapter we investigate tools that will help you to produce reliable and correct 
programs. During development of any program you will undoubtedly need to remove 
errors, and this will involve debugging. Once you believe your program (or portions of it) 
is correct you will want to increase your confidence in the program by systematic testing. 
Typically testing will uncover errors, which will lead to further debugging. Finally, the 
most powerful tool you can use to increase your confidence in a program or function is a 
proof of correctness.  All of these tools are useful, and none should be considered to be a 
substitute for the others. 
 
Hints on Debugging 
 
There is no question that programming is a difficult task. Few nontrivial programs can be 
expected to run correctly the first time without error.  Fortunately, there are many hints 
that can be used to help make debugging easier.  Here are some of the more useful 
suggestions: 
 

• Test small sections of a program in isolation. When you can identify a section of a 
program that is doing a specific task (this could be a loop or a function), write a 
small bit of code that tests this functionality. Gain confidence in the small pieces 
before considering the larger whole. 

 
• When you see an error produced for a given input, try to find the simplest input 

that consistently reproduces the same error. Errors that cannot be reproduced are 
very difficult to eliminate, and simple inputs are much easier to reason about than 
more complex inputs. 

 
• Once you have a simple test input that you know is handled incorrectly, play the 

role of the computer in your mind, and simulate execution of this test input. This 
will frequently lead you the location of your logical error. 

 
• Think about what occurs before the point the error is noticed. An incorrect result 

is simply the symptom, and you must look earlier to find the cause. 
 

• Use breakpoints or print statements to view the state of the computation in the 
middle. Starting with an input that produces the wrong result, try to reason 
backwards and determine what the values of variables would need to be to 
produce the output you see. Then check the state using break points or print 
statements. This can help isolate the portion of the program that contains the 
error. 

 
• Don’t assume that just because one input is handled correctly that your program is 

correct. 
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• Use assertions and invariants to reason logically about your program. 

 
• Most importantly, make sure you have the right mindset. Don’t naturally assume 

that just because one section of a program works for most inputs, it must be 
correct. Question everything. Be open to any possibility. Look everywhere. 

 
Assertions and Invariants 
 
When analyzing algorithms two questions are important: Is the algorithm correct, and 
how fast does it run.  In this chapter we are describing techniques that can be used to 
address the first. The second will be the subject of the next chapter. 
 
One of the most powerful tools used to analyze algorithms is an assertion. An assertion is 
simply a comment that explains what you know to be true when execution reaches a 
specific point in the program. Assertions can include information you know from a 
specific statement, as well as information you know from tracing a flow of control. 

 
For example, suppose you have written the function 
shown at the left. The program takes three integer 
values representing the sides of a triangle, and is 
intended to return a value that is 1 if the triangle is 
equilateral, 2 if it is isosceles (two sides equal in 
length), and 3 if it is scalene (no sides are equal).  How 
would you increase your confidence that you have 
written the correct function? 
 

Assertions keep track of the information you 
know from following a path through the 
program. For example, after the first if 
statement we know that a is the same as b. 
After the second statement we know that b is 
the same as c, but we also remember the 
information from the first. Since a is equal to 
b and b is equal to c, it must be the case that 
all three are equal. Along the else path, 
however, we know that the original condition 
must be false, and so we can carry along that 
information. In this program keeping track of this information leads to the discovery of 
an error. After the last else statement we know that a is not equal to b and that b is not 
equal to c. But this does not imply, as the program is claiming, that all three values are 
different. It could still be the case that a is equal to c. The detection of this error has been 
simplified by explicitly keeping track of information using assertions. 
 

int triangle(int a, int b, int c) { 
   if (a == b) 
      if (b == c)  return 1; 
      else 
         return 2; 
   else if (b == c) 
      return 2; 
   else  
      return 3; 
} 
 

int triangle(int a, int b, int c) { 
   if (a == b)      /* we know a == b */ 
      if (b == c)  /* we know a==b & b==c */ 
         return 1; 
      else /* we know a==b and b != c */ 
         return 2; 
   else if (b == c) /* we know a!=b and b== c*/ 
      return 2; 
   else /* we know a != b and b != c */ 
      return 3; /* ERROR! */ 
} 
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Assertions become most useful when they 
are combined with loops. An assertion inside 
a loop is often termed an invariant, since it 
must describe a condition that does not vary 
during the course of executing the loop. To 
discover an invariant simply ask yourself 
why you think a program loop is doing the 
right thing, and then try to express “right 
thing” as a statement. For example, the 
function at right is computing the sum of an 
array of values. It does this by computing a 
partial sum, a sum up to a given point. So assertion number 3 is the easiest to discover. 
Once you discover assertion 3, then assertion 2 becomes clear – it is whatever is needed 
to ensure that assertion 3 will be true after the assignment. Assertion 4 is stating the 
expected result, while assertion 1 is asserting what is true before the loop begins. 
 
Later in this chapter you will learn how to use invariants and assertions to prove that an 
algorithm or program is correct.  

 
Notice how assertions require you to 
understand a high level description of what 
the algorithm is trying to do, and not 
simply a low level understanding of what 
the individual statements are doing. For 
example, consider the bubble sort algorithm 
shown at left. Bubble sort has two nested 
loops. The outer loop is the position of the 
array being filled. The inner loop is 
“bubbling” the largest element into this 
position. So once again at the end of the 
inner loop you want to make an assertion 

not only about the particular values at index locations j and j+1, but about everything the 
loop has seen before (namely, the 
elements with index values less than 
j). Once you identify this assertion, 
then the assertion at the beginning of 
the loop must be whatever is needed 
to prove the assertion at the end of the 
loop, and together these must be 
whatever is necessary to prove the 
assertion at the end of the outer loop. 
 
In Worksheet 4 you will practice 
writing invariants and assertions that 
could be used to prove the correctness 
of a variety of programs. 

double sum (double data[ ], int n) {  
   double s = 0.0; 
   /* 1. s is the sum of an empty array */ 
   for (int i = 0; i < n; i++) { 
      /* 2. s is the sum of values from 0 to i-1 */ 
      s = s + data[i]; 
      /* 3. s is the sum of values from 0 to i */ 
   } 
   /* 4. s is the sum from 0 to n-1 */ 
   return s; 
} 

void bubbleSort (double data [ ], int n) { 
   for (int i = n-1; i > 0; i--) { 
      for (int j = 0; j < i; j++) { 
         // data[j] is largest value in 0 .. j 
         if (data[j] > data[j+1]) 
            swap(data, j, j+1) 
         // data[j+1] is largest value in 0 .. j+1 
      } 
      data[i] is largest value in 0 .. i 
   } 
   // array is sorted 
} 

Bubble Sort and Sorting 
 
Bubble sort is the first of many sorting 
algorithms we will encounter in this book. 
Bubble sort is examined not because it is 
useful, it is not, but because it is very simple to 
analyze and understand. But there are many 
other sorting algorithms that are far more 
efficient. You should never use bubble sort for 
any real application, since there are many 
better alternatives. 
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Assertions and the assertion statement 
 
Most programming languages include a statement, often termed the assertion statement, 
that performs a task that is similar but not exactly the same as the concept of the assertion 
described above. The assertions described here are written as comments, and are not 
executed by the program during execution. They need not be written in an executable 
form. The assertion statement, on the other hand, takes as argument an expression, and 
typically will halt execution and print an error message if the statement is not true.  This 
can be very useful for verifying that input values satisfy whatever conditions are 
necessary for execution. Our square root example from the previous chapter, for example, 
could use an assertion statement to check that the input is a positive number: 
 
double sqrt (double val) { 
   assert (val >= 0); /* halt execution if value is not legal */ 
 
Because assertion statements are executed at run time, and halt execution if they are not 
satisfied, they should be used sparingly, but can be useful during debugging. The 
wikipedia entry for “assertions” contains a good discussion of assertions as used for 
program proofs compared with assertions used for routine error checking. 
 
Introduction to the Binary Search Algorithm 
 
An important algorithm that we will see many times in many different forms is the binary 
search algorithm. Binary search is similar to the way you guess a number if somebody 
says “I’m thinking of a value between 0 and 100. Can you find my number?” If you have 
played this game, you know the optimal strategy is to guess the value in the middle: “Is it 
larger or smaller than 50?” Suppose the other person answers “smaller”. Then you again 
divide the range: “is it larger or smaller than 25?” By repeatedly apply this technique you 
very quickly find the hidden value. The binary search algorithm works in a similar 
fashion, but instead of numbers it looks for a specific value in an array of sorted numbers. 
Like the guessing game, it starts in the middle of the array, in one question eliminating 
one half of the possibilities, then in the next question breaking that subsection in half, and 
so on. 
 
One version of the binary search 
algorithm is shown at right. Here 
n represents the number of values 
in the sorted data array, and the 
variable test is the value being 
searched for. You can verify that 
the algorithm is correct using the 
following invariant: 
 
Binary Search Invariant: All 
values with index positions 
smaller than low are less than test, 
and all values with index 

int binarySearch(double data[ ], int n, double test) { 
   /* data is size n sorted array */ 
   int low = 0; 
   int high = n; 
   while (low < high) { 
      mid = (low + high) / 2; 
      if (data[mid] == test) return 1; /* true */ 
      if (data[mid] < testValue)  
         low = mid + 1; 
      else  
         high = mid; 
   } 
   return 0; /* false */ 
} 
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positions larger than or equal to high are larger than or equal to test. 
 
Prove to your satisfaction that the invariant is true at the beginning of the program 
(immediately after the assignments to low and high), and that it remains true at the end of 
the loop. Note that initially the variable high is not a legal index, and so the set of values 
with index positions larger than or equal to high is an empty set. In exercises at the end of 
the chapter we will use these to prove the algorithm is correct. 
 
Testing and Boundary Cases 
 
After you have translated an algorithm into a function or program, using assertions and 
invariants to increase your confidence in the correctness of your code, you should then 
always use testing to further assure yourself that your program works correctly. Testing is 
performed at many levels. You can (and 
should) test individual functions before you 
have a working application. This is termed 
unit testing. To perform a test, you need a 
main method. This is different from the main 
method you will eventually use for your 
program. A special purpose main method 
used in testing is termed a test harness. The test harness will feed one or more values into 
the function under test, and check the result. The box shows a test harness for the 
summation program given earlier in this chapter. 
 
You should never content yourself with just one test case. A single test case cannot 
exercise all the possible ways a function can be used. As you develop test cases, think 
about the input data. If there are limits to the data, try to exercise values that are just at 
the edge of the limits. If the program uses conditional statements, use some data values 
that evaluate the condition true, and others that evaluate the condition false. This process 
is termed boundary testing.  For example, think about testing the method min given 
earlier. Will the method find the correct value if the minimum is the first element in the 
array?  If it is the last?  If it is in the middle? If all values are the same? What about if 
there is only one element?  What if there are no elements? Create a test case for each 
condition, and verify the result is correct. A collection of test cases is termed a test suite. 
 
int main ( ) { 
   double test1 [ ] = {1.0, 2.0, 3.0}; /* smallest first */ 
   double test2 [ ] = {3.0, 2.0, 1.0}; /* smallest last */ 
   double test3 [ ] = {2.0, 1.0, 3.0}; /* smallest middle */ 
   double test4 [ ] = {3.0, 1.0, 1.0, 2.0}; /* repeated smallest */ 
   double test5 [ ] = { }; /* no elements */ 
   double t1, t2, t3, t4, t5; 
   t1 = min(test1, 3); 
   t2 = min(test2, 3); 
   t3 = min(test3, 3); 
   t4 = min(test4, 4); 
   printf(“test cases 1, 2, 3, and 4: %g %g %g %g \n”, t1, t2, t3, t4); 
   t5 = min(test5, 0); /* should generate assertion error */ 

int main ( ) { 
   double dataSetOne[ ] = {1.0, 2.0, 3.0, 4.0, 5.0}; 
   double sm = sum(dataSetOne, 5); 
   println(“result 1 should be 15, is: %g “, sm); 
   return 0; 
} 
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   printf(“test case 5: %g \n”, t5); 
   return 0; 
} 
 
Notice that we expected one of these data sets to halt execution with an assertion error.  
After verifying that this is correct, you can comment out that particular test case while the 
others are processed. 
 
In the test harness shown above we simply print the result, and count on the programmer 
running the test harness to verify the result. Sometimes it is possible to check the result 
directly. For example, if you were testing a method to compute a square root you could 
simply multiply the result by itself and verify that it produced the original number.  
 
Question: Think about testing a sorting algorithm. Can you write a function that would 
test the result, rather than simply printing it out for the user to validate? 
 
Once you are convinced that individual functions are working correctly, the next step is 
to combine calls on functions into more complex programs. Again you should perform 
testing to increase your confidence in the result. This is termed integration testing. Often 
you will uncover errors during integration testing. Once you fix these you should go back 
and re-execute the earlier test harness to ensure that the changes have not inadvertently 
introduced any new errors. This process is termed regression testing. 
 
Some testing considers only the structure of the input and output values, and ignores the 
algorithm used to produce the result. This is termed black box testing. Other times you 
want to consider the structure of the function, for example to ensure that every if 
statement is exercised both with a value that makes it true and a value that makes it false. 
This is termed white box testing. Goals for white box testing should include that every 
statement is executed, and that every condition is evaluated both true and false. Other 
more complex test conditions can test the boundaries of a computation. 
 
Testing alone should never be used to guarantee a program is working correctly. The 
famous computer scientist Edsger Dijkstra pointed out that testing can show the presence 
of errors but never their absence. Testing should be used in combination with logical 
thought, assertions, invariants, and proofs of correctness. All have a part to play in the 
development of a reliable program. 
 
In worksheet 5 you will think about test cases for a variety of simple programs. 
 
More on Program Proofs 
 
We noted earlier in this chapter that the most powerful way to gain confidence in the 
correctness of a function or program is to develop a proof that the function is correct. In 
this section we will investigate this process in more detail, by examining another classic 
algorithm, a sorting algorithm named selection sort. Selection sort is easy to describe, 
which is why we study it. But like bubble sort it is also slow, so is not generally used in 
practice. In later lessons we will examine faster algorithms. 
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double storage [ ]; /* size is n */ 
   ... 
int indexLargest = 0; 
for (int i = 1; i <=  n-1; i++) { 
   if (storage[i] > storage[indexLargest]) 
      indexLargest = i; 
} 

 
How to sort an array using selection sort: Find the index of the largest element in an 
array. Swap the largest value into the final location in the array. Then do the same with 
the next largest element. Then the next largest, and so on until you reach the smallest 
element. At that point the array will be sorted. 
 
To develop this algorithm as executable code the first step is to isolate the smallest 
portion of the problem description that could be independently programmed, tested, and 
debugged. In this case you might select that first sentence: “find the index of the largest 
element in an array”. How do you do that? The best way seems to be a loop.  

 
How do we know this small bit of code is 
correct? As we discussed in the previous 
lessons, there are two general techniques that 
are used, and you should always use both of 
them. These two techniques are proofs and 
testing. 
 

A proof of correctness is an informal argument that explains why you believe the code is 
correct. As you learned earlier, such proofs are built around assertions, which are 
statements that describe the relationships between variables when the computer reaches a 
point in execution. Using assertions, you simulate the execution of the algorithm in your 
mind, and argue both that the assertions are valid, and that they lead to the correct 
outcome. 
 
In the code fragment above, we 
know that in the middle of 
execution the variable i 
represents some indefinite 
memory location. We have 
examined all values up to i, and 
indexLargest represents the largest value in that range. The values beyond index i have 
not yet been examined, and are therefore unknown.  A drawing helps illustrate the 
relationships. What can you say about the relationship between i, indexLargest, and the 
data array?  Invariants are written as comments, as in the following: 
 
double storage [ ]; 
   ... 
int position = n – 1; 
int indexLargest = 0; 
for (int i = 1; i <=  position; i++) { 
   // inv: indexLargest is the index of the largest element in the range 0 .. (i-1) 
   // (see picture) 
   if (storage[i] > storage[indexLargest]) 
      indexLargest = i; 
   // inv: indexLargest is the index of the largest element in the range 0 .. i 
} 
 

QuickTime™ and a
Photo - JPEG decompressor

are needed to see this picture.
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Notice how the invariant that comes after the if statement is a simple variation on the one 
that comes before. This is almost always the case. Once you find the pattern, then it 
becomes clear what the assertions must be that begin and end the loop. The first asserts 
what must be true before the loop starts, and the last must be what we want to be true 
after the loop finishes, which is normally the outcome we desire. These could be written 
as follows. We have numbered the invariants to help in the subsequent discussion: 
 
double storage [ ]; 
   ... 
int indexLargest = 0; 
int position = n – 1; 
// 1. indexLargest is the index of the largest element in the range 0 .. 0 
for (int i = 1; i <=  position; i++) { 
   // 2. indexLargest is the index of the largest element in the range 0 .. (i-1) 
   if (storage[i] > storage[indexLargest]) 
      indexLargest = i; 
   // 3. indexLargest is the index of the largest element in the range 0 .. i 
} 
// 4. indexLargest is index of largest element in  the range 0 .. (storage.length-1) 
 
Identifying invariants is the first step. The next step is to form these into a proof that the 
program fragment produces the correct outcome. This is accomplished by a series of 
small arguments. Each argument moves from one invariant to the next, and use the 
knowledge you have of how the programming language changes the value of variables as 
execution progresses. Typically these arguments are very simple. 
 
From invariant 2 to invariant 3. Here we assume invariant 2 is true and that we know 
nothing more about the variable i. But the if statement is checking the value of storage 
location i. If location i is the new largest element the value of indexLargest is changed. If 
it is not, then the previous largest value remains the correct index. Hence, if invariant 2 is 
true prior to the if statement, then invariant 3 must be true following the statement. 
 
From invariant 3 back to invariant 2. This moves from the bottom of the loop back to the 
top. But during this process variable i is incremented by one. So if invariant 3 is true, and 
i is incremented, then invariant 2 is asserting the same thing. 
 
All this may seem like a lot of work, but with practice loop invariants and proofs of 
correctness can become second nature, and seldom require as much analysis as we have 
presented here. 
 
We return now to the development of the selection sort algorithm: 
 

How to sort an array using selection sort: Find the index of the largest element 
in an array. Swap this value into the final location in the array. Then do the same 
with the next largest element. Then the next largest, and so on until you reach the 
smallest element. At that point the array will be sorted. 
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Finding the largest value is a task that must be performed repeatedly. It is first performed 
to find the largest element in the array, and then the next largest, and then the one before 
that, and so on. So again a loop seems to be called for. Since we are looking for the 
largest value to fill a given position, let us name this loop variable position. The loop that 
is filling this variable looks as follows: 
 
for (position = n – 1; position > 0; position--) { 
   // find the largest element in 0 .. position 
   int indexLargest = 0; 
   ... 
   // then swap into place 
   swap(storage, indexLargest, position); 
   // what is the invariant here? 
} 
 
Question: What can you say is true when execution reaches the comment at the end of 
the loop? What is true the first time the loop is executed?  What can you say about the 
elements with index values larger than or equal to position after each succeeding 
iteration? 
 
The selection sort algorithm combines the outer loop with the code developed earlier, 
wrapping this into a general method that we will name selectionSort.  
 
In worksheets 6 and 7 you gain more experience working with invariants and proofs of 
correctness. These will introduce you to yet more sorting algorithms, termed gnome sort 
and insertion sort. The latter is very practical, and is often used to sort small arrays. (We 
will subsequently describe other algorithms that are even more efficient on large 
collections). 
 
Proofs involving Multiple Functions 
 
When a function calls another function, a proof assumes the called function will work as 
advertised. Assume that you have 
previously verified that the 
isPrime function works correctly. 
Use this fact to show the 
following prints the values of all 
the prime numbers from 2 to n: 
 
A special case is the analysis of recursive functions. Here you first argue that the base 
case is correct, and then argue that the recursive case 
must be correct, assuming that the base case 
performs as defined.  Provide assertions that 
demonstrate the following prints the binary 
representation of a number, assuming that the 
argument is positive. 
 

void printPrimes (int n) { 
   for (int i = 2; i <= n; i++) { 
     if (isPrime(i)) 
         System.out.println(“Number “ + i + “ is prime”); 
   } 
} 

void printBinary (int i) {  
   assert (i >= 0); 
   if ((i == 0) || (i == 1)) 
      print(i); 
   else { 
      printBinary(i/2); 
      print(i%2); 
   } 
} 
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Recursion and Mathematical Induction 
 
The analysis of recursive functions frequently mirrors the technique of mathematical 
induction. Both work by establishing a base case, then reducing other inputs until they 
reach the base case. In the printBinary function shown above, the base cases are the 
values zero and one. These are handed as a special case. All other values are handed by 
stripping off one binary digit, then invoking the function with a smaller number. Since on 
each iteration the number is smaller, it must eventually reach the base case. 
 
To illustrate the similarities, recall the mathematical induction proof that the sum 1 + 2 + 
… + n is (n * (n + 1)) / 2. To prove this, we first verify that it is true for simple base 
cases, such as n=0, n=1, and n=2. Next, we will assume that it is true for all values 
smaller than n, and prove it is true for n.  But if we have a sum from 1 to n, we can group 
all but the last term together. 
 
1 + 2 + … + n = (1 + 2 + … + (n-1)) + n 
 
Our induction hypothesis tells us that the first part is ((n - 1) * n) / 2. So the entire sum is 
((n – 1) * n) / 2 + n. Simple arithmetic then shows that this is (n * (n + 1)) / 2. The 
argument shows that the result will hold for all positive integers 
 
Compare the structure of the preceding argument 
to the type of analysis you would do on a 
recursive function. Suppose, for example, we 
want to show that the function shown at right 
computes the value a raised to the nth power. To 
prove this, we first verify that it works for simple 
base cases, such as n=0 and n=1. Next, we will 
assume that it works correctly for all values less than n, and prove that the function works 
correctly for n. To do this, we note two simple observations.  If n is even, then an is the 
same as (a*a)(n/2). And if n is odd, then an is the same as a * a(n-1). Since both of these 
have exponents that are smaller than n, our assumption tells us that they will be correctly 
handled. Therefore the correct result is produced. 
 
In later chapters we will encounter many recursive algorithms, and so it is important to 
become comfortable with the technique and understand the analysis of these functions. 
 
Self Study Questions 
 
1. What does it mean to say you are debugging a function? 
 
2. What are some useful hints to help you debug a function or program? 
 
3. What is an assertion? 
 
4. What is an invariant?   

double exp (double a, int n) { 
   if (n == 0) return 1.0; 
   if (n == 1) return a; 
   if (0 == n%2) return exp(a*a, n/2); 
   else return a * exp(a, n-1); 
} 
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5. Once you have identified assertions and invariants, how do you create a proof of 

correctness? 
 
6. How is an assertion different from an assertion statement? 
 
7. What is testing? 
 
8. What is unit testing? 
 
9. What is a test harness? 
 
10. What is boundary testing? 
 
11. What are some example boundary conditions? 
 
12. What is a test suite? 
 
13. What is integration testing? 
 
14. What is regression testing and why is it performed? 
 
15. What is black box testing?  
 
16. What is white box testing? 
 
17. Give an informal description in English (not code) explaining how the bubble sort 

algorithm operates. 
 
18. Give a similar description of the selection sorting algorithm. 
 
19. In what ways does the analysis of recursive algorithms mirror the idea of 

mathematical induction?  
 
Exercises 
 
1. Using only the specification (that is, black box testing), what are some test cases for 

the sqrt function described in the previous chapter? 
 
2. What would be some good test cases for the min function described in the previous 

chapter? 
 
3. Using assertions and invariants, prove that the min function described in the previous 

chapter produces the correct result. 
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4. The GCD function in the previous chapter required the input values to be positive, but 
did not check this condition. Add assertion statements that will verify this property. 

 
5. Prove, by mathematical induction, that the sum of powers of 2 is one less than the 

next higher power. That is, for any non-negative integer n: 
 

sum I = 0 to n of 2I  equals 2n+1 - 1 
 
Analysis Exercises 
 
1. Compare the selection sort algorithm with the bubble sort algorithm described in 

Lesson 4. How are they similar?  How are they different? 
 
2. What would be good test cases to exercise the bubble sort algorithm? Explain what 

property is being tested by our test cases. 
 
3. What would be good test cases to exercise the selection sort algorithm? 
 
4. From the specifications alone develop test cases for the triangle program. Then 

determine what value the program would produce for your test cases. Would your test 
cases have exposed the error? 

 
5. What would be good test cases to exercise the binary search algorithm? Explain what 

property is being tested by each test case. 
 
6. Using the invariants you discovered earlier, provide a proof of correctness for bubble 

sort. Do this by showing arguments that link each invariant to the next. 
 
7. Using the invariant described in the section on binary search, provide a proof of 

correctness. Do this by showing the invariant is true at the start of execution, remains 
true after each execution of the while loop, and is still true when the while loop 
terminates. 

 
8. In worksheet 4 you are asked to develop invariants for a number of functions. Having 

done so, number your invariants and provide short proofs for each path that leads 
from one invariant to the next. 

 
9. Finish writing the invariants for selection sort, and then provide a proof of correctness 

by presenting arguments that link each invariant to the next. 
 
10. Although Euclids GCD algorithm, described in the previous chapter, is one of the 

first algorithms, a proof of correctness is subtle. Traditionally it is divided into two 
steps. First, showing that the algorithm produces a value that is the divisor of the two 
input values. Second showing that it is the smallest such number. We will show how 
to do the first. The argument begins with the assumption that the divisor exists, even 
if we do not yet know its value. Let us call this divisor d. From basic arithmetic, we 
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know that if a and b are integers, and a > b, and d divides both a and b, then d must 
also divide (a-b). Using this hint, show that if d is a divisor of n and m when the 
function is first called, then d will be a divisor of n and m at each iteration of the 
while loop. The algorithm halts when n is equal to m, and so d is a divisor to both. 

 
11. A sorting algorithm is said to be stable if two equal values retain their same relative 

ordering after sorting. Can you prove that bubble sort is stable? What about insertion 
sort? 

 
12. The wikipedia entry for bubble sort includes a Boolean variable, named swapped, that 

is initially false inside the inner loop, and set to true if any two values are swapped. 
Explain why this can be used to improve the speed of the algorithm. 
 

13. What is wrong with the following induction proof that for all positive numbers a and 
integer n, it must be true that an-1 is 1. For the base case, have that for n = 1, an-1 is a0 
which is 1. For the induction case assume it is true for 1, 2, 3, … n. To verify the 
condition for n+1, we have 

 
a(n+1) – 1 = an = (an-1 * an-1) / an-2 = 1 * 1 / 1 = 1 

 
14. Explain why the following inductive argument cannot be used to demonstrate that all 

horses in a given corral are the same color. Suppose there is one horse in a correct, 
and that it is white. Thus, we have a base case, since for N equal to 1, all horses in the 
correct are white. Now add a second horse. The corral still contains the first horse, so 
we remove it. We have now reduced to our base case, and the horse that we removed 
was white, so both horses must be white. So for N equal to 2 we have our proof. We 
can continue in this fashion and show, no matter how many horses are in the corral, 
that they are all white. 
 
 

Programming Assignments 
 
1. Create a test harness to test the bubble sort algorithm. Feed the algorithm a variety of 

test cases and verify that it produces the correct result? Can you write a function that 
verifies the correct result instead of simply printing the values and asking the 
programmer if they are correct? 

 
2. Do a similar task for the selection sort algorithm. 
 
3. Compare empirically the running time of bubble sort and insertion sort. Do this by 

creating an array of size N containing random values, then time the sorting algorithm 
as it sorts the array. Print out the times for values of N ranging from 100 to 1000 in 
increments of 100. 

 
4. In the next chapter we will show that the running time of both bubble sort and 

selection sort is proportional to the square of the number of elements. You can easily 
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see this empirically. Program a test harness that creates an array of random values of 
size n. Then time the execution of the bubble sort algorithm as it sorts this random 
array. Plot the running times for n = 100, 200, 300 up to 1000, and see what sort of 
graph this resembles. 

 
 
On the Web 
 
Wikipedia includes a very complete discussion of testing under the entry “Software 
Testing”. Related entries include “test case”, Unit test”, “integration test”, “white box 
testing”, “black box testing”, “debugging” and “Software Verification”. The entry for 
“bubble sort” includes an interactive demonstration, as well as detailed discussions of 
why it is not a good algorithm in practice. Selection sort is also the topic of a wikipedia 
entry. The wikipedia entry on “assertions” contains a link to an excellent article by 
computer science pioneer Tony Hoare on the development and use of assertions. 


