
Chapter 9: Searching and Ordered Collections  1 

Chapter 9: Searching, Ordered Collections 
 

In Chapter 8 we said that a bag was a data structure characterized by three primary 

operations. These operations were inserting a new value into the bag, testing a bag to see 

if it contained a particular value, and removing an element from the bag. In our initial 

description we treated all three operations as having equal importance. In many 

applications, however, one or another of the three operations may occur much more 

frequently than the others. In this situation it may be useful to consider alternative 

implementation techniques. Most commonly the favored operation is searching. 

 

We can illustrate an example with the questions examined back in Chapter 4. Why do 

dictionaries or telephone books list their entries in sorted order? To understand the 

reason, Chapter 4 posed the following two questions. Suppose you were given a 

telephone book and asked to find the number for an individual named Chris Smith. Now 

suppose you were asked to find the name of the person who has telephone number 543-

7352. Which task is easier? 

 

The difference in the two tasks represents the 

difference between a sequential, or linear search and 

a binary search. A linear search is basically the 

approach used in our Bag abstraction in Chapter 8, 

and the approach that you by necessity need to perform if all you have is an unsorted list. 

Simply compare the element you seek to each value in the collection, element by 

element, until either you find the value you want, or exhaust the collection. A binary 

search, on the other hand, is much faster, but works only for ordered lists. You start by 

comparing the test value to the element in the middle of the collection. In one step you 

can eliminate half the collection, continuing the search with either the first half or the last 

half of the list. If you repeat this halving idea, you can search the entire list in O(log n) 

steps. As the thought experiment with the telephone book shows, binary search is much 

faster than linear search. An ordered array of one billion elements can be searched using 

no more than twenty comparisons using a binary search. 

 

Before a collection can be searched using a binary search it must be placed in order. 

There are two ways this could occur. Elements can be inserted, one by one, and ordered 

as they are entered. The second approach is to take an unordered collection and rearrange 

the values so that they become ordered. This process is termed sorting, and you have seen 

several sorting algorithms already in earlier chapters. As new data structures are 

introduced in later chapters we will also explore other sorting algorithms.  

 

Fast Set Operations 
 

Keeping a dynamic array in sorted order allows a fast search by means of the binary 

search algorithms. But there is another reason why you might want to keep a dynamic 

array, or even a linked list, in sorted order.  This is that two sorted collections can be 

merged very quickly into a new, also sorted collection.  Simply walk down the two 

collections in order, maintaining an index into each one. At each step select the smallest 
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Chris Smith  234-7832 
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value, and copy this value into the new collection, advancing the index.  When one of the 

pointers reaches the end of the collection, all the values from the remaining collection are 

copied. 

 

 
 

The merge operation by itself is sometimes a good enough reason to keep a sorted 

collection. However, more often this technique is used as a way to provide fast set 

operations. Recall that the set abstraction is similar to a bag, with two important 

differences. First, elements in a set are unique, never repeated. Second, a set supports a 

number of collection with collection operations, such as set union, set intersection, set 

difference, and set subset. 

 

All of the set operations can be viewed as a variation on the idea of merging two ordered 

collections. Take, for example, set intersection. To form the intersection simply walk 

down the two collections in order. If the element in the first is smaller 

than that in the second, advance the pointer to the first. If the element in 

the second is smaller than that in the first, advance the pointer to the 

second. Only if the elements are both equal is the value copied into the 

set intersection. 

 

This approach to set operations can be implemented using either ordered dynamic arrays, 

or ordered linked lists.  In practice ordered arrays are more often encountered, since an 

ordered array can also be quickly searched using the binary search algorithm.  

 

Implementation of Ordered Bag using a Sorted Array 
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In an earlier chapter you encountered the binary search algorithm. The version shown 

below takes as argument the value being tested, and returns in O(log n) steps either the 

location at which the value is found, or if it is not in the collection the location the value 

can be inserted and still preserve order. 

 
int binarySearch (TYPE * data, int size, TYPE testValue) { 
   int low = 0; 
   int high = size; 
   int mid; 
   while (low < high) { 
     mid = (low + high) / 2; 
     if (LT(data[mid], testValue)) 
        low = mid + 1; 
      else    
         high = mid; 
   } 
   return low; 
} 
 

Consider the following array, and trace the execution of the binary search algorithm as it 

searches for the element 7: 

 

2 4 5 7 8 12 24 37 40 41 42 50 68 69 72 
 

Do the same for the values 1, 25, 37 and 76. Notice that the value returned by this 

function need not be a legal index. If the test value is larger than all the elements in the 

array, the only position where an insertion could be performed and still preserve order is 

the next index at the top. Thus, the binary search algorithm might return a value equal to 

size, which is not a legal index. 

 

If we used a dynamic array as the underlying container, and if we kept the elements in 

sorted order, then we could use the binary search algorithm to perform a very rapid 

contains test. Simply call the binary search algorithm, and save the resulting index 

position. Test that the index is legal; if it is, then test the value of the element stored at the 

position. If it matches the test argument, then return true. Otherwise return false. Since 

the binary search algorithm is O(log n), and all other operations are constant time, this 

means that the contains test is O(log n), which is much faster than either of the 

implementations you developed in the preceding chapter. 

 

Inserting a new value into the ordered array is not quite as easy.  True, we can discover 

the position where the insertion should be made by invoking the binary search algorithm. 

But then what? Because the values are stored in a block, the problem is in many ways the 

opposite of the one you examined in Chapter 8. Now, instead of moving values down to 

delete an entry, we must here move values up to make a “hole” into which the new 

element can be placed: 
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As we did with remove, we will divide this into two steps. The add function will find the 

correct location at which to insert a value, then call another function that will insert an 

element at a given location: 

 
void orderedArrayAdd (struct dyArray *dy, TYPE newElement) { 
   int index = binarySearch(dy->data, dy->size, newElement); 
   dyArrayAddAt (dy, index, newElement); 
} 
 

The method addAt must check that the size is less than the capacity, calling setCapacity if 

not, loop over the elements in the array in order to open up a hole for the new value, 

insert the element into the hole, and finally update the variable count so that it correctly 

reflects the number of values in the container. 

 
void dyArrayAddAt (struct dyArray *dy, int index, TYPE newElement) { 
   int i; 
   assert(index > 0 && index <= dy->size); 
   if (dy->size >= dy->capacity) 
                _dyArraySetCapacity(dy, 2 * dy->capacity); 
   …  /* you get to fill this in */ 
} 
 

The function remove could use the same implementation as you developed in Chapter 8. 

However, whereas before we used a linear search to find the position of the value to be 

deleted, we can here use a binary search. If the index returned by binary search is a legal 

position, then invoke the method removeAt that you wrote in Chapter 8 to remove the 

value at the indicated position. 

 

In worksheet 26 you will complete the implementation of a bag data structure based on 

these ideas. 

 

Fast Set Operations for Ordered Arrays 

 
Two sorted arrays can be easily merged into a new array. Simply walk down both input 

arrays in parallel, selecting the smallest element to copy into the new array: 
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The set operations of union, intersection, difference and subset are each very similar to a 

merge. That is, each algorithm can be expressed as a parallel walk down the two input 

collections, advancing the index into the collection with the smallest value, and copying 

values into a new vector.  

 
void arraySetIntersect (struct dyArray *left, struct dyArray *right, struct dyArray *to) { 
        int i = 0; 
        int j = 0; 
        while ((i < dyArraySize(left)) && (j < dyArraySize(right))) { 
                if (LT(dyArrayGet(left, i), dyArrayGet(right, j)) { 
                        i++; 
                } else if (EQ(dyArrayGet(left, i), dyArrayGet(right, j))) { 
                        dyArrayAdd(to, dyArrayGet(left, i)); i++; j++; 
                } else { 
                        j++; 
                } 
        } 
} 
 
Take, for example, set intersection. The intersection copies a value when it is found in 

both collections. Notice that in this abstraction it is more convenient to have the set 

operations create a new set, rather than modifying the arguments. Union copies the 

smaller element when they are unequal, and when they are equal copies only one value 

and advances both pointers (remember that in a set all elements are unique, each value 

appears only once).  The difference copies values from the first collection when it is 

smaller than the current element in the second, and ignores elements that are found in 

both collections. Finally there is the subset test. Unlike the others this operation does not 
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produce a new set, but instead returns false if there are any values in the first collection 

that are not found in the second. But this is the same as returning false if the element 

from the left set is ever the smallest value (indicating it is not found in the other set). 

 

Question: The parallel walk halts when one or the other array reaches the end. In the 

merge algorithm there was an additional loop after the parallel walk needed to copy the 

remaining values from the remaining array. This additional step is necessary in some but 

not all of the set operations. Can you determine which operations need this step? 

 

In worksheet 27 you will complete the implementation of the sorted array set based on 

these ideas.  
 

In Chapter 8 you developed set algorithms that made no assumptions concerning the 

ordering of elements. Those algorithms each have O(n
2
) behavior, where n represents the 

number of elements in the resulting array. What will be the algorithmic execution times 

for the new algorithms? 

 
 Dynamic Array Set Sorted Array Set 
unionWith O(n2) O( 
intersectionWith O(n2) O( 
differenceWith O(n2) O( 
subset O(n2) O( 

 
 
Set operations Using Ordered Linked Lists 
 

We haven’t seen ordered linked lists yet for the simple reason that there usually isn’t 

much reason to maintain linked lists in order. Searching a linked list, even an ordered 

one, is still a sequential operation and is therefore O(n). Adding a new element to such a 

list still requires a search to find the appropriate location, and there therefore also O(n). 

And removing an element involves finding it first, and is also O(n). Since none of these 

are any better than an ordinary unordered linked list, why bother? 

 

One reason is the same as the motivation for maintaining a dynamic array in sorted order. 

We can quickly merge two ordered linked lists to produce a new list that is also sorted. 

And, as we discovered in the last worksheet, the set operations of intersection, union, 

difference and subset can all be thought of as simple variations on the idea of a merge. 

Thus we can quickly make fast implementations of all these operations as well.  

 

The motivation for keeping a list sorted is not the same as it was for keeping a vector 

sorted. With a vector one could use binary search quickly find whether a collection 

contained a specific value. The sequential nature of a linked list prevents the use of the 

binary search algorithm (but not entirely, as we will see in a later chapter). 

 

Self Study Questions 
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1. What two reasons are identified in this chapter for keeping the elements of a 

collection in sorted order? 

 

2. What is the algorithmic execution time for a binary search? What is the time for a 

linear search? 

 

3. If an array contains n values, what is the range of results that the binary search 

algorithm might return? 

 

4. The function dyArrayGet produced an assertion error if the index value was larger 

than or equal to the array size. The function dyArrayAddAt, on the other hand, allows 

the index value to be equal to the size. Explain why. (Hint: How many locations 

might a new value be inserted into an array). 

 

5. Explain why the binary search algorithm speeds the test operation, but not additions 

and removals. 

 

6. Compare the algorithm execution times of an ordered array to an unordered array. 

What bag operations are faster in the ordered array? What operations are slower? 

 

7. Explain why merging two ordered arrays can be performed very quickly. 

 

8. Explain how the set operations of union and instersection can be viewed as variations 

on the idea of merging two sets. 

 

Short Exercises 

 
1. Show the sequence of index values examined when a binary search is performed 

on the following array, seeking the value 5. Do the same for the values 14, 41, 70 

and 73. 

 

2 4 5 7 8 12 24 37 40 41 42 50 68 69 72 
 

 

Analysis Exercises 
 

1. The binary search algorithm as presented here continues to search until the range of 

possible insertion points is reduced to one. If you are searching for a specific value, 

however, you might be lucky and discover it very quickly, before the values low and 

high meet. Rewrite the binary search algorithm so that it halts if the element 

examined at position mid is equal to the value being searched for. What is the 

algorithmic complexity of your new algorithm? Perform an experiment where you 

search for random values in a given range. Is the new algorithm faster or slower than 

the original? 
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2. Provide invariants that could be used to produce a proof of correctness for the binary 

search algorithm. Then provide the arguments used to join the invariants into a proof. 

 

3. Provide invariants that could be used to produce a proof of correctness for the set 

intersection algorithm. Then provide the arguments used to join the invariants into a 

proof. 

 

4. Do the same for the intersection algorithm. 

 

5. Two sets are equal if they have exactly the same elements. Show how to test equality 

in O(n) steps if the values are stored in a sorted array. 

 

6. A set is considered a subset of another set if all values from the first are found in the 

second. Show how to test the subset condition in O(n) steps if the values are stored in 

a sorted array. 

 

7. The binary search algorithm presented here finds the midpoint using the formula (low 
+ high) / 2. Recently Google reported finding an error that was traced to this formula, 

but occurred only when numbers were close to the maximum integer size. Explain 

what error can occur in this situation. This problem is easily fixed by using the 

alternative formula low + (high – low) / 2. Verify that the values that cause problems 

with the first formula now work with the second. 

 

Programming Projects 
 

1. Rewrite the binary search algorithm so that it halts if it finds an element that is equal 

to the test value. Create a test harness to test your new algorithm, and experimentally 

compare the execution time to the original algorithm. 

 

2. Write the function to determine if two sets are equal, as described in an analysis 

exercise above. Write the similar function to determine if one set is a subset of the 

second. 

 

3. Create a test harness for the sorted dynamic array bag data structure. Then create a set 

of test cases to exercise boundary conditions. What are some good test cases for this 

data structure? 

 

On the Web 
 

Wikipedia contains a good explanation of binary search, as well as several variations on 

binary search. Binary search is also explained in the Dictionary of Algorithms and Data 

Structures.  


