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Chapter 10: Efficient Collections (skip lists, trees) 
 
If you performed the analysis exercises in Chapter 9, you discovered that selecting a bag-
like container required a detailed understanding of the tasks the container will be 
expected to perform. Consider the following chart: 
 

 Dynamic array Linked list Ordered array 

add O(1)+ O(1) O(n) 

contains O(n) O(n) O(log n) 

remove O(n) O(n) O(n) 

 
If we are simply considering the cost to insert a new value into the collection, then 
nothing can beat the constant time performance of a simple dynamic array or linked list. 
But if searching or removals are common, then the O(log n) cost of searching an ordered 
list may more than make up for the slower cost to perform an insertion. Imagine, for 
example, an on-line telephone directory. There might be several million search requests 
before it becomes necessary to add or remove an entry. The benefit of being able to 
perform a binary search more than makes up for the cost of a slow insertion or removal. 
 
What if all three bag operations are more-or-less equal? Are there techniques that can be 
used to speed up all three operations?  Are arrays and linked lists the only ways of 
organizing a data for a bag? Indeed, they are not. In this chapter we will examine two 
very different implementation techniques for the Bag data structure. In the end they both 
have the same effect, which is providing O(log n) execution time for all three bag 
operations. However, they go about this task in two very different ways. 
 

Achieving Logarithmic Execution 
 
In Chapter 4 we discussed the log function. There we noted that one way to think about 
the log was that it represented “the number of times a collection of n elements could be 
cut in half”. It is this principle that is used in binary search. You start with n elements, 
and in one step you cut it in half, leaving n/2 elements. With another test you have 
reduced the problem to n/4 elements, and in another you have n/8. After approximately 
log n steps you will have only one remaining value. 
 

n/8

n/4

n/2

n

 
 
There is another way to use the same principle. Imagine that we have an organization 
based on layers. At the bottom layer there are n elements. Above each layer is another 
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that has approximately half the number of elements in the one below. So the next to the 
bottom layer has approximately n/2 elements, the one above that approximately n/4 
elements, and so on. It will take approximately log n layers before we reach a single 
element. 
 
How many elements are there altogether? One way to answer this question is to note that 
the sum is a finite approximation to the series n + n/2 + n/4 + … . If you factor out the 
common term n, then this is 1 +  +  + … This well known series has a limiting value 
of 2. This tells us that the structure we have described has approximately 2n elements in 
it. 
 
The skip list and the binary tree use these observations in very different ways. The first, 
the skip list, makes use of non-determinism. Non-determinism means using random 
chance, like flipping a coin. If you flip a coin once, you have no way to predict whether it 
will come up heads or tails. But if you flip a coin one thousand times, then you can 
confidently predict that about 500 times it will be heads, and about 500 times it will be 
tails. Put another way, randomness in the small is unpredictable, but in large numbers 
randomness can be very predictable. It is this principle that casinos rely on to ensure they 
can always win. 
 
The second technique makes use of a data organization 
technique we have not yet seen, the binary tree. A 
binary tree uses nodes, which are very much like the 
links in a linked list. Each node can have zero, one, or 
two children.  
 
Compare this picture to the earlier one. Look at the tree in levels. At the first level 
(termed the root) there is a single node. At the next level there can be at most two, and 
the next level there can be at most four, and so on. If a tree is relatively “full” (a more 
precise definition will be given later), then if it has n nodes the height is approximately 
log n. 

Tree Introduction 

 
Trees are the third most used data structure in computer science, after arrays (including 
dynamic arrays and other array variations) and linked lists. They are ubiquitous, found 
everywhere in computer algorithms.  
 

Just as the intuitive concepts of a stack or a 
queue can be based on everyday experience with 
similar structures, the idea of a tree can also be 
found in everyday life, and not just the arboreal 
variety. For example, sports events are often 
organized using binary trees, with each node 
representing a pairing of contestants, the winner 
of each round advancing to the next level. 
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Information about ancestors and descendants is often organized into a tree structure. The 
following is a typical family tree. 
 

Gaea

Cronus Phoebe Ocean

Zeus Poseidon Demeter Pluto Leto Iapetus

Persephone Apollo Atlas Prometheus  
 
In a sense, the inverse of a family tree is an ancestor tree. While a family tree traces the 
descendants from a single individual, an ancestor tree records the ancestors. An example 
is the following. We could infer from this tree, for example, that Iphigenia is the child of 
Clytemnestra and Agamemnon, and Clytemnestra is in turn the child of Leda and 
Tyndareus. 

Iphigenia

Clytemnestra

Leda Tyndareus Aerope

Catreus Hippodamia Pelops

Atreus

Agamemnon

 
 
The general characteristics of trees can be illustrated by these examples. A tree consists 
of a collection of nodes connected by directed arcs. A tree has a single root node. A node 
that points to other nodes is termed the parent of those nodes while the nodes pointed to 
are the children. Every node except the root has exactly one parent. Nodes with no 
children are termed leaf nodes, while nodes with children are termed interior nodes. 
Identify the root, children of the 
root, and leaf nodes in the 
following tree. 
 
There is a single unique path 
from the root to any node; that 
is, arcs don’t join together. A 
path’s length is equal to the 
number of arcs traversed. A 
node’s height is equal to the 
maximum path length from that 
node to a left node. A leaf node 

 



Chapter 10: Efficient Collections  4 

has height 0. The height of a tree is the height of the root. A nodes depth is equal to the 
path length from root to that node. The root has depth 0.  
 
A binary tree is a special type of tree. Each node has at most two children. Children are 
either left or right.  
 
Question: Which of the trees given previously represent a binary tree? 
 
A full binary tree is a binary tree in which every leaf is at the same depth. Every internal 
node has exactly 2 children. Trees with a height of n will have 2 n+1 – 1 nodes, and will 
have 2n leaves. A complete binary tree is a full tree except for the bottom level, which is 
filled from left to right.  How many nodes can there be in a complete binary tree of height 
n?  If we flip this around, what is the height of a complete binary tree with n nodes? 
 
 

 
 
 
Trees are a good example of a recursive data 
structure. Any node in a tree can be considered to 
be a root of its own tree, consisting of the values 
below the node. 
 
 
A binary tree can be efficiently stored in an array. 
The root is stored at position 0, and the children of 
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the node stored at position i are stored in positions 2i+1 and 2i+2. The parent of the node 
stored at position i is found at position floor((i-1)/2). 
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Question: What can you say about a complete binary tree stored in this representation?  
What will happen if the tree is not complete? 
 

More commonly we will store our binary trees in instances of 
class Node. This is very similar to the Link class we used in 
the linked list. Each node will have a value, and a left and 
right child. 
 
Trees appear in computer science in a surprising large number 
of varieties and forms. A common example is a parse tree.  

Computer languages, such 
as C, are defined in part 
using a grammar.  
Grammars provide rules that 
explain how the tokens of a 
language can be put 
together.  A statement of the 
language is then constructed 
using a tree, such as the one 
shown. 
 
Leaf nodes represent the 
tokens, or symbols, used in 
the statement. Interior nodes 
represent syntactic 
categories.   
 
 
 

Syntax Trees and 

Polish Notation 

struct node { 
   EleType value; 
   struct node * left; 
   struct node * right; 
} 

<select-statement>

<statement>

<relational-expr> <expr>

<expr> < <expr>

identifier identifier

identifier identifier identifier identifier

<expr> = <expr> <expr> = <expr>

<assign-expr> <assign-expr>

<expr>

if ( ) else<expr> <statement> <statement>

a b

b amaxmax



Chapter 10: Efficient Collections  6 

A tree is a common way to represent an arithmetic expression. For example, the 
following tree represents the expression A + (B + C) * D. As  you learned in Chapter 5, 
Polish notation is a way of representing expressions that avoids the need for parentheses 
by writing the operator for an expression first. The polish notation form for this 
expression is + A * + B C D. Reverse polish writes the operator after an expression, such 
as A B C + D * +. Describe the results of each of the following three traversal algorithms 
on the following tree, and give their relationship to polish notation. 
 

*
+

B

+
A

C

D

 
 
 

Tree Traversals 
 
Just as with a list, it is often useful to examine every node in a tree in sequence. This is a 
termed a traversal. There are four common traversals:  
 
preorder: Examine a node first, then left children, then right children 
Inorder: Examine left children, then a node, then right children 
Postorder: Examine left children, then right children, then a node 
Levelorder: Examine all nodes of depth n first, then nodes depth n+1, etc 
 
Question: Using the following tree, describe the order that nodes would be visited in 
each of the traversals. 
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In practice the inorder traversal is the most useful. As you might have guessed when you 
simulated the inorder traversal on the above tree, the 
algorithm makes use of an internal stack. This stack 
represents the current path that has been traversed from root 
to left. Notice that the first node visited in an inorder 
traversal is the leftmost child of the root.  A useful function 

for this purpose is slideLeft. Using the slide left routine, you 
should verify that the following algorithm will produce a 
traversal of a binary search tree. The algorithm is given in the form of an iterator, 
consisting of tree parts: initialization, test for completion, and returning the next element: 
 
initialization: 
    create an empty stack 
 
has next: 
   if stack is empty 
      perform slide left on root 
   otherwise 
      let n be top of stack. Pop topmost element 
      slide left on right child of n 
   return true if stack is not empty 
 
current element: 
   return value of top of stack 
 
You should simulate the traversal on the tree given earlier to convince yourself it is 
visiting nodes in the correct order. 
 
Although the inorder traversal is the most useful in practice, there are other tree traversal 
algorithms.  Simulate each of the following, and verify that they produce the desired 
traversals. For each algorithm characterize (that is, describe) what values are being held 
in the stack or queue. 
 
PreorderTraversal  
  initialize an empty stack 

slideLeft(node n) 
   while n is not null 
     add n to stack 
     n = left child of n 
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  has next 
      if stack is empty then push the root on to the stack 
      otherwise 
         pop the topmost element of the stack,  
         and push the children from left to right 
      return true if stack is not empty 
 
  current element: 
      return the value of the current top of stack 
 
PostorderTraversal  
   intialize a stack by performing a slideLeft from the root 
 
 has Next 
      if top of stack has a right child 
         perform slide left from right child 
      return true if stack is not empty 
 
   current element 
      pop stack and return value of node 
 
LevelorderTraversal 
   initialize an empty queue 
 
 has Next 
      if queue is empty then push root in to the queue 
      otherwise 
         pop the front element from the queue 
         and push the children from right to left in to the queue 
      return true if queue is not empty 
 
   current element 
      return the value of the current front of the queue 
 

Euler Tours 

 
The three common tree-traversal algorithms can be unified into a single algorithm by an 
approach that visits every node three times. A node will be visited before its left children 
(if any) are explored, after all left children have been explored but before any right child, 
and after all right children have been explored. This traversal of a tree is termed an Euler 

tour. An Euler tour is like a walk around the perimeter of a binary tree. 
 
  void EulerTour (Node n ) { 
      beforeLeft(n); 
      if (n.left != null) EulerTour (n.left); 
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      inBetween (n); 
      if (n.right != null) EulerTour (n.right); 
      afterRight(n); 
   } 
 
   void beforeLeft (Node n) { … }  
   void inBetween (Node n) { … } 
   void afterRight (Node n) { … } 
 
 
The user constructs an Euler tour by providing implementations of the functions 
beforeLeft, inBetweeen and afterRight.  To invoke the tour the root node is passed to the 
function EulerTour. For example, if a tree represents an arithmetic expression the 
following could be used to print the representation. 
 
   void beforeLeft (Node n) { print(“(“); } 
   void inBetween (Node n) { printl(n.value); } 
   void afterRight (Node n) { print(“)”); } 

 

Binary Tree Representation of General Trees 
 
The binary tree is actually more general than you 
might first imagine. For instance, a binary tree can 
actually represent any tree structure.  To illustrate 
this, consider an example tree such as the following: 
 
To represent this tree using binary nodes, use the left 

pointer on each node to indicate the first child of the 
current node, then use the right pointer to indicate a 
“sibling”, a child with the same parents as the current 
node. The tree would thus be represented as follows: 
 
Turning the tree 45 degrees makes the representation look 

more like the binary trees we have been examining in earlier parts of this chapter: 
 
 
Question: Try each of the tree traversal techniques 
described earlier on this resulting tree. Which 
algorithms correspond to a traversal of the original 
tree? 
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Efficient Logrithmic Implementation Techniques 
 
In the worksheets you will explore two different efficient (that is, logarithmic) 
implementation techniques. These are the skip list and the balanced binary tree. 
 

The Skip List 
 
The SkipList is a more complex data structure than we have seen up to this point, and so 
we will spend more time in development and walking you through the implementation.  
To motivate the need for the skip list, consider that ordinary linked lists and dynamic 
arrays have fast (O(1)) addition of new elements, but a slow time for search and removal.  
A sorted array has a fast O(log n) search time, but is still slow in addition of new 
elements and in removal.  A skip list is fast O(log n) in all three operations. 
 
We begin the development of the skip list by first considering an simple ordered list, with 
a sentinel on the left, and single links: 
 

Sentinel 3 7 9 14 20
 

 
To add a new value to such a list you find the correct location, then set the value. 
Similarly to see if the list contains an element you find the correct location, and see if it is 
what you want.  And to remove an element, you find the correct location, and remove it.  
Each of these three has in common the idea of finding the location at which the operation 
will take place.  We can generalize this by writing a common routine, named slideRight. 
This routine will move to the right as long as the next element is smaller than the value 
being considered.   
 
slide right (node n, TYPE test) { 
   while (n->next != nil and n->next->value < test) 
      n = n->next; 
   return n; 
} 
 
Try simulating some of the operations on this structure using the list shown until you 
understand what the function slideRight is doing. What happens when you insert the 
value 10? Search for 14? Insert 25? Remove the value 9? 
 
By itself, this new data structure is not particularly useful or interesting. Each of the three 
basic operations still loop over the entire collection, and are therefore O(n), which is no 
better than an ordinary dynamic array or linked list. 
 
Why can’t one do a binary search on a linked list?  The answer is because you cannot 
easily reach the middle of a list. But one could imagine keeping a pointer into the middle 
of a list: 
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and then another, an another, until you have a tree of links 

  
 
In theory this would work, but the effort and cost to maintain the pointers would almost 
certainly dwarf the gains in search time.  But what if we didn’t try to be precise, and 
instead maintained links probabistically?  We could do this by maintaining a stack of 
ordered lists, and links that could point down to the lower link. We can arrange this so 
that each level has approximately half the links of the next lower. There would therefore 
be approximately log n levels for a list with n elements. 
 

  
 
This is the basic idea of the skip list. Because each level has half the elements as the one 
below, the height is approximately log n. Because operations will end up being 
proportional to the height of the structure, rather than the number of elements, they will 
also be O(log n). 
 
Worksheet 28 will lead through through the implementation of the skip list. 
 
Other data structures have provided fast implementations of one or more operations. An 
ordinary dynamic array had fast insertion, a sorted array provided a fast search. The skip 
list is the first data structure we have seen that provides a fast implementation of all three 
of the Bag operations. This makes it a very good general purpose data structure. The one 
disadvantage of the skip list is that it uses about twice as much memory as needed by the 
bottommost linked list. In later lessons we will encounter other data structures that also 
have fast execution time, and use less memory. 
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The skip list is the first data structure we have seen that uses probability, or random 

chance, as a technique to ensure efficient performance. The use of a coin toss makes the 
class non-deterministic. If you twice insert the same values into a skip list, you may end 
up with very different internal links. Random chance used in the right way can be a very 
powerful tool.  
 
In one experiment to test the execution time of the skip list we compared the insertion 
time to that of an ordered list. This was done by adding n random integers into both 
collections. The results were as shown in the first graph below. As expected, insertion 
into the skip list was much faster than insertion into a sorted list.  However, when 
comparing two operations with similar time the results are more complicated. For 
example, the second graph compares searching for elements in a sorted array versus in a 
skip list. Both are O(log n) operations. The sorted array may be slightly faster, however 
this will in practice be offset by the slower time to perform insertions and removals. 
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The bottom line says that to select an appropriate container one must consider the entire 
mix of operations a task will require. If a task requires a mix of operations the skip list is 
a good overall choice. If insertion is the dominant operation then a simple dynamic array 
or list might be preferable. If searching is more frequent than insertions then a sorted 
array is preferable. 
 

The Binary Search Tree 
 
As we noted earlier in this chapter, another approach to finding fast performance is based 
on the idea of a binary tree. A binary tree consists of a collection of nodes. Each node can 
have zero, one or two children. No node can be pointed to by more than one other node. 
The node that points to another node is known as the parent node. 
 
To build a collection out of a tree we construct what is termed a binary search tree. A 
binary search tree is a binary tree that has the following additional property: for each 
node, the values in all descendants to the left of the node are less than or equal to the 
value of the node, and the values in all descendants to the right are greater than or equal. 
The following is an example binary search tree: 
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Alex

Abner

Abigail

Adam Agnes Allen Arthur

Adela Alice Audrey

Angela

 
 
Notice that an inorder traversal of a BST will list the elements in sorted order. The most 
important feature of a binary search tree is that operations can be performed by walking 
the tree from the top (the root) to the bottom (the leaf). This means that a BST can be 
used to produce a fast bag implementation. For example, suppose you wish to find out if 
the name “Agnes” is found in the tree shown. You simply compare the value to the root 
(Alex). Since Agnes comes before Alex, you travel down the left child. Next you 
compare “Agnes” to “Abner”. Since it is larger, you travel down the right. Finally you 
find a node that matches the value you are searching, and so you know it is in the 
collection. If you find a null pointer along the path, as you would if you were searching 
for “Sam”, you would know the value was not in the collection. 
 
Adding a value to a binary search tree is easy.  You simply perform the same type of 
traversal as described above, and when you find a null value you insert a new node.  Try 
inserting the value “Amina”. Then try inserting “Sam”. 
 
The development of a bag abstraction based on these ideas occurs 
in two worksheets. In worksheet 29 you explore the basic 
algorithms. Unfortunately, bad luck in the order in which values 
are inserted into the bag can lead to very poor performance. For 
example, if elements are inserted in order, then the resulting tree 
is nothing more than a simple linked list. In Worksheet 30 you 
explore the AVL tree, which rebalances the tree as values are 
inserted in order to preserve efficient performance. 
 
As long as the tree remains relatively well balanced, the addition of values to a binary 
search tree is very fast. This can be seen in the execution timings shown below. Here the 
time required to place n random values into a collection is compared to a Skip List, which 
had the fastest execution times we have seen so far. 
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Functional versus State Change Data Structures 

 
In developing the AVL tree, you create a number of functions that operate differently 
than those we have seen earlier. Rather than making a change to a data structure, such as 
modifying a child field in an existing node, these functions leave the current value 
unchanged, and instead create a new value (such as a new subtree) in which the desired 
modification has been made (for example, in which a new value has been inserted). The 
methods add, removeLeftmostChild, and remove illustrate this approach to the 
manipulation of data structures. This technique is often termed the functional approach, 
since it is common in functional programming languages, such as ML and Haskell. In 
many situations it is easier to describe how to build a new value than it is to describe how 
to change an existing value.  Both approaches have their advantages, and you should add 
this new way of thinking about a task to your toolbox of techniques and remember it 
when you are faced with new problems. 

 
Self Study Questions 
 

1. In what operations is a simple dynamic array faster than an ordered array? In what 
operations is the ordered array faster? 

 
2. What key concept is necessary to achieve logarithmic performance in a data 

structure? 
 
3. What are the two basic parts of a tree? 
 
4. What is a root note? What is a leaf node? What is an interior node? 
 
5. What is the height of a binary tree? 
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6. If a tree contains a node that is both a root and a leaf, what can you say about the 
height of the tree? 

 
7. What are the characteristics of a binary tree? 
 
8. What is a full binary tree? What is a complete binary tree? 
 
9. What are the most common traversals of a binary tree? 
 
10. How are tree traversals related to polish notation? 
 
11. What key insight allows a skip list to achieve efficient performance? 
 
12. What are the features of a binary search tree? 
 
13. Explain the operation of the function slideRight in the skip list implementation. What 

can you say about the link that this method returns? 
 
14. How are the links in a skip list different from the links in previous linked list 

containers? 
 
15. Explain how the insertion of a new element into a skip list uses random chance. 
 
16. How do you know that the number of levels in a skip list is approximately log n? 

 

Analysis Exercises 
 
1. Would the operations of the skip list be faster or slower if we added a new level one-

third of the time, rather than one-half of the time? Would you expect there to be more 
or fewer levels?  What about if the probability were higher, say two-thirds of the 
time? Design an experiment to discover the effect of these changes. 

 
2. Imagine you implemented the naïve set algorithms described in Lesson 24, but used a 

skip list rather than a vector. What would the resulting execution times be? 
 
3. Prove that a complete binary tree of height n will have 2n leaves.  (Easy to prove by 

induction). 
 
4. Prove that the number of nodes in a complete binary tree of height n is 2n+1 – 1. 
 
5. Prove that a binary tree containing n nodes must have at least one path from root to 

leaf of length floor(log n). 
 
6. Prove that in a complete binary tree containing n nodes, the longest path from root to 

leaf traverses no more than ceil(log n) nodes. 
 



Chapter 10: Efficient Collections  17 

7. So how close to being well balanced is an AVL tree?  Recall that the definition 
asserts the difference in height between any two children is no more than one. This 
property is termed a height-balanced tree. Height balance assures that locally, at each 
node, the balance is roughly maintained, although globally over the entire tree 
differences in path lengths can be somewhat larger. The following shows an example 
height-balanced binary tree. 

 

 
A complete binary tree is also height balanced.  Thus, the largest number of nodes in a 
balanced binary tree of height h is 2h+1-1. An interesting question is to discover the 
smallest number of nodes in a 
height-balanced binary tree. For 
height zero there is only one tree.  
For height 1 there are three trees, 
the smallest of which has two 
nodes. In general, for a tree of 
height h the smallest number of 
nodes is found by connecting the 
smallest tree of height h-1 and h-2. 
 
If we let Mh represent the function yielding the minimum number of nodes for a height 
balanced tree of height h, we obtain the following equations: 
 
M0 = 1 
M1 = 2 
Mh+1 = Mh-1 + Mh + 1 
 
These equations are very similar to the famous Fibonacci numbers defined by the 
formula f0 = 0, f1 = 1, fn+1 = fn-1 + fn. An induction argument can be used to show that Mh 
= fh+3 – 1. It is easy to show using induction that we can bound the Fibonacci numbers by 
2n.  In fact, it is possible to establish an even tighter bounding value. Although the details 
need not concern us here, the Fibonacci numbers have a closed form solution; that is, a 
solution defined without using recursion. The value Fh is approximately 
$\frac{\Phi^i}{\sqrt{5}}$, where $\Phi$ is the golden mean value $(1+\sqrt{5})/2$, or 
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approximately $1.618$. Using this information, we can show that the function Mh also 
has an approximate closed form solution: 
 

 
 
By taking the logarithm of both sides and discarding all but the most significant terms we 
obtain the result that h is approximately 1.44 log Mh. This tells us that the longest path in 
a height-balanced binary tree with n nodes is at worst only 44 percent larger than the log 
n minimum length. Hence algorithms on height-balanced binary trees that run in time 
proportional to the length of the path are still O(log n). More importantly, preserving the 
height balanced property is considerably easier than maintaining a completely balanced 
tree. 
 
Because AVL trees are fast on all three bag operations they are a good general purpose 
data structure useful in many different types of applications. The Java standard library 
has a collection type, TreeSet, that is based on a data type very similar to the AVL trees 
described here. 
 
 
Explain why the following are not legal trees. 
 
 

 
 

Programming Projects 

 
1. The bottom row of a skip list is a simple ordered list. You already know from Lesson 

36 how to make an iterator for ordered lists. Using this technique, create an iterator 
for the skip list abstraction. How do you handle the remove operation? 

 
2. The smallest value in a skip list will always be the first element. Assuming you have 

implemented the iterator described in question 6, you have a way of accessing this 
value. Show how to use a skip list to implement a priority queue. A priority queue, 
you will recall, provides fast access to the smallest element in a collection. What will 
be the algorithmic execution time for each of the priority queue operations? 
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void skipPQaddElement (struct skipList *, TYPE newElement); 
TYPE skipPQsmallestElement (struct skipList *); 
void skipPQremoveSmallest (struct skipList *); 

 

 

On the Web 
 
The wikipedia has a good explanation of various efficient data structures. These include 
entries on skip lists, AVL trees and other self-balancing binary search trees. Two forms 
of tree deserve special note. Red/Black trees are more complex than AVL trees, but 
require only one bit of additional information (whether a node is red or black), and are in 
practice slightly faster than AVL trees. For this reason they are used in many data 
structure libraries. B-trees (such as 2-3 B trees) store a larger number of values in a block, 
similar to the dynamic array block. They are frequently used when the actual data is 
stored externally, rather than in memory. When a value is accessed the entire block is 
moved back into memory. 


