
Worksheet 19: Linked List Deque Name:

An Active Learning Approach to Data Structures using C 1

Worksheet 19: Linked List Deque

In Preparation: Read Chapter 7 to learn more about the Deque data type. If you have not

done so already, you should complete worksheets 17 and 18 to learn about the basic

features of a linked list.

In this lesson we continue looking at variations on the theme of linked lists, this time

including double links and sentinels on both the front and the back of the list. This will be

the first of several lessons that will develop a very general purposed linked list

abstraction. In this lesson we will emphasize the deque aspects of the list. In the

following lesson we will add more operations.

A deque, you recall, allows insertions at both the

beginning and the end of the container. The

conceptual interface is shown at right. (Recall

that the actual functions may differ from the

conceptual interface in two ways. First, the

names are likely differ to accommodate the C

restriction that all functions have unique names.

Second, the actual functions will pass the

underlying data area as an argument).

Our linkedList data structure will have two major

variations from the linked list stack and queue you have examined earlier. First, an

integer data field will remember the number of elements (that is, the size) in the

container. Second, we will use sentinels at both the front and back of the linked list.

Sentinels ensure the list is never completely empty. They also mean that all instructions

can be described as special cases of more general routines. The internal method _addLink

will add a link before the given location. The second routine _removeLink, will remove

its argument link. Both of these use the underscore convention to indicate they are

internal methods. When a value is removed from a list make sure you free the associated

link fields. Use an assertion to check that allocations of new links are successful, and that

you do not attempt to remove a value from an empty list. The following instructions will

help you understand how to implement these operations.

1. Draw a picture of an initially empty LinkedList, including the two sentinels.

backSentinel

frontSentinel

sentinel 7 4 Sentinel

Conceptual Deque operations

void addFront (TYPE e)
void addBack (TYPE e)
TYPE front ()
TYPE back ()
void removeFront ()
void removeBack ()
int isEmpty ()

Worksheet 19: Linked List Deque Name:

An Active Learning Approach to Data Structures using C 2

2. Draw a picture of the LinkedList after the insertion of one value.

3. Based on the previous two pictures, can you describe what property characterizes an

empty collection?

4. Draw a picture of a LinkedList with three or more values (in addition to the

sentenals).

5. Draw a picture after a value has been inserted into the front of the collection. Notice

that this is between the front sentinal and the following element. Draw a picture

showing an insertion into the back. Notice that this is again between the last element

and the ending sentinel. Abstracting from these pictures, what would the function

addBefore need to do, where the argument is the link that will follow the location in

which the value is inserted.

6. Draw a picture of a linkedList with three or more values, then examine what is

needed to remove both the first and the last element. Can you see how both of these

operations can be implemented as a call on a common operation, called removeLink?

7. What is the algorithmic complexity of each of the deque operations?

Worksheet 19: Linked List Deque Name:

An Active Learning Approach to Data Structures using C 3

struct dlink {
 TYPE value;
 struct dlink * next;
 struct dlink * prev;
};

struct linkedList {
 int size;
 struct dlink * frontSentinel;
 struct dlink * backSentinel;
};

 /* these functions are written for you */
void LinkedListInit (struct linkedList *q) {
 q->frontSentinel = (struct dlink *) malloc(sizeof(struct dlink));
 assert(q->frontSentinel != 0);
 q->backSentinel = (struct dlink *) malloc(sizeof(struct dlink));
 assert(q->backSentinel);
 q->frontSentinel->next = q->backSentinel;
 q->backSentinel->prev = q->frontSentinal;
 q->size = 0;
}

void linkedListFree (struct linkedList *q) {
 while (q->size > 0)
 linkedListRemoveFront(q);
 free (q->frontSentinel);
 free (q->backSsentinel);
 q->frontSentinel = q->backSentinel = null;
}

void LinkedListAddFront (struct linkedList *q, TYPE e)
 { _addLink(q, q->frontSentinel_>next, e); }

void LinkedListAddback (struct linkedList *q, TYPE e)
 { _addLink(q, q->backSentinel, e); }

void linkedListRemoveFront (struct linkedList *q) {
 assert(! linkedListIsEmpty(q));
 _removeLink (q, q->frontSentinal->next);
}

void LinkedListRemoveBack (struct linkedList *q) {
 assert(! linkedListIsEmpty(q));
 _removeLink (q, q->backSentinel->prev);
}

int LinkedListIsEmpty (struct linkedList *q) {
 return q->size == 0;
}

Worksheet 19: Linked List Deque Name:

An Active Learning Approach to Data Structures using C 4

/* write addLink and removeLink. Make sure they update the size field correctly */

/* _addLink places a new link BEFORE the provide link, lnk */
void _addLink (struct linkedList *q, struct dlink *lnk, TYPE e) {

}

void _removeLink (struct linkedList *q, struct dlink *lnk) {

}

TYPE LinkedListFront (struct linkedList *q) {

}

TYPE LinkedListBack (struct linkedList *q) {

}

