
Worksheet 20: Dynamic Array Deque and Queue  Name: 

An Active Learning Approach to Data Structures using C 1

Worksheet 20: Dynamic Array Deque and Queue 
 
In Preparation: Read Chapter 7 to learn more about the Queue and Deque data types. If 
you have not done it already, complete lessons 14 and 16 to learn more about the basic 
features of the dynamic array data type.  
 
A question in the worksheet on the dynamic array stack asked why you cannot use a 
Dynamic Array as the basis for an efficient queue. This is because adding to or removing 
from the first location (that is, index position 0) is very slow O(n).  
 

Removing a value requires elements to slide left. 
Sliding left means every element must be 
moved, and hence is an O(n) operation. 
 
 
 

Adding a value requires elements to slide right. 
Sliding right opens up the location where a 
new value can be inserted. Once more, 
however, every element must be moved, and 
hence this is an O(n) operation. 
 
This does not mean that a Dynamic Array-like data structure cannot be used to implement 
a queue. The key insight is that we can allow the starting location of the block of 
elements to “float”, rather than being fixed at location zero. An internal integer data field 
records the current starting location.  
 

DataSize = 6
DataStart = 2
Data =

2 4 7 3 9 1

 
 
Notice that the “logical” index no longer corresponds to the physical index. The value 
with logical index zero is found in this diagram at array location 2. The value with logical 
index 1 is found at location 3, and so on. 
 
With this change, it is now easy to implement additions or removal from either front or 
back. To add to the front, simply decrement the starting location, and place the new 
element in the new starting place. To add to the back, simply increase the size, and place 
the new value in the location determined by the addition of the starting location and size.  
But there is one subtle complexity. The block of values stored in the collection can wrap 
around from the end back to the beginning: 
 

2 4 7 3 9 1

4 7 3 9 126

2 4 7 3 9 1

4 7 3 9 1



Worksheet 20: Dynamic Array Deque and Queue  Name: 

An Active Learning Approach to Data Structures using C 2

DataSize = 6
DataStart = 7
Data =

2 4 7 39 1

 
 
Here the block of elements begins at index position 7. The next three elements are found 
in index positions 8, 9 and 10. But the element after that is found at index position zero. 
As with the Dynamic Array, the internal array must be reallocated and doubled if the 
count of elements becomes equal to the array capacity. The internal function 
_dequeDoubleCapacity will double the size of the internal buffer. The code for this 
function is written for you below. You should study this to see how the variable named I 
can wrap around the end of the data array as the values are copied into the new array. The 
new array always begins with the starting position set to zero.  
 
Using this idea, complete the implementation of the Deque. Implement the methods that 
will add, retrieve, or remove an element from either the front or back. Explain why each 
operation will have constant (or amortized constant) execution time.  
 
void _dequeDoubleCapacity (struct deque *d) { 
    TYPE * newData; 
    int i = d->start; 
    int j = 0; 
    int s; 
    int currCap = d->capacity; 
    if (currCap <= 0) currCap = 1; 
    newData = malloc(2 * currCap * sizeof(TYPE)); 
    assert (newData != 0); 
    for (s = d->size; s > 0; s--) { 
        newData[j++] = d->data[i++]; 
        if (i > d->capacity) i = 0; 
    } 
    free(d->data); 
    d->data = newData; 
    d->capacity = 2 * currCap; 
    d->start = 0;  
} 
 
void dequeFree (struct deque *d) { 
   free(d->data); d->size = 0; d->capacity = 0; 
}



Worksheet 20: Dynamic Array Deque and Queue  Name: 

An Active Learning Approach to Data Structures using C 3

struct deque { 
   TYPE * data; 
   int capacity; 
   int size; 
   int start; 
}; 
 
void dequeInit (struct deque *d, int initCapacity) { 
   d->size = d->start = 0; 
   d->capacity = initCapacity; assert(initCapacity > 0); 
   d->data = (TYPE *) malloc(initCapacity * sizeof(TYPE)); 
   assert(d->data != 0); 
} 
 
int dequeSize (struct deque *d) { return d->size; } 
 
void _dequeDoubleCapacity (struct deque *d);   
 
void dequeAddFront (struct deque *d, TYPE newValue) { 
   if (d->size >= d->capacity) _dequeDoubleCapacity(d); 
 
 
 
 
 
 
 
 
 
 
 
 
 
} 
 
void dequeAddBack (struct deque *d, TYPE newValue) { 
   if (d->size >= d->capacity) _dequeDoublecapacity(d); 
 
 
 
 
 
 
 
 
 
 
 
 
} 
 
 
 
 
 
 



Worksheet 20: Dynamic Array Deque and Queue  Name: 

An Active Learning Approach to Data Structures using C 4

TYPE dequeFront (struct deque *d) { 
 
 
 
 
 
 
 
} 
 
TYPE dequeBack (struct deque *d) { 
 
 
 
 
 
 
} 
 
 
 
void dequeRemoveFront (struct deque *d) { 
 
 
 
 
 
 
 
 
 
 
} 
 
void dequeRemoveBack (struct deque *d) { 
 
 
 
 
 
 
 
 
 
 
 
 
} 
 

 


