
Worksheet 21: Building a Bag using a Dynamic Array NAME:

Worksheet 21: Active Data Structure in C – Building a Bag using a Dymamic Array 1

Worksheet 21: Building a Bag using a Dynamic Array

In preparation: Read Chapter 8 to learn more about the Bag data type. If you have not
done so already, complete Worksheet 14 to learn about the basic features of the dynamic
array.

The stack, queue and deque data
abstractions are all characterized by
maintaining values in the order they were
inserted. In many situations, however, it
is the values themselves, and not their
time of insertion, that is of primary
importance. The simplest data structure that is simply concerned with the values, and not
their time of insertion, is the Bag. A conceptual definition of the Bag operations is shown
at right. In subsequent lessons we will encounter several different implementation
techniques for this abstraction. In this lesson we will explore how to create a bag using a
dynamic array as the underlying storage area.

Recall that the dynamic array structure maintained three data fields. The first was a
reference to an array of objects. The number of positions in this array, held in an integer
data field, was termed the capacity of the container. The third value was an integer that
represented the number of elements held in the container. This was termed the size of the
collection. The size must always be smaller than or equal to the capacity.

3 7 4 3 5

Size
 V

Capacity
 V

As new elements are inserted, the size is increased. If the size reaches the capacity, then a
new internal array is created with twice the capacity, and the values are copied from the
old array into the new. In Worksheet14 you wrote a routine _dynArraySetCapacity, to
perform this operation.

To add an element to the dynamic array you can simply insert it at the end. This is
exactly the same behavior as the function dynArrayAdd you wrote in Worksheet 14.

The contains function is also relatively simple. It simply uses a loop to cycle over the
index values, examining each element in turn. If it finds a value that matches the
argument, it returns true. If it reaches the end of the collection without finding any value,
it returns false. Because we want the container to be generalized, we define equality using
a macro definition. This is similar to the symbolic constant trick we used to define the
type TYPE. The macro is defined as follows:

ifndef EQ
define EQ(a, b) (a == b)

Conceptual Bag interface
void add (TYPE newValue);
Boolean contains (TYPE testValue);
void remove (TYPE testValue);

Worksheet 21: Building a Bag using a Dynamic Array NAME:

Worksheet 21: Active Data Structure in C – Building a Bag using a Dymamic Array 2

endif

The ifndef preprocessor instruction allows the user to provide an alternative definition for
the EQ function. If none is provided, the primitive equality operator will be used.

The remove function is the most complicated of the Bag abstraction. To simplify this task
we will divide it into two distinct steps. The remove function, like the function contains,
will loop over each position, examining the elements in the collection. If it finds one that
matches the desired value, it will invoke a separate function, removeAt (from Worksheet
14), that removes the value held at a specific location.

void dynArrayRemove (struct DynArr * dy, TYPE test) {
 int i;
 for (i = 0; i < dy->size; i++) {
 if (EQ(test, dy->data[i])) { /* found it */
 _dynArrayRemoveAt(dy, i);
 return;
 }
 }
}

Notice two things about the remove function. First, if no matching element is found, the
loop will terminate and the function return without making any change to the data.
Second, once an element has been found, the function returns. This means that if there
were two or more occurrences of the value that matched the test element, only the first
would be removed.

The removeAt function takes as argument an index position in the array, and removes the
element stored at that location. This is complicated by the fact that when the element is
removed, all values stored at locations with higher index values must be “moved down”.

Once the values are moved down, the count must be decremented to indicate the size of
the collection is decreased.

Based on these ideas, complete the following skeleton implementation of the bag
functions for the dynamic array. You can use any of the functions you have previously
written in earlier lessons.

Worksheet 21: Building a Bag using a Dynamic Array NAME:

Worksheet 21: Active Data Structure in C – Building a Bag using a Dymamic Array 3

struct DynArr {
 TYPE * data;
 int size;
 int capacity;
};

 /* the following were written in earlier lessons */
void dynArrayInit (struct DynArr * da, int initCap);
void dynArrayAdd (struct DynArr * da, TYPE e);

/* remove was shown earlier, to use removeAt */
void dynArrayRemove (struct DynArr * da, TYPE test) {
 int i;
 for (i = 0; i < dy->size; i++) {
 if (EQ(test, dy->data[i])) { /* found it */
 _dynArrayRemoveAt(dy, i);
 return;
 }
 }
}

/* you must write the following */

int dynArrayContains (struct DynArr * da, TYPE e) {

}

1. What should the removeAt method do if the index given as argument is not in
range?

2. What is the algorithmic complexity of the method removeAt?
3. Given your answer to the previous question, what is the worst-case complexity of

the method remove?
4. What are the algorithmic complexities of the operations add and contains?

