
worksheet 29: Binary Search Trees Name:

An Active Learning Approach to Data Structures using C 1

Worksheet 29: Binary Search Trees

In Preparation: Read Chapter 8 to learn more about the Bag data type, and chapter 10 to

learn more about the basic features of trees. If you have not done so already, read

Worksheets 21 and 22 for alternative implementation of the Bag.

In this worksheet we will start to explore how to make a useful container class using the

idea of a binary tree. A binary search tree is a binary tree that has the following

additional property: for each node, the values in all descendants to the left of the node are

less than or equal to the value of the node, and the values in all descendants to the right

are greater than or equal. The following is an example binary search tree:

Alex

Abner Angela

Adela Alice Audrey

Adam Agnes Allen Arthur

Abigail

Notice that an inorder traversal of a BST will list the elements in sorted order. The most

important feature of a binary search tree is that operations can be performed by walking

the tree from the top (the root) to the bottom (the leaf). This means that a BST can be

used to produce a fast Bag implementation. For example, suppose you find out if the

name “Agnes” is found in the tree shown. You simply compare the value to the root

(Alex). Since Agnes comes before Alex, you travel down the left child. Next you

compare “Agnes” to “Abner”. Since it is larger, you travel down the right. Finally you

find a node that matches the value you are searching, and so you know it is in the

collection. If you find a null pointer along the path, as you would if you were searching

for “Sam”, you would know the value was not in the collection.

Adding a value to a binary search tree is easy. You simply perform the same type of

traversal as described above, and when you find a null value you insert a new node. Try

inserting the values “Amelia”. Then try inserting “Sam”.

worksheet 29: Binary Search Trees Name:

An Active Learning Approach to Data Structures using C 2

Insertion is most easily accomplished by writing a private internal function that takes a

Node and a value, and returns the new tree in which the Node has been inserted. In

pseudo-code this routine is similar to the following:

Node add (Node start, E newValue)
 if start is null then return a new Node with newValue
 otherwise if newValue is less than the value at start then
 set the left child to be the value returned by add(leftChild, newValue)
 otherwise set the right child to be add(rightChild, newValue)
 return the current node

Removal is the most complex of the basic Bag operations. The difficulty is that removing

a node leaves a “hole”. Imagine, for example, removing the value “Alex” from the tree

shown. What value should be used in place of the removed element?

The answer is the leftmost child of the right node. This is because it is this value that is

the smallest element in the right subtree. The leftmost child of a node is the value found

by running through left child Nodes as far as possible. The leftmost child of the original

tree shown above is “Abigail”. The leftmost child of the right child of the node “Alex” is

the node “Alice”. It is a simple matter to write a routine to find the value of the leftmost

child of a node. You should verify that in each case if you remove an element the value

of the node can be replaced by the leftmost child of the right node without destroying the

BST property.

A companion routine (removeLeftmost) is a function to return a tree with the leftmost

child removed. Again, traverse the tree until the leftmost child is found. When found,

return the right child (which could possibly be null). Otherwise make a recursive call and

set the left child to the value returned by the recursive call, and return the current Node.

Armed with these two routines, the general remove operation can be described as

follows. Again it makes sense to write it as a recursive routine that returns the new tree

with the value removed.

Node remove (Node start, E testValue)
 if start.value is the value we seek
 decrease the value of dataSize
 if right child is null
 return left child
 otherwise
 replace value of node with leftmost child of right child
 set right child to be removeLeftmost(right child)
 otherwise if testValue is smaller than start.value
 set left child to remove (left child, testValue)
 otherwise
 set right child to remove (right child, testValue)
 return current node

worksheet 29: Binary Search Trees Name:

An Active Learning Approach to Data Structures using C 3

Try executing this function on each of the values of the original binary search tree in turn,

and verifying that the result is a valid binary search tree.

Using the approach described, complete the following implementation:

struct node {
 TYPE value;
 struct node * left;
 struct node * right;
};

struct BinarySearchTree {
 struct node *root;
 int size;
};

void BSTinit(struct BinarySearchTree *tree) { tree->size = 0; tree->root = 0: }

void BSTadd(struct BinarySearchTree *tree, TYPE newValue) {
 tree->root = BSTnodeAdd(tree->root, newValue); tree->size++; }

int BSTsize (struct binarySearchTree *tree) { return tree->size; }

struct node * BSTnodeAdd (struct node *current, TYPE newValue) {

}

worksheet 29: Binary Search Trees Name:

An Active Learning Approach to Data Structures using C 4

int BSTcontains (struct binarySearchTree *tree, TYPE d) {

}

void BSTremove (struct binarySearchTree *tree, TYPE d) {
 if (BSTcontains(tree, d) {
 tree->root = BSTnodeRemove(tree->root, d);
 tree->size--;
 }
}

TYPE leftMostChild (struct node * current) {

}

worksheet 29: Binary Search Trees Name:

An Active Learning Approach to Data Structures using C 5

struct node * removeLeftmostChild (struct node *current) {

}

void BSTnodeRemove (struct node * current, TYPE d) {

}

worksheet 29: Binary Search Trees Name:

An Active Learning Approach to Data Structures using C 6

On Your Own

1. What is the primary characteristic of a binary search tree?

2. Explain how the search for an element in a binary search tree is an example of the

idea of divide and conquer.

3. Try inserting the values 1 to 10 in order into a BST. What is the height of the

resulting tree?

4. Why is it important that a binary search tree remain reasonably balanced? What

can happen if the tree becomes unbalanced?

5. What is the maximum height of a BST that contains 100 elements? What is the

minimum height?

6. Explain why removing a value from a BST is more complicated than insertion.

7. Suppose you want to test our BST algorithms. What would be some good

boundary value test cases?

8. Program a test driver for the BST algorithm and execute the operations using the

test cases identified in the previous question.

9. The smallest element in a binary search tree is always found as the leftmost child

of the root. Write a method getFirst to return this value, and a method removeFirst

to modify the tree so as to remove this value.

10. With the methods described in the previous question, it is easy to create a data

structure that stores values in a BST and implements the Priority Queue interface.

Show this implementation, and describe the algorithmic execution time for each

of the Priority Queue operations.

11. Suppose you wanted to add the equals method to our BST class, where two trees

are considered to be equal if they have the same elements. What is the complexity

of your operation?

