
Worksheet 37: Open Address Hash Tables Name:

An Active Learning Approach to Data Structures using C 1

Worksheet 37: Hash Tables (Open Address Hashing)

In preparation: Read Chapter 12 on dictionaries and hash tables.

In this chapter we will explore yet another technique that can be used to provide a very
fast Bag abstraction. We have seen how containers such as the skip list and the AVL tree
can reduce the time to perform operations from O(n) to O(log n). But can we do better?
Would it be possible to create a container in which the average time to perform an
operation was O(1)? The answer is both yes and no.

In chapter 12 you learned about the idea of hashing. To hash a value means to convert it
into an integer index. This index is then used to access an array. Unfortunately, two
different values may result in the same index. This is termed a collision. There are several
different techniques used to deal with the problem of collisions. These will be explored in
this and subsequent lessons.

The first technique you will explore is termed open-address hashing. Here all elements
are stored in a single large table. Positions that are not yet filled are given a null value.
An eight-element table using Amy’s algorithm would look like the following:

Notice that the table size is different, and so the index values are also different. The
letters at the top show characters that hash into the indicated locations. If Anne now joins
the club, we will find that the hash value (namely, 5) is the same as for Alfred. So to find
a location to store the value Anne we probe for the next free location. This means to
simply move forward, position by position, until an empty location is found. In this
example the next free location is at position 6.

No suppose Agnes wishes to join the club. Her hash value, 6, is already filled. The probe
moves forward to the next position, and when the end of the array is reached it continues
with the first element, eventually finding position 1:

Amina Andy Alessia Alfred Aspen
0-aiqy 1-bjrz 2-cks 3-dlt 4-emu 5-fnv 6-gow 7-hpx

Amina Andy Alessia Alfred Anne Aspen

0-aiqy 1-bjrz 2-cks 3-dlt 4-emu 5-fnv 6-gow 7-hpx

Amina Agnes Andy Alessia Alfred Anne Aspen

0-aiqy 1-bjrz 2-cks 3-dlt 4-emu 5-fnv 6-gow 7-hpx

Worksheet 37: Open Address Hash Tables Name:

An Active Learning Approach to Data Structures using C 2

Finally, suppose Alan wishes to join the club. He finds that his hash location, 0, is filled
by Amina. The next free location is not until position 2:

To see if a value is contained in a hash table the test value is first hashed. But just
because the value is not found at the given location doesn’t mean that it is not in the
table. Think about searching the table above for the value Alan, for example. Instead, an
unsuccessful test must continue to probe, moving forward until either the value is found
or an empty location is encountered. (We will assume that our hash table contains
pointers to elements, so that an empty position is indicated by an empty pointer).

Removing an element from an open hash table is problematic. We cannot simply replace
the location with a null entry, as this might interfere with subsequent search operations.
Imagine that we replaced Agnes with a null value in the table given above, and then once
more performed a search for Alan. What would happen?

One solution to this problem is to not allow removals. This is the technique we will use.
The second solution is to create a special type of marker termed a tombstone. A
tombstone replaces a deleted value, can be replaced by another newly inserted value, but
does not halt the search.

Complete the implementation of the HashTableBag based on these ideas. The initial size
of the table is here fixed at 17. The data field tablesize holds the size of the table. The
table should be resized if the load factor becomes larger than 0.75. Because the table
contains pointers, the field in the struct is declared as a pointer to a pointer, using the
double star notation. The variable count should represent the number of elements in the
table. The macro HASH is used to compute the hash value. The calculation of the hash
index is performed using long integers. The reason for this is explored in Chapter 12.

Amina Agnes Alan Andy Alessia Alfred Anne Aspen

0-aiqy 1-bjrz 2-cks 3-dlt 4-emu 5-fnv 6-gow 7-hpx

Worksheet 37: Open Address Hash Tables Name:

An Active Learning Approach to Data Structures using C 3

struct openHashTable {
 TYPE ** table;
 int tablesize;
 int count;
};

void initOpenHashTable (struct openHashTable * ht, int size) {
 int i;
 assert (size > 0);
 ht->table = (TYPE **) malloc(size * sizeof(TYPE *));
 assert(ht->table != 0);
 for (I = 0; I < size; i++)

 ht->table[i] = 0; /* initialize empty */
 ht->tablesize = size;
 ht->count = 0;
}

int openHashTableSize (struct openHashTable *ht) { return ht->count; }

void openHashTableAdd (struct openHashTable * ht, TYPE newValue) {
 int idx;

 /* Make sure we have space and under the load factor threshold*/
 if ((ht->count / (double) ht->tablesize) > 0.75)

_resizeOpenHashTable(ht);
 ht->count++;

 idx = HASH(newValue) % ht->tableSize;
 if (idx < 0) idx += ht->cap;

}

Worksheet 37: Open Address Hash Tables Name:

An Active Learning Approach to Data Structures using C 4

void openHashTableBagContains (struct openHashTable *ht, TYPE testValue) {

int idx;

idx = HASH(newValue) % ht->tableSize;
 if (idx < 0) idx += ht->cap;

 }

void _resizeOpenHashTable (struct openHashTable *ht) {

 }

