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Worksheet 37: Hash Tables (Open Address Hashing) 
 
In preparation: Read Chapter 12 on dictionaries and hash tables. 
 
In this chapter we will explore yet another technique that can be used to provide a very 
fast Bag abstraction. We have seen how containers such as the skip list and the AVL tree 
can reduce the time to perform operations from O(n) to O(log n). But can we do better? 
Would it be possible to create a container in which the average time to perform an 
operation was O(1)?  The answer is both yes and no. 
 
In chapter 12 you learned about the idea of hashing. To hash a value means to convert it 
into an integer index. This index is then used to access an array. Unfortunately, two 
different values may result in the same index. This is termed a collision. There are several 
different techniques used to deal with the problem of collisions. These will be explored in 
this and subsequent lessons. 
  
The first technique you will explore is termed open-address hashing.  Here all elements 
are stored in a single large table. Positions that are not yet filled are given a null value. 
An eight-element table using Amy’s algorithm would look like the following: 
 
 
 
 
 
Notice that the table size is different, and so the index values are also different. The 
letters at the top show characters that hash into the indicated locations. If Anne now joins 
the club, we will find that the hash value (namely, 5) is the same as for Alfred. So to find 
a location to store the value Anne we probe for the next free location. This means to 
simply move forward, position by position, until an empty location is found. In this 
example the next free location is at position 6. 
 
 
 
 
 
No suppose Agnes wishes to join the club. Her hash value, 6, is already filled. The probe 
moves forward to the next position, and when the end of the array is reached it continues 
with the first element, eventually finding position 1: 
 
 
 
 
 
 

Amina Andy Alessia Alfred Aspen 
0-aiqy 1-bjrz 2-cks 3-dlt 4-emu 5-fnv 6-gow 7-hpx
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Finally, suppose Alan wishes to join the club. He finds that his hash location, 0, is filled 
by Amina. The next free location is not until position 2: 
 
 
 
 
 
 
To see if a value is contained in a hash table the test value is first hashed. But just 
because the value is not found at the given location doesn’t mean that it is not in the 
table. Think about searching the table above for the value Alan, for example. Instead, an 
unsuccessful test must continue to probe, moving forward until either the value is found 
or an empty location is encountered. (We will assume that our hash table contains 
pointers to elements, so that an empty position is indicated by an empty pointer). 
 
Removing an element from an open hash table is problematic. We cannot simply replace 
the location with a null entry, as this might interfere with subsequent search operations. 
Imagine that we replaced Agnes with a null value in the table given above, and then once 
more performed a search for Alan. What would happen? 
 
One solution to this problem is to not allow removals. This is the technique we will use. 
The second solution is to create a special type of marker termed a tombstone. A 
tombstone replaces a deleted value, can be replaced by another newly inserted value, but 
does not halt the search. 
 
Complete the implementation of the HashTableBag based on these ideas. The initial size 
of the table is here fixed at 17. The data field tablesize holds the size of the table. The 
table should be resized if the load factor becomes larger than 0.75. Because the table 
contains pointers, the field in the struct is declared as a pointer to a pointer, using the 
double star notation. The variable count should represent the number of elements in the 
table. The macro HASH is used to compute the hash value. The calculation of the hash 
index is performed using long integers. The reason for this is explored in Chapter 12. 

Amina Agnes Alan Andy Alessia Alfred Anne Aspen 
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struct openHashTable { 
   TYPE ** table; 
   int tablesize; 
   int count; 
}; 
 
void initOpenHashTable (struct openHashTable * ht, int size) { 
   int i; 
   assert (size > 0); 
   ht->table = (TYPE **) malloc(size * sizeof(TYPE *)); 
   assert(ht->table != 0); 
   for (I = 0; I < size; i++) 

 ht->table[i] = 0; /* initialize empty */ 
   ht->tablesize = size; 
   ht->count = 0; 
} 
 
int openHashTableSize (struct openHashTable *ht) { return ht->count; } 
 
void openHashTableAdd (struct openHashTable * ht, TYPE  newValue) { 
    int idx;  
 
    /* Make sure we have space and under the load factor threshold*/  
    if ((ht->count / (double) ht->tablesize) > 0.75)  

_resizeOpenHashTable(ht); 
    ht->count++; 
 
    idx = HASH(newValue) % ht->tableSize; 
    if (idx < 0) idx += ht->cap; 
 
    
 
 
 
 
 
 
 
 
 
 
} 
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void openHashTableBagContains (struct openHashTable *ht, TYPE  testValue) { 
 
int idx;  
 
idx = HASH(newValue) % ht->tableSize; 
    if (idx < 0) idx += ht->cap; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   } 
 
void _resizeOpenHashTable (struct openHashTable *ht) { 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   } 


