
Worksheet 8: Searching and Algorithic Analysis Name:

Worksheet 8: Searching and Asymptotic Analysis

In preparation: Read Chapter 4 to learn more about big-oh notation.

Linear search

Binary search

countOccurrences

isPrime

printPrimes

matMult

SelectionSort

In this worksheet we will be
concentrating on algorithms involving
loops. In this case the question to ask is
how many times the inner statements in
a loop are being executed, and how this
quantity changes if the input size is
changed. As you look at each example,
fill in the values in the table at left.

int countOccurrences (double data [], int n, double testValue)
{

int count = 0; int i;
for (i = 0; i < data.length; i++)

{ if (data[i] == testValue)
count++;

}
return count;

}

Our first function counts
the number of
occurrences of a given
value in an array of
data. If he execution
time is proportional to
the size of the input
array, it is O()?

Our second function determines if an integer variable
is prime. A prime, you will recall, is a value that is
divisible only by itself and 1. Note that the input here
is not an array, but a single integer value. What can
you say about the worst-case execution time for this
function in relation to the value of this variable?

int isPrime (int n) {

int I;
for (i = 2; i * i <= n; i++) {

if (0 == n % i) return 0;
}
return 1; /* 1 is true */

}

void printPrimes (int n) { int
i; for (i = 2; i < n; i++) {

if (isPrime(i))
printf(“Value %d is prime“);

}
}

The classic matrix multiplication
routine is a good example of nested
loops. Again the question to ask is
how many times the statements in the
innermost loop are executed as a
function of the data size (in this case,

When one function calls another inside of
the loop, the execution time of the called
function must be counted in determining the
time for the loop. Here there is a simple O(n)
loop that calls isPrime. So the total execution
time is in the worst case O() ?

void matMult (int [][] a, int [][] b, int [][] c)
{ int n = n; // assume all same size
for (int i = 0; i < n; i++) for

(int j = 0; j < n; j++) {
c[i][j] = 0;
for (k = 0; k < n; k++)

c[i][j] += a[i][k] * b[k][j];
}

}

Worksheet 8: Searching and Algorithic Analysis Name:

the number of rows and columns of the input arrays).

 void selectionSort (double * storage, int n) { Finally, consider selectionSort. Here the

 int p, i, indexLargest; inner loop is more subtle. How is it

 for (p = n – 1; p > 0; p--) { related to the outer loop? Can you

 indexLargest = 0; identify the pattern? How many steps will

 for (i = 1; i <= p; i++) { it take the first time the outer loop

 if (storage[i] > storage[indexLargest])

 executes? The last? What does this tell

indexLargest = i;

 you about the number of times the

}

innermost if statement will be executed?

 if (indexlargest != position)

 swap(storage, indexLargest, position);

 }

 }

 }

Estimate big-Oh time complexity of
running the following code:

 for (i = 0; i < n; i++) …

 for (i = n; i > 0; i--) …

 for (i = 0; i * i < n; i++) …

 for (i = n; i > 0; i = i / 2) …

 for (i = n; i > 0; i = i >> 2) …

 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 for (i = 0; i < n; i++)

 for (j = 0; j < i; j++)

 for (i = 0; i < n; i++)

 for (j = 0; j < 13; j++)

 for (i = n; i > 0; i = i / 2)

 for (j = n; j > 0; j = j / 2)

 for (i = 0; i < n; i++)

 for (j = n; j > 0; j = j / 2)

