
Worksheet 9: Summing Execution Times    Name: 

An Active Learning Approach to Data Structures using C 1

Worksheet 9: Summing Execution Times 
 
In preparation: Read Chapter 4 to learn more about big-Oh notation. 
 
 

The table at left, also found in 
Chapter 4, lists functions in 
order from most costly to least. 
The middle column is the 
common name for the function.  
 
 
 
 
 
 
 
 

 
Suppose by careful measurement you have discovered that a program has the running 
time as shown at right. Describe the 
running time of each function using big-
Oh notation. 
 
 
 
 

Function Common name Running time 
N! Factorial  
2n Exponential > century 
Nd, d > 3 Polynomial  
N3 Cubic 31.7 years 
N2 Quadratic 2.8 hours 
N sqrt n  31.6 seconds 
N log n  1.2 seconds 
N Linear 0.1 second 
sqrt (n) Root-n 3.2 * 10-4 seconds 
Log n Logarithmic 1.2 * 10-5 seconds 
1 Constant  

3n3 + 2n + 7  
(5 * n) * (3 + log n)  
1 + 2 + 3 + … + n  
n + log n2  
((n+1) log n ) / 2  
n3 + n! + 3  
2n + n2  
n (sqrt(n) + log n)  



Worksheet 9: Summing Execution Times    Name: 

An Active Learning Approach to Data Structures using C 2

Using the idea of dominating functions, give the big-Oh execution time for each of the 
following sequences of code.  When elipses (…) are given you can assume that they 
describe only constant time operations. 
 
 
for (int i = n; i > 0; i = i / 2) { 
   … 
} 
for (int j = 0; j * j < n; j++) … 

 

 
for (int i = 0; i < n; i++) { 
   for (int j = n; j > 0; j = j / 2) { 
      … 
   } 
   for (int k = 0; k < n; k++) { 
      … 
   } 
} 

 

for (int i = 0; i < n; i++) 
   … 
for (int j = 0; j * j < n; j++) 
   … 

 

for (int i = 0; i < n; i++) 
   … 
for (int j = n; j > 0; j--)  
   … 

 

for (int i = 1; i * i < n; i += 2) 
    … 
for (int i = 1; i < n; i += 5) 
    … 

 

 
 


