CS 261 – Data Structures

AVL Trees

1

Binary Search Tree

- Complexity of BST operations:
 - -proportional to the length of the path from a node to the root
- Unbalanced tree: operations may be O(n)
 - -E.g.: adding elements in a sorted order

Balanced Binary Search Tree

• Balanced tree: the length of the longest path is roughly log *n*

• BALANCE IS IMPORTANT!

Complete Binary Tree is Balanced

• Has the smallest height for any binary tree with the same number of nodes

• The longest path guaranteed to be $\leq \log n$

• => Keep the tree complete

Requiring Complete Trees

• However, it is very costly to maintain a

Add to tree

Requiring Complete Trees

• However, it is very costly to maintain a

complete binary tree

Height-Balanced Trees

• For each node, the height difference between the left and right subtrees is ≤ 1

Height-Balanced Trees

• Are locally balanced, but globally (slightly) unbalanced

Height-Balanced Trees

• Mathematically, the longest path has been shown to be, at worst, 44% longer than log *n*

 Algorithms that run in time proportional to the path length are still O(log n)

-Why?

AVL Trees

• Named after the inventors' initials:

-Adelson-Velskii and Landis

 Maintain the height balanced property of Binary Search Trees

AVL Trees

- Add an integer height field to each node:
 –Null child has a height of –1
 - -A node is *unbalanced* when the absolute height difference between the left and right subtrees is *greater than one*

AVL Implementation

- struct AVLNode {
 - TYPE val;
 - struct AVLNode *left;
 - struct AVLNode *rght;
 - int hght; /* Height of node*/
- };

Get Height

```
int _height(struct AVLNode *cur)
{
    if(cur == 0)
        return -1
    else return cur->hght;
}
```

Compute Height

void _setHeight(struct AVLNode *cur) {
 int lh = _height(cur->left);
 int rh = _height(cur->rght);
 if(lh < rh)
 cur->hght = 1 + rh;
 else
 cur->hght = 1 + lh;

}

Maintaining the Height Balanced Property

• When unbalanced, perform a "rotation" to balance the tree

- 1.Input: current
- 2.New top = current's right child

1.Input: current

- 2.New top = current's right child
- 3.New top's new left child = current
- 4.Current's new right child = new top's left child

- 1.Input: current
- 2.New top = current's right child
- 3.New top's new left child = current
- 4.Current's new right child = **new top's left child**
- 5.Set height of current
- 6.Set height of new top node

Right Rotation

1.Input: current

- 2.New top = current's left child
- 3.New top's right child = current
- 4.Current's new left child = new top's right child
- 5.Set height of current
- 6.Set height of new top node

Double Rotation Left

- A single rotation may not fix the problem:
 - When the **right** child is **heavy**, i.e.,
 - its parent is unbalanced
 - has only a right subtree

Double Rotation Left

Rotate the child before the regular rotation:
1.Rotate the heavy right child to the right
2.Rotate the "top" node to the left

Double Rotation

- A single rotation may not fix the problem:
 - When the left child is heavy, i.e.,
 - its parent in unbalanced from the left
 - has only a left subtree

Double Rotation Right

- This case requires *rotating the child* before the regular rotation:
 - 1.Rotate the heavy left child to the left2.Rotate the "top" node to the right

Balancing an Unbalanced Node

If left child is taller than right child {/* Rotation right */ If left child is heavy {/* Double rotation right*/ Rotate left the heavy left child

Rotate right the node

}else{ /* Rotation left */
 If right child is heavy {/* Double rotation left */

Rotate right the heavy right child

Rotate left the node

}
Return node

Example: Add 7 to the tree

Example – Suppose We Used Single Rotation

Unbalanced Tree

Tree Still Unbalanced

Example – Double Rotation Right

Example – Double Rotation Right

Your Turn

- Any questions
- Worksheet:
 - Start by inserting values 1-7 into an empty AVL tree
 - Then write code for left and right rotations