CS 261 — Data Structures

AVL Trees



Binary Search Tree

* Complexity of BST operations:

—proportional to the length of the path from a

node to the root

» Unbalanced tree: operations may be O(n)

—E.g.: adding elements 1n a sorted order



Balanced Binary Search Tree

* Balanced tree: the length of the longest path
1s roughly log n

* BALANCE IS IMPORTANT!



Complete Binary Tree is Balanced

* Has the smallest height for any binary tree
with the same number of nodes

* The longest path guaranteed to be <log n

«=> Keep the tree complete



Requiring Complete Trees

* However, it 1s very costly to maintain a

complete binary tree A
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Height-Balanced Trees

* For each node, the height difference

between the left and right subtrees 1s <1
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Height-Balanced Trees

 Are locally balanced, but globally (slightly)

unbalanced
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Height-Balanced Trees

* Mathematically, the longest path has been

shown to be, at worst, 44% longer than log »

* Algorithms that run in time proportional to

the path length are still O(log n)

—Why?



AVL Trees

e Named after the inventors initials:

—Adelson-Velskii and Landis

* Maintain the height balanced property of
Binary Search Trees
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AVL Trees

* Add an integer height field to each node:
—Null child has a height of —1

—A node 1s unbalanced when the absolute
height difference between the left and right
subtrees 1s greater than one
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AVL Implementation

struct AVLNode {

TYPE val;
struct AVLNode *left;
struct AVLNode *rght;

int hght;

/*

Height of node*/
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Get Height

int height(struct AVLNode *cur)
{
if (cur == 0)
return -1

else return cur->hght;
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Compute Height

void setHeight(struct AVLNode *cur)
int 1lh = height (cur->left);

int rh = height (cur->rght);

if (1h < rh)

cur->hght = 1 + rh;
else

cur->hght = 1 + 1h;



Maintaining the Height Balanced Property

» When unbalanced, perform a “rotation” to
balance the tree
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Left Rotation

l.Input: current

2.New top =

Current left
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Left Rotation

l.Input: current
2.New top =

3.New top s new left child = current

Current

6(0)
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Left Rotation

l.Input: current
2.New top =
3.New top’s new left child = current

4.Current’s new right child = new top's left child

Nevlv top

Current Rotate K

left

6(0)




l.Input: current

2.New top =

Left Rotation

3.New top’s new left child = current

4.Current’s new right child = new top's left child

5.Set height of current

6.Set height of new top node
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1(0)

Left Rotation
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Right Rotation

l.Input: current
2.New top =
3.New top s right child = current

4.Current’ s new left child = new top's right child
5.Set height of current

6.Set height of new top node
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Double Rotation Left

* A single rotation may not fix the problem:

— When the right child is heavy, 1.¢.,

* 1ts parent 1s unbalanced

* has only a right subtree

Unbalanced_
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)
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Double Rotation Left
* Rotate the child before the regular rotation:
1.Rotate the heavy right child to the right
2 Rotate the “top node to the left

Unbalanced 1(2) 1(2)
“t0p” IlOde \ \ > 2(1)
| |
“Heavy'_—~ () Rotate heavy () Rotate top 2 N
right child & child right N nodeleft | LO] |3(0)

2(0) 3(0)
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Double Rotation

* A single rotation may not fix the problem:
— When the left child is heavy, 1.¢.,

e 1ts parent in unbalanced from the left

 has only a left subtree
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top” node 3 5 ) |
e Doesn' t
(11 77 I
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: igh
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Double Rotation Right

» This case requires rotating the child betfore
the regular rotation:

1.Rotate the heavy left child to the left
2 Rotate the “top~ node to the right

Unbalanced = =-=—~"" 3(2) 3(2)

“top” node / / 2(1)
i) ! ol >
Rotate left

i Al 'T Rotate top
l}flteat\zd the heavy / node right | 10| | 3(0)
e 20/ child " 6
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Balancing an Unbalanced Node

If left child 1s taller than right child {/* Rotation right */
If left child 1s heavy{/* Double rotation right*/
Rotate left the heavy left child

h
Rotate right the node

+else{ /* Rotation left */
If right child 1s heavy {/* Double rotation left */
Rotate right the heavy right child

h
Rotate left the node

j

Return node
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Example: Add 7 to the tree

Height-Balanced Tree Unbalanced Tree

3(3) 3(4) Unbalanced
LN\ Add data: 7 N\, ~ top node
20| [82) | > 20| [83)
/ 7\ / 7\
1oy [31)] [90) 10| [32)] [90)
VAR “ , AR
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of heavy left child
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Example — Suppose We Used Single Rotation
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Example — Double Rotation Right

Unbalanced Tree
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Example — Double Rotation Right

Unbalanced Tree
(after 1% rotation)
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Your Turn

* Any questions

 Worksheet:

— Start by inserting values 1-7 into an empty AVL tree
— Then write code for left and right rotations
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