
CS 261 – Data Structures

AVL Trees
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Binary Search Tree

• Complexity of BST operations:

–proportional to the length of the path from a 
node to the root 

• Unbalanced tree: operations may be O(n)

–E.g.: adding elements in a sorted order
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Balanced Binary Search Tree

• Balanced tree: the length of the longest path 

is roughly log n

• BALANCE IS IMPORTANT!
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Complete Binary Tree is Balanced

• Has the smallest height for any binary tree 
with the same number of nodes

• The longest path guaranteed to be  ≤ log n

• => Keep the tree complete
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Requiring Complete Trees

• However, it is very costly to maintain a 

complete binary tree
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Abner Angela

Adela Alice

Adam

Abigail

Add to tree
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Height-Balanced Trees

•For each node, the height difference 
between the left and right subtrees is ≤ 1
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Height-Balanced Trees

• Are locally balanced, but globally (slightly) 

unbalanced
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Height-Balanced Trees

• Mathematically, the longest path has been 
shown to be, at worst, 44% longer than log n

• Algorithms that run in time proportional to 
the path length are still O(log n)

–Why?
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AVL Trees

• Named after the inventors’ initials:

–Adelson-Velskii and Landis

• Maintain the height balanced property of  
Binary Search Trees
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AVL Trees

• Add an integer height field to each node:
–Null child has a height of –1
–A node is unbalanced when the absolute 
height difference between the left and right 
subtrees is greater than one

1 (2)

Node data Height field
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AVL Implementation

struct AVLNode {

TYPE            val;

struct AVLNode *left;

struct AVLNode *rght;

int             hght;  /* Height of node*/

};
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Get Height

int _height(struct AVLNode *cur) 

{

if(cur == 0)

return -1

else return cur->hght;

}
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Compute Height

void _setHeight(struct AVLNode *cur) { 

int lh = _height(cur->left);

int rh = _height(cur->rght);

if(lh < rh) 

cur->hght = 1 + rh;

else 

cur->hght = 1 + lh;  

}
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Maintaining the Height Balanced Property

• When unbalanced, perform a “rotation” to 
balance the tree
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Left Rotation
1.Input: current
2.New top = current's right child
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Left Rotation
1.Input: current
2.New top = current's right child
3.New top’s new left child  = current
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Left Rotation
1.Input: current
2.New top = current's right child
3.New top’s new left child  = current
4.Current’s new right child = new top's left child
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Left Rotation
1.Input: current
2.New top = current's right child
3.New top’s new left child  = current
4.Current’s new right child = new top's left child
5.Set height of current
6.Set height of new top node
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Left Rotation
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Right Rotation
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Right Rotation
1.Input: current
2.New top = current's left child
3.New top’s right child  =  current
4.Current’s new left child = new top's right child
5.Set height of current
6.Set height of new top node
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Double Rotation Left

• A single rotation may not fix the problem:

– When the right child is heavy, i.e.,
• its parent is unbalanced
• has only a right subtree
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Double Rotation Left

• Rotate the child before the regular rotation:
1.Rotate the heavy right child to the right 
2.Rotate the “top” node to the left
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Double Rotation

• A single rotation may not fix the problem:

– When the left child is heavy, i.e.,
• its parent in unbalanced from the left
• has only a left subtree
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Double Rotation Right

• This case requires rotating the child before 
the regular rotation:
1.Rotate the heavy left child to the left 
2.Rotate the “top” node to the right
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“top” node
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left child
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Balancing an Unbalanced Node
If left child is taller than right child{/* Rotation right */

If left child is heavy{/* Double rotation right*/
Rotate left the heavy left child

} 
Rotate right the node

}else{ /* Rotation left */
If right child is heavy {/* Double rotation left */

Rotate right the heavy right child
}
Rotate left the node 

}
Return node
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Example: Add 7 to the tree

Add data: 7

Height-Balanced Tree Unbalanced Tree

3(4)

9(0)1(0)

8(3)2(1)

4(0)

5(2)

7(0)

6(1)

Added to right side
of heavy left child

“Heavy” left
child

Unbalanced
“top” node

28



Tree Still Unbalanced
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Tree Still Unbalanced, but …

Rotate left the
heavy left child

Example – Double Rotation Right

“Heavy” left
child
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Tree Now Balanced

Rotate right 
top node

Example – Double Rotation Right
Unbalanced Tree
(after 1st rotation)
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Your Turn

• Any questions

• Worksheet:
– Start by inserting values 1-7 into an empty AVL tree
– Then write code for left and right rotations
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