CS 261 - Data Structures

AVL Trees

Binary Search Tree

- Complexity of BST operations:
-proportional to the length of the path from a node to the root
- Unbalanced tree: operations may be $\mathrm{O}(n)$
-E.g.: adding elements in a sorted order

Balanced Binary Search Tree

- Balanced tree: the length of the longest path is roughly $\log n$
-BALANCE IS IMPORTANT!

Complete Binary Tree is Balanced

- Has the smallest height for any binary tree with the same number of nodes
- The longest path guaranteed to be $\leq \log n$
- => Keep the tree complete

Requiring Complete Trees

- However, it is very costly to maintain a complete binary tree

Add to tree

Requiring Complete Trees

- However, it is very costly to maintain a complete binary tree

Height-Balanced Trees

- For each node, the height difference between the left and right subtrees is ≤ 1

Height-Balanced Trees

- Are locally balanced, but globally (slightly) unbalanced

Height-Balanced Trees

- Mathematically, the longest path has been shown to be, at worst, 44% longer than $\log n$
- Algorithms that run in time proportional to the path length are still $\mathrm{O}(\log n)$
-Why?

AVL Trees

- Named after the inventors' initials:
-Adelson-Velskii and Landis
- Maintain the height balanced property of Binary Search Trees

AVL Trees

- Add an integer height field to each node:
- Null child has a height of -1
-A node is unbalanced when the absolute height difference between the left and right subtrees is greater than one

Node data Height field

AVL Implementation

struct AVLNode \{

```
TYPE val;
struct AVLNode *left;
struct AVLNode *rght;
int
    hght; /* Height of node*/
```

\};

Get Height

int _height(struct AVLNode *cur)
\{

$$
\begin{array}{r}
\text { if }(\text { cur }==0) \\
\text { return }-1
\end{array}
$$

else return cur->hght;
\}

Compute Height

void _setHeight(struct AVLNode *cur) \{

$$
\begin{aligned}
& \text { int } \operatorname{lh}=\text { _height (cur->left); } \\
& \text { int } r h=\text { height (cur->rght); } \\
& \text { if(lh }<\text { rh) } \\
& \text { cur->hght }=1+r h ; \\
& \text { else } \\
& \quad \text { cur->hght }=1+1 h ;
\end{aligned}
$$

\}

Maintaining the Height Balanced Property

- When unbalanced, perform a "rotation" to balance the tree

Left Rotation

1.Input: current
2.New top = current's right child

Left Rotation

1.Input: current
2. New top = current's right child
3.New top's new left child = current

Left Rotation

1.Input: current
2.New top = current's right child
3.New top's new left child = current
4. Current's new right child $=$ new top's left child

Left Rotation

1.Input: current
2. New top = current's right child
3.New top's new left child = current
4. Current's new right child $=$ new top's left child
5. Set height of current
6. Set height of new top node

Left Rotation

Right Rotation

Right Rotation

1.Input: current
2.New top = current's left child
3. New top' s right child $=$ current
4. Current's new left child = new top's right child
5. Set height of current
6. Set height of new top node

Double Rotation Left

- A single rotation may not fix the problem:
- When the right child is heavy, i.e.,
- its parent is unbalanced
- has only a right subtree

Doesn' t work!!!

Double Rotation Left

- Rotate the child before the regular rotation: 1.Rotate the heavy right child to the right 2.Rotate the "top" node to the left

Double Rotation

- A single rotation may not fix the problem:
- When the left child is heavy, i.e.,
- its parent in unbalanced from the left
- has only a left subtree

Doesn' t
work!!!

Double Rotation Right

- This case requires rotating the child before the regular rotation:
1.Rotate the heavy left child to the left 2.Rotate the "top" node to the right

Balancing an Unbalanced Node

If left child is taller than right child $\{/ *$ Rotation right */ If left child is heavy $\{/ *$ Double rotation right*/

Rotate left the heavy left child \} Rotate right the node
\}else \{ /* Rotation left */ If right child is heavy \{/* Double rotation left */ Rotate right the heavy right child \} Rotate left the node
\}
Return node

Example: Add 7 to the tree

Height-Balanced Tree
Unbalanced Tree

Example - Suppose We Used Single Rotation

Unbalanced Tree

Example - Double Rotation Right

Unbalanced Tree
Tree Still Unbalanced, but ...

Example - Double Rotation Right

Unbalanced Tree (after $1^{\text {st }}$ rotation)

Tree Now Balanced

Your Turn

- Any questions
- Worksheet:
- Start by inserting values 1-7 into an empty AVL tree
- Then write code for left and right rotations

