
CS 261 – Data Structures

AVL Trees

1

Binary Search Tree

• Complexity of BST operations:

–proportional to the length of the path from a
node to the root

• Unbalanced tree: operations may be O(n)

–E.g.: adding elements in a sorted order

2

Balanced Binary Search Tree

• Balanced tree: the length of the longest path

is roughly log n

• BALANCE IS IMPORTANT!

3

Complete Binary Tree is Balanced

• Has the smallest height for any binary tree
with the same number of nodes

• The longest path guaranteed to be ≤ log n

• => Keep the tree complete

4

Requiring Complete Trees

• However, it is very costly to maintain a

complete binary tree
Alex

Abner Angela

Adela Alice

Adam

Abigail

Add to tree
5

Requiring Complete Trees

• However, it is very costly to maintain a

complete binary tree
Alex

Abner Angela

Adela Alice

Adam

Abigail

6

Height-Balanced Trees

•For each node, the height difference
between the left and right subtrees is ≤ 1

3(3)

9(0)1(0)

8(2)2(1)

4(0)

5(1)

6(0)

indicates
maximum

height

7

Height-Balanced Trees

• Are locally balanced, but globally (slightly)

unbalanced

3(3)

9(0)1(0)

8(2)2(1)

4(0)

5(1)

6(0)

8

Height-Balanced Trees

• Mathematically, the longest path has been
shown to be, at worst, 44% longer than log n

• Algorithms that run in time proportional to
the path length are still O(log n)

–Why?
9

AVL Trees

• Named after the inventors’ initials:

–Adelson-Velskii and Landis

• Maintain the height balanced property of
Binary Search Trees

10

AVL Trees

• Add an integer height field to each node:
–Null child has a height of –1
–A node is unbalanced when the absolute
height difference between the left and right
subtrees is greater than one

1 (2)

Node data Height field
11

AVL Implementation

struct AVLNode {

TYPE val;

struct AVLNode *left;

struct AVLNode *rght;

int hght; /* Height of node*/

};

12

Get Height

int _height(struct AVLNode *cur)

{

if(cur == 0)

return -1

else return cur->hght;

}

13

Compute Height

void _setHeight(struct AVLNode *cur) {

int lh = _height(cur->left);

int rh = _height(cur->rght);

if(lh < rh)

cur->hght = 1 + rh;

else

cur->hght = 1 + lh;

}

14

Maintaining the Height Balanced Property

• When unbalanced, perform a “rotation” to
balance the tree

3(0)

2(1)

1(2)

3(0)1(0)

2(1)

Rotate
left

Unbalanced
node

15

Left Rotation
1.Input: current
2.New top = current's right child

1(0)

2(3)

6(0)

3(0)

4(2)

5(1)

4(?)

Current

New top

16

Rotate
left

Left Rotation
1.Input: current
2.New top = current's right child
3.New top’s new left child = current

1(0)

2(3)

6(0)

3(0)

4(2)

5(1)

2(?)

6(0)

4(?)

5(1)

New top

Current

17

Rotate
left

Left Rotation
1.Input: current
2.New top = current's right child
3.New top’s new left child = current
4.Current’s new right child = new top's left child

1(0)

2(3)

6(0)

3(0)

4(2)

5(1) 1(?)

2(?)

6(0)3(?)

4(?)

5(1)

New top
Current

18

Rotate
left

Left Rotation
1.Input: current
2.New top = current's right child
3.New top’s new left child = current
4.Current’s new right child = new top's left child
5.Set height of current
6.Set height of new top node

1(0)

2(3)

6(0)

3(0)

4(2)

5(1) 1(0)

2(1)

6(0)3(0)

4(2)

5(1)

19

Rotate
left

Left Rotation

1(0)

2(1)

6(0)3(0)

4(2)

5(1)

20

1(0)

2(3)

6(0)

3(0)

4(2)

5(1)

Rotate
left

Right Rotation

2(0)

3(1)

7(0)5(0)

4(2)

6(1)

21

7(0)

6(3)

2(0)

3(1)

4(2)

5(0)

Right Rotation
1.Input: current
2.New top = current's left child
3.New top’s right child = current
4.Current’s new left child = new top's right child
5.Set height of current
6.Set height of new top node

7(0)

6(3)

2(0)

3(1)

4(2)

5(0) 2(0)

3(1)

7(0)5(0)

4(2)

6(1)

22

Double Rotation Left

• A single rotation may not fix the problem:

– When the right child is heavy, i.e.,
• its parent is unbalanced
• has only a right subtree

2(0)

1(2)

Unbalanced
“top” node

3(1)
“Heavy”

right child 2(0)

3(2)

1(1)
Rotate

left

Doesn’t
work!!!

23

Double Rotation Left

• Rotate the child before the regular rotation:
1.Rotate the heavy right child to the right
2.Rotate the “top” node to the left

2(0)

1(2)Unbalanced
“top” node

3(1)
“Heavy”

right child
Rotate heavy

child right
3(0)

2(1)

1(2)

3(0)1(0)

2(1)

Rotate top
node left

24

Double Rotation

• A single rotation may not fix the problem:

– When the left child is heavy, i.e.,
• its parent in unbalanced from the left
• has only a left subtree

2(0)

1(1)

Unbalanced
“top” node 3(2)

“Heavy”
left child 2(0)

1(2)

3(1)Rotate
right

Doesn’t
work!!!

25

Double Rotation Right

• This case requires rotating the child before
the regular rotation:
1.Rotate the heavy left child to the left
2.Rotate the “top” node to the right

Unbalanced
“top” node

“Heavy”
left child

Rotate left
the heavy

child 1(0)

2(1)

3(2)

3(0)1(0)

2(1)

Rotate top
node right

2(0)

1(1)

3(2)

26

Balancing an Unbalanced Node
If left child is taller than right child{/* Rotation right */

If left child is heavy{/* Double rotation right*/
Rotate left the heavy left child

}
Rotate right the node

}else{ /* Rotation left */
If right child is heavy {/* Double rotation left */

Rotate right the heavy right child
}
Rotate left the node

}
Return node

27

3(3)

9(0)1(0)

8(2)2(1)

4(0)

5(1)

6(0)

Example: Add 7 to the tree

Add data: 7

Height-Balanced Tree Unbalanced Tree

3(4)

9(0)1(0)

8(3)2(1)

4(0)

5(2)

7(0)

6(1)

Added to right side
of heavy left child

“Heavy” left
child

Unbalanced
“top” node

28

Tree Still Unbalanced

3(4)

9(0)1(0)

8(3)2(1)

4(0)

5(2)

7(0)

6(1)

Single right
rotation

Example – Suppose We Used Single Rotation

Unbalanced Tree

3(4)

1(0)

2(1)

7(0)

6(1) 9(0)

8(2)

5(3)

4(0)

Unbalanced
“top” node
(still)

29

Tree Still Unbalanced, but …

Rotate left the
heavy left child

Example – Double Rotation Right

“Heavy” left
child

3(4)

9(0)1(0)

8(3)2(1)

4(0)

5(1) 7(0)

6(2)

3(4)

9(0)1(0)

8(3)2(1)

4(0)

5(2)

7(0)

6(1)

Unbalanced Tree

30

Tree Now Balanced

Rotate right
top node

Example – Double Rotation Right
Unbalanced Tree
(after 1st rotation)

3(3)

1(0)

2(1)

7(0)

3(4)

9(0)1(0)

8(3)2(1)

4(0)

5(1) 7(0)

6(2) Unbalanced
“top” node

4(0)

5(1)

6(2)

9(0)

8(1)

31

Your Turn

• Any questions

• Worksheet:
– Start by inserting values 1-7 into an empty AVL tree
– Then write code for left and right rotations

32

