CS 261 — Data Structures

AVL Trees

Binary Search Tree

* Complexity of BST operations:

—proportional to the length of the path from a

node to the root

» Unbalanced tree: operations may be O(n)

—E.g.: adding elements 1n a sorted order

Balanced Binary Search Tree

* Balanced tree: the length of the longest path
1s roughly log n

* BALANCE IS IMPORTANT!

Complete Binary Tree is Balanced

* Has the smallest height for any binary tree
with the same number of nodes

* The longest path guaranteed to be <log n

«=> Keep the tree complete

Requiring Complete Trees

* However, it 1s very costly to maintain a

complete binary tree A
:_Adam !

Alex

Abner Angela

/. N\ /

Abigail | | Adela Alice

Add to tree

Requiring Complete Trees

* However, it 1s very costly to maintain a

complete binary tree

Alex

Abner Angela

Abigail | | Adela Alice

Height-Balanced Trees

* For each node, the height difference

between the left and right subtrees 1s <1

30),

2(1)

8(2)

L

VA

N\

1(0)

5(1)

9(0)

L

N\

4(0)

6(0)

....... indicates

maximum
height

Height-Balanced Trees

 Are locally balanced, but globally (slightly)

unbalanced

3(3)
L\
2(1) 8(2)
/ N\
1o [5)] [90)

VAR
4(0) | | 6(0)

Height-Balanced Trees

* Mathematically, the longest path has been

shown to be, at worst, 44% longer than log »

* Algorithms that run in time proportional to

the path length are still O(log n)

—Why?

AVL Trees

e Named after the inventors initials:

—Adelson-Velskii and Landis

* Maintain the height balanced property of
Binary Search Trees

10

AVL Trees

* Add an integer height field to each node:
—Null child has a height of —1

—A node 1s unbalanced when the absolute
height difference between the left and right
subtrees 1s greater than one

1 (2)

/ N\
/

Node data Height field

11

AVL Implementation

struct AVLNode {

TYPE val;
struct AVLNode *left;
struct AVLNode *rght;

int hght;

/*

Height of node*/

12

Get Height

int height(struct AVLNode *cur)
{
if (cur == 0)
return -1

else return cur->hght;

13

Compute Height

void setHeight(struct AVLNode *cur)
int 1lh = height (cur->left);

int rh = height (cur->rght);

if (1h < rh)

cur->hght = 1 + rh;
else

cur->hght = 1 + 1h;

Maintaining the Height Balanced Property

» When unbalanced, perform a “rotation” to
balance the tree

Unbalanced
/V

node

102)

N
2(1)

N

3(0)

Rotate
left

2(1)

L
1(0)] [3(0)

15

Left Rotation

l.Input: current

2.New top =

Current left

16

Left Rotation

l.Input: current
2.New top =

3.New top s new left child = current

Current

6(0)

17

Left Rotation

l.Input: current
2.New top =
3.New top’s new left child = current

4.Current’s new right child = new top's left child

Nevlv top

Current Rotate K

left

6(0)

l.Input: current

2.New top =

Left Rotation

3.New top’s new left child = current

4.Current’s new right child = new top's left child

5.Set height of current

6.Set height of new top node

203)

/_\

1(0)

4(2)

i

N\

3(0)

5(1)

N\

| 4(2)
2L\
Rotate 20 5(1)
left 7\ N
1(0) 3(0) 6(0)

6(0)

19

1(0)

Left Rotation

S(1)

Rotate
left

6(0)

5(1)

6(0)

20

L
4(2)

2(0)

Right Rotation

7(0)

42)

2(0)

21

Right Rotation

l.Input: current
2.New top =
3.New top s right child = current

4.Current’ s new left child = new top's right child
5.Set height of current

6.Set height of new top node

4(2)

3(1)

2(0)

2(0)

Double Rotation Left

* A single rotation may not fix the problem:

— When the right child is heavy, 1.¢.,

* 1ts parent 1s unbalanced

* has only a right subtree

Unbalanced_
“top’ node ~* 5
)
é 1 _v (1)
Heavy ™ --7"7 Rotate

right child 2(0)

1(1)

3(2) ,
Doesn t

work!!!

2(0)

23

Double Rotation Left
* Rotate the child before the regular rotation:
1.Rotate the heavy right child to the right
2 Rotate the “top node to the left

Unbalanced 1(2) 1(2)
“t0p” IlOde \ \ > 2(1)
| |
“Heavy'_—~ () Rotate heavy () Rotate top 2 N
right child & child right N nodeleft | LO] |3(0)

2(0) 3(0)

24

Double Rotation

* A single rotation may not fix the problem:
— When the left child is heavy, 1.¢.,

e 1ts parent in unbalanced from the left

 has only a left subtree

Unbalanced_
top” node 3 5) |
e Doesn' t
(11 77 I
Heavy’_ - —n% Rotate S| work!!!
: igh
left child 2(0) nen 2(0)

25

Double Rotation Right

» This case requires rotating the child betfore
the regular rotation:

1.Rotate the heavy left child to the left
2 Rotate the “top~ node to the right

Unbalanced = =-=—~"" 3(2) 3(2)

“top” node / / 2(1)
i) ! ol >
Rotate left

i Al 'T Rotate top
l}flteat\zd the heavy / node right | 10| | 3(0)
e 20/ child " 6

26

Balancing an Unbalanced Node

If left child 1s taller than right child {/* Rotation right */
If left child 1s heavy{/* Double rotation right*/
Rotate left the heavy left child

h
Rotate right the node

+else{ /* Rotation left */
If right child 1s heavy {/* Double rotation left */
Rotate right the heavy right child

h
Rotate left the node

j

Return node

27

Example: Add 7 to the tree

Height-Balanced Tree Unbalanced Tree

3(3) 3(4) Unbalanced
LN\ Add data: 7 N\, ~ top node
20| [82) | > 20| [83)
/ 7\ / 7\
1oy [31)] [90) 10| [32)] [90)
VAR “ , AR
4(0) 6(0) Heavy left /4(:)) 6(1)
child N\
700)
/
Added to right side

of heavy left child

28

Example — Suppose We Used Single Rotation

Unbalanced Tree

/L

3(4)

N

2(1)

8(3)

/

L

N\

1(0)

5(2)

9(0)

VAR

4(0)

6(1)

N\

7(0)

Single right
rotation

| >

3(4)

/L

N\

Tree Still Unbalanced

Unbalanced
/ top node

2(1)

3(3)

/

L

N\

1(0)

4(0)

8(2)

VAR

6(1)

(still)

9(0)

N\

7(0)

Example — Double Rotation Right

Unbalanced Tree

3(4)

/L

N

2(1)

8(3)

/

Tree Still Unbalanced, but ...

Rotate left the
heavy left child

| >

1(0)

3(4)

/L

N

2(1)

8(3)

/

L

N\

1(0)

6(2)

9(0)

Heavy™ left
child

L

N

3(1)

7(0)

L

4(0)

30

Example — Double Rotation Right

Unbalanced Tree
(after 1% rotation)

3(4)

/L

N

2(1)

8(3)

/

L

N\

1(0)

6(2)

9(0)

L

N

3(1)

7(0)

L

4(0)

Rotate right
top node

Unbalanced
“top” node

3(3)

/L

N\

2(1)

6(2)

/

L

AN

Tree Now Balanced

1(0)

3(1)

8(1)

/

/L

N\

4(0)

7(0)

9(0)

31

Your Turn

* Any questions

 Worksheet:

— Start by inserting values 1-7 into an empty AVL tree
— Then write code for left and right rotations

32

