CS 261 - Data Structures

Hash Tables

Open Address Hashing

ADT Dictionaries

computer |kəm'pyoōtər|
noun

- an electronic device for storing and processing data...
- a person who makes calculations, esp. with a calculating machine.

Dictionaries

computer |kəm'pyoōtər| key
noun

- an electronic device for storing and processing data...
- a person who makes calculations, esp. with a calculating machine.

Dictionaries

computer |kəm'pyoōtər|
noun

- an electronic device for storing and processing data...
- a person who makes calculations, esp. with a calculating machine.

How to implement dictionaries?

Hash Tables

Similar to dynamic arrays except:

1. Elements can be indexed by their keys whose type may differ from integer
2. In general, a single position may hold more than one element

Computing a Hash Table Index: 2 Steps

1. Transform the key to an integer

- by using the hash function

2. Map the resulting integer to a valid hash table index

- by using the remainder of dividing the integer with the table size

Example

Say, we' re storing names:
Angie
Joe
Abigail
Linda
Mark
Max

Robert
John

Example: Computing the Hash Table Index

Storing names:

- Compute an integer from the name
- Map the integer to an index in a table

Hash Function

Hash function maps the keys to integers

Hash Function: Types

Mapping:

Map (a part of) the key into an integer

- Example: a letter to its position in the alphabet

Hash Function: Types

Folding:

Parts of the key combined by operations, such as add, multiply, shift, XOR, etc.

- Example: summing the values of each character in a string

Hash Function: Types

Shifting + Folding:

Shift left the name to get rid of repeating low-order bits or
Shift right the name to multiply by powers of 2

Example: if keys are always even, shift off the low order bit

Hash Function: Combinations

Map, Fold, and Shift combination

Key $\begin{gathered}\text { Mapped } \\ \text { chars }\end{gathered}$

eat	$5+1+20$	26	$20+2+20=42$
ate	$1+20+5$	26	$4+40+5=49$
tea	$20+5+1$	26	$80+10+1=91$

Hash Function: Types

Casts:

Converting a numeric type into an integer

- Example: casting a character to an integer to get its ASCII value

Hash Functions: Examples

- Key $=$ Character:
char value cast to an int \rightarrow it's ASCII value
- Key = Date:
value associated with the current time
- Key $=$ Double:
value generated by its bitwise representation

Hash Functions: Examples

- Key $=$ Integer:
the int value itself
- Key $=$ String:
a folded sum of the character values
$-\mathrm{Key}=\mathrm{URL}:$
the hash code of the host name

Step 2: Mapping to a Valid Index

- Use modulus operator (\%) with table size:
- Example:
idx = hash(val) \% size;
- Must be sure that the final result is positive
- Use only positive arithmetic or take absolute value

Step 2: Mapping to a Valid Index

To get a good distribution of indices,
prime numbers make the best table sizes.

- Example: if you have 1000 elements, a table size of 997 or 1009 is preferable

Hash Tables: Ideal Case

1. Perfect hash function: each data element hashes to a unique hash index
2. Table size equal to (or slightly larger than) number of elements

Perfect Hashing: Example

- Six friends have a club: Alfred, Alessia, Amina, Amy, Andy, and Anne
- Store member names in a six element array
- Convert $3{ }^{\text {rd }}$ letter of each name to an index:

Alfred	$f=5 \% 6=5$
Alessia	$e=4 \% 6=4$
Amina	$i=8 \% 6=2$
Amy	$\mathrm{y}=24 \% 6=0$
Andy	$\mathrm{d}=3 \% 6=3$
Anne	$\mathrm{n}=13 \% 6=1$

Hash Tables: Collisions

- Unless the data is known in advance, the ideal case is usually not possible
- A collision is when two or more different keys result in the same hash table index
- How do we deal with collisions?

Indexing: Faster Than Searching

- Can convert a name (e.g., Alessia) into a number (e.g., 4) in constant time
- Faster than searching
- Allows for $\mathrm{O}(1)$ time operations

Indexing: Faster Than Searching

Becomes complicated for new elements:
-Alan wants to join the club:
' ${ }^{\prime}$ ' $=0 \rightarrow$ same as Amy
-Also:
Al wants to join \rightarrow no third letter!

Hash Tables: Resolving Collisions

There are two general approaches to resolving collisions:

1. Open address hashing: if a spot is full, probe for next empty spot
2. Chaining (or buckets): keep a collection at each table entry

Open Address Hashing

Open Address Hashing

- All values are stored in an array
- Hash value is used to find initial index to try
- If that position is filled, next position is examined, then next, and so on until an empty position is filled

Open Address Hashing

- The process of looking for an empty position is termed probing,
- Specifically, we consider linear probing
- There are other probing algorithms, but we won' t consider them

Open Address Hashing: Example

Eight element table using the third-letter hash function:

Already added: Amina, Andy, Alessia, Alfred, and Aspen

Amina				Andy	Alessia	Alfred	
0	1	2	3	4	5	6	7
aiqy	bjrzen	cks	dlt	emu	fnv	gpw	hpq

Open Address Hashing: Adding

Now we need to add: Aimee

The hashed index position (4) is filled by Alessia: so we probe to find next free location

Open Address Hashing: Adding

Suppose Anne wants to join:

The hashed index position (5) is filled by Alfred:
Probe to find next free location
What happens when we reach the end of the array?

Open Address Hashing: Adding

Suppose Anne wants to join:

The hashed index position (5) is filled by Alfred:
-Probe to find next free location
-When we get to end of array, wrap around to the beginning
-Eventually, find position at index 1 open

Open Address Hashing: Adding

Finally, Alan wants to join:
Hashes to

Amina	Anne	Alan	Andy	Alessia	Alfred	Aimee
Aspen						

0	1	2	3	4	5	6	7
aiqy	bjrz	cks	dlt	emu	fnv	gpw	hpq

The hashed index position (0) is filled by Amina:
-Probing finds last free position (index 2)
-Collection is now completely filled

Open Address Hashing: Contains

- Hash to find initial index, probe forward examining each location until value is found, or empty location is found.
- Example, search for: Amina, Aimee, Anne...

Amina	Anne	Alan	Andy	Alessia	Alfred	Aimee	Aspen
0	1	2	3	4	5	6	7
aiqy	bjrz	cks	dlt	emu	fnv	gpw	hpq

- Notice that search time is not uniform

Open Address Hashing: Remove

- Remove is tricky: Can't leave this place empty
- What happens if we delete Anne, then search for Alan?

Remove: Anne

Amina	Ahme	Alan	Andy	Alessia	Alfred	Aimee	Aspen
0-aiqy	1-bjrz	2-cks	3-dlt	4-emu	5-fnv	6-gpw	7-hpq

Find: Alan
Hashes to

Amina		Alan	Andy	Alessia	Alfred	Aimee	Aspen
0-aiqy	1-bjrz	2-cks	3-dlt	4-emu	5-fnv	6-gpw	7-hpq

Open Address Hashing: Handling Remove

- Replace removed item with "tombstone"
-Special value that marks deleted entry
-Can be replaced when adding new entry
-But doesn' t halt search during contains (remove)

Find: Alan
 Probing skips tombstone \rightarrow Alan found

Amina	TS	Alan	Andy	Alessia	Alfred	Aimee	Aspen

0-aiqy 1-bjrz 2-cks 3-dlt 4-emu 5-fnv 6-gpw 7-hpq

Hash Table Size: Load Factor

Load factor: \# of elements
Load factor $\ldots \lambda \cdots \cdots \cdots \cdots \cdots \cdots$ Size of table
-Load factor is the average number of elements at each table entry
-For open address hashing, load factor is between 0 and 1 (often somewhere between 0.5 and 0.75)
-For chaining, load factor can be greater than 1
-Want the load factor to remain small

Large Load Factor: What to do?

- Common solution: When load factor becomes too large (say, bigger than 0.75) \rightarrow Reorganize
- Create new table with twice the number of positions
- Copy each element, rehashing using the new table size, placing elements in new table
- Delete the old table

Hash Tables: Algorithmic Complexity

- Assumptions:
-Time to compute hash function is constant
- Worst case analysis \rightarrow All values hash to same position
- Best case analysis \rightarrow Hash function uniformly distributes the values

Hash Tables: Algorithmic Complexity

- Find element operation:
-Worst case for open addressing $\rightarrow \mathrm{O}(\mathrm{n})$
-Best case for open addressing $\rightarrow \mathrm{O}(1)$

Hash Tables: Average Case

- What about average case?
- Turns out, it's

$$
1 /(1-\lambda)
$$

- So keeping load factor small is very important

λ	$1 /(1-\lambda)$
0.25	1.3
0.5	2.0
0.6	2.5
0.75	4.0
0.85	6.6
0.95	19.0

Difficulties with Hash Tables

- Need to find good hash function \rightarrow uniformly distributes keys to all indices
- Open address hashing:
- Need to tell if a position is empty or not
-One solution \rightarrow store only pointers
- Open address hashing: problem with removal

