
CS 261 – Data Structures

Hash Tables
Open Address Hashing

ADT Dictionaries

computer |kəәmˈpyoōtəәr|
noun
• an electronic device for storing and
processing data...

• a person who makes calculations, esp. with a
calculating machine.

Dictionaries

computer |kəәmˈpyoōtəәr|
noun
• an electronic device for storing and
processing data...

•  a person who makes calculations, esp. with
a calculating machine.

key	

Dictionaries

computer |kəәmˈpyoōtəәr|
noun
• an electronic device for storing and
processing data...

• a person who makes calculations, esp. with a
calculating machine.

value	

How to implement dictionaries?	

Hash Tables

Similar to dynamic arrays except:

1.  Elements can be indexed by their keys

whose type may differ from integer

2.  In general, a single position may hold

more than one element

Computing a Hash Table Index: 2 Steps

1.  Transform the key to an integer
•  by using the hash function

2.  Map the resulting integer to a valid hash
table index

•  by using the remainder of dividing the
integer with the table size

Example

Say, we’re storing names:
 Angie
 Joe
 Abigail
 Linda
 Mark
 Max
 Robert
 John

0 	
Angie, Robert	

1 	
Linda	

2 	
Joe, Max, John	

3 	
	

4 	
Abigail, Mark	

Example: Computing the Hash Table Index

Storing names:

– Compute an integer from the name

– Map the integer to an index in a table

Hash Function

Hash function maps the keys to integers

Hash Function: Types

Mapping:

Map (a part of) the key into an integer

– Example: a letter to its position in the
alphabet

Hash Function: Types

Folding:

Parts of the key combined by operations, such
as add, multiply, shift, XOR, etc.

– Example: summing the values of each

character in a string

Hash Function: Types

Shifting + Folding:

Shift left the name
to get rid of repeating low-order bits

or
Shift right the name

to multiply by powers of 2

Example: if keys are always even, shift off
the low order bit

Hash Function: Combinations

 Map, Fold, and Shift combination

Key Mapped
chars Folded Shifted and Folded

eat 5 + 1 + 20 26 20 + 2 + 20 = 42

ate 1 + 20 + 5 26 4 + 40 + 5 = 49

tea 20 + 5 + 1 26 80 + 10 + 1 = 91

Hash Function: Types

Casts:

Converting a numeric type into an integer

– Example: casting a character to an integer
to get its ASCII value

Hash Functions: Examples

– Key = Character:

char value cast to an int à it’s ASCII value

– Key = Date:

value associated with the current time

– Key = Double:

value generated by its bitwise representation

Hash Functions: Examples

– Key = Integer:

the int value itself

– Key = String:

a folded sum of the character values

– Key = URL:

the hash code of the host name

Step 2: Mapping to a Valid Index

• Use modulus operator (%) with table size:
– Example:
idx = hash(val) % size;

• Must be sure that the final result is positive
– Use only positive arithmetic or take

absolute value

Step 2: Mapping to a Valid Index

To get a good distribution of indices,

prime numbers make the best table sizes.

– Example: if you have 1000 elements, a
table size of 997 or 1009 is preferable

Hash Tables: Ideal Case

1.  Perfect hash function: each data
element hashes to a unique hash index

2.  Table size equal to (or slightly larger
than) number of elements

Perfect Hashing: Example
• Six friends have a club: Alfred, Alessia, Amina,

Amy, Andy, and Anne
• Store member names in a six element array
• Convert 3rd letter of each name to an index:

Alfred f = 5 % 6 = 5

Alessia e = 4 % 6 = 4

Amina i = 8 % 6 = 2

Amy y = 24 % 6 = 0

Andy d = 3 % 6 = 3

Anne n = 13 % 6 = 1

Hash Tables: Collisions

• Unless the data is known in advance, the
ideal case is usually not possible

• A collision is when two or more different
keys result in the same hash table index

•  How do we deal with collisions?

Indexing: Faster Than Searching

• Can convert a name (e.g., Alessia) into a
number (e.g., 4) in constant time

• Faster than searching

• Allows for O(1) time operations

Indexing: Faster Than Searching

Becomes complicated for new elements:

– Alan wants to join the club:

‘a’ = 0 à same as Amy

– Also:

Al wants to join à no third letter!

Hash Tables: Resolving Collisions

There are two general approaches to resolving
collisions:

1. Open address hashing: if a spot is full,
probe for next empty spot

2. Chaining (or buckets): keep a collection at
each table entry

Open Address Hashing	

Open Address Hashing

• All values are stored in an array

• Hash value is used to find initial index to try

• If that position is filled, next position is
examined, then next, and so on until an
empty position is filled

Open Address Hashing

• The process of looking for an empty position
is termed probing,

• Specifically, we consider linear probing

• There are other probing algorithms, but we
won’t consider them

Open Address Hashing: Example

Eight element table using the third-letter hash function:

Already added: Amina, Andy, Alessia, Alfred, and Aspen

Amina	

0	

aiqy	

 	

1	

bjrz	

	

2	

cks	

Andy	

3	

dlt	

Alessia	

4	

emu	

Alfred	

5	

fnv	

	

6	

gpw	

Aspen	

7	

hpq	

Open Address Hashing: Adding

Now we need to add: Aimee

 The hashed index position (4) is filled by Alessia:
so we probe to find next free location

Amina	

0	

aiqy	

 	

1	

bjrz	

	

2	

cks	

Andy	

3	

dlt	

Alessia	

4	

emu	

Alfred	

5	

fnv	

Aimee	

6	

gpw	

Aspen	

7	

hpq	

Hashes to	
 Placed here	

Open Address Hashing: Adding
Suppose Anne wants to join:

The hashed index position (5) is filled by Alfred:

Probe to find next free location
What happens when we reach the end of the array?

Amina	

0	

aiqy	

 	

1	

bjrz	

	

2	

cks	

Andy	

3	

dlt	

Alessia	

4	

emu	

Alfred	

5	

fnv	

Aimee	

6	

gpw	

Aspen	

7	

hpq	

Add: Anne	
 Hashes to	

???	

Open Address Hashing: Adding
Suppose Anne wants to join:

The hashed index position (5) is filled by Alfred:

– Probe to find next free location
– When we get to end of array, wrap around to the

beginning
– Eventually, find position at index 1 open

Amina	

0	

aiqy	

Anne 	

1	

bjrz	

	

2	

cks	

Andy	

3	

dlt	

Alessia	

4	

emu	

Alfred	

5	

fnv	

Aimee	

6	

gpw	

Aspen	

7	

hpq	

Add: Anne	
 Hashes to	

Placed here	

Open Address Hashing: Adding
Finally, Alan wants to join:

The hashed index position (0) is filled by Amina:

– Probing finds last free position (index 2)
– Collection is now completely filled

Amina	

0	

aiqy	

Anne 	

1	

bjrz	

Alan	

2	

cks	

Andy	

3	

dlt	

Alessia	

4	

emu	

Alfred	

5	

fnv	

Aimee	

6	

gpw	

Aspen	

7	

hpq	

Hashes to	

Placed here	

Open Address Hashing: Contains
• Hash to find initial index, probe forward
examining each location until value is found,
or empty location is found.

• Example, search for: Amina, Aimee, Anne...

• Notice that search time is not uniform	

Amina	

0	

aiqy	

Anne 	

1	

bjrz	

Alan	

2	

cks	

Andy	

3	

dlt	

Alessia	

4	

emu	

Alfred	

5	

fnv	

Aimee	

6	

gpw	

Aspen	

7	

hpq	

Open Address Hashing: Remove
• Remove is tricky: Can’t leave this place empty
• What happens if we delete Anne, then search for

Alan?

Amina	

0-aiqy	

Anne 	

1-bjrz	

Alan	

2-cks	

Andy	

3-dlt	

Alessia	

4-emu	

Alfred	

5-fnv	

Aimee	

6-gpw	

Aspen	

7-hpq	

Amina	

0-aiqy	

	

1-bjrz	

Alan	

2-cks	

Andy	

3-dlt	

Alessia	

4-emu	

Alfred	

5-fnv	

Aimee	

6-gpw	

Aspen	

7-hpq	

Remove: Anne	

Find: Alan	

Hashes to	

Probing finds null entry à Alan not found	

Open Address Hashing: Handling Remove
• Replace removed item with “tombstone”

– Special value that marks deleted entry
– Can be replaced when adding new entry
– But doesn’t halt search during contains (remove)

Amina	

0-aiqy	

TS	

1-bjrz	

Alan	

2-cks	

Andy	

3-dlt	

Alessia	

4-emu	

Alfred	

5-fnv	

Aimee	

6-gpw	

Aspen	

7-hpq	

Find: Alan	

Hashes to	

Probing skips tombstone à Alan found	

Hash Table Size: Load Factor

 Load factor:

λ = n / m

– Load factor is the average number of elements
at each table entry

– For open address hashing, load factor is between
0 and 1 (often somewhere between 0.5 and 0.75)

– For chaining, load factor can be greater than 1

– Want the load factor to remain small

Load factor	

# of elements	

Size of table	

Large Load Factor: What to do?
• Common solution: When load factor
becomes too large (say, bigger than 0.75) à
Reorganize

• Create new table with twice the number of
positions

• Copy each element, rehashing using the new
table size, placing elements in new table

• Delete the old table

Hash Tables: Algorithmic Complexity

• Assumptions:
– Time to compute hash function is constant
– Worst case analysis à All values hash to

same position

– Best case analysis à Hash function
uniformly distributes the values

Hash Tables: Algorithmic Complexity

• Find element operation:

– Worst case for open addressing à O(n)

– Best case for open addressing à O(1)

Hash Tables: Average Case

• What about average case?

• Turns out, it’s

 1 / (1 – λ)

• So keeping load factor
 small is very important

λ	
 1 / (1 – λ)
 0.25 1.3
 0.5 2.0
 0.6 2.5
 0.75 4.0
 0.85 6.6
 0.95 19.0

Difficulties with Hash Tables
• Need to find good hash function à
uniformly distributes keys to all indices

• Open address hashing:
– Need to tell if a position is empty or not
– One solution à store only pointers

• Open address hashing: problem with removal

