
CS	261	– Recitation	1

Spring	2016

Oregon State University
School of Electrical Engineering and Computer Science



Outline
• Using	Secure	Shell	Clients
• The	GCC
• C	IDE	:	Codeblocks	/	Visual	Studio	/	terminal	(or	Eclipse	or	

Xcode	or	etc..)
• Some	Examples
• Intro	to	C

* 22



Get	your	terminals

• Windows	people,	get	ssh
http://sils.unc.edu/it-services/servers/using-
ssh
– It	already	has	a	build-in	file	transfer	client

• Mac	people,	you	have	ssh	built-in	and	you	can	
use	a	file	transfer	client	such	as	Cyberduck.

* 33



Using	Secure	Shell	Clients
• Open	Secure	Shell	Client	(for	Windows	 PC)

• Open	‘Terminal’	&	type	<username>@<host	 name>		(for	Mac)

* 44



Using	Secure	Shell	Clients

List	of	available	servers	:
• flip.engr.oregonstate.edu
• flop.engr.oregonstate.edu	 – off-campus
And	more	(see	http://eecs.oregonstate.edu/it/)

* 55



Using	Secure	Shell	Clients
•Other	Secure	shell	clients	available	:	

– Remote	connect:	PuTTY
http://www.chiark.greenend.org.uk/~sgtatham/putty/

– File	Manager:	WinSCP
– http://winscp.net/eng/index.php

* 66



Using	Linux	Shell
•For	Mac	and	Unix	users	:	

– Open	the	shell	terminal	and	enter	the	following
ssh engid@flip.engr.oregonstate.edu → On campus
ssh engid@flop.engr.oregonstate.edu → Off campus

* 77



Basic	commands
• pwd	

– Present	working	directory
• ls

– list	files	and	directories	 in	current	directory
– %	ls	–la	:	‘el ‘	denotes	long	listing

‘a’	including	all	hidden	files
• cd

– Change	directory
• mkdir	

– make	new	directory
• cp

– copy	<srcFileName>	 <desFileName>
• mv

– Moves	/	renames	<srcFileName>	 <desFileName>
• rm

– remove	file
• cat

– show	file	content
• exit

– exit	 the	session

* 88



Basic	commands	continued..

• . (dot)
– Represents	current	directory

• .. (dot	dot)
– Represents	parent	directory

* 99



Text	Editors
• Vim

– To	start	:	vim	<filename>
– 3	modes	for	text	editing:

• Insert (i)	/		Replace	(r	/	R)	/Browse (Esc)
– To	save	- :w		
– To	quit	- :q		
– dd			delete	1	line
– ZZ		save	the	file	and	quit	vi
More	information	:	http://vimdoc.sourceforge.net/htmldoc/usr_toc.html	

• Emacs
– To	start	:	 emacs	<filename>
– Common	commands:

• Ctrl	X	Ctrl	S:	Save
• Ctrl	X	Ctrl	C:	Exit	

More	information:	http://lowfatlinux.com/linux-editor-emacs.html

• You	can	use	other	GUI	editors	 like	Notepad++	which	have	syntax	highlighting	and	is	available	
on	ENGR	servers.

* 1010



Useful	vi	Commands

• arrow	keys	 and	h,j,k,l	move	cursor
• dd			delete	1	line
• :w			save	file
• :q!		quit	even	if	file	is	not	saved
• ZZ		save	the	file	and	quit	vi

* 1111



The	GCC
• The	GNU	Compiler	Collection	(usually	shortened	to	GCC)	is	a	command

line compiler system	produced	by	the	GNU	Project,	supporting	various	
programming	languages	(includes	C,	C++).

• Compiling	with	GCC:
gcc		<list	of	options>		sourcefile.c

e.g.: gcc			-o		test			test.c

• Output:
– Compiling	the	code	converts	it	into	object	files	(*.o)
– Linking	the	code	uses	the	information	from	the	object	code	to	build	

executable.

* 1212



Using	the	GCC	compiler	(cont.)
• Compile	multiple	files:

1.		To	stop	the	process	till	compilation	step	:
gcc	–c		code1.c	code2.c	code3.c

2.		To	link	the	individual	‘.o’	files	to	generate	the	executable	:	
gcc	–o	executor	code1.o	code2.o	code3.o

The	same	can	be	done	in	a	single	step	:
gcc	–o	executor	code1.c	code2.c	code3.c

* 1313



Examples

• Write	a	program	to	print	“Hello	World”.
• Compile	it	using	“make”
• Contents	of	“makefile”

default:main

main: main.c
gcc main.c –o main

clean:
rm main main.o

* 1414



NOTE

You	can	use	any	IDE(Integrated	Development	
Environment)	to	develop	and	test	your	C	application	
before	submitting.	However,	Linux	is	the	
environment	in	which	the	program	will	be	graded.	So	
make	sure	your	program	will	compile	and	run	
without	errors	or	warnings	using	GCC	only	on	
‘flop.engr.oregonstate.edu’.	

* 1515



Intro	2	C

• Useful	websites:	
– cplusplus.com
– http://www.cprogramming.com/

* 1616



Headers	in	C

• Essential	header:
#include	<stdio.h>	:Includes	the	standard	Input/output	
library.	Without	this	statement	the	program	will	not	
be	able	to	print/read	data.

• Other	headers	&	including	any	files	:	(Next	
class..)

* 1717



Variable/function	declaration
• All	the	variables/functions	 are	required	 to	be	declared	prior	 to	its	use	in	the	

program.
Eg.
int	add	(int	,	int);	 	//	function	declaration	/prototyping	
void	main(){

int	var1	=	10;
printf(“%d”,	var1);
int	var2=20;
printf(“%d”,	var2);
int	result	=	add(var1,	var2);

}
int	add(int	a,	int	b){

return	 (a+b);
}

Should be placed before void main(){ ..}

* 1818



Pointers

• A	tutorial	on	Pointers	&	Arrays	in	C

• Example:
int	var1=10;
int	*pointertovar1;
pointertovar1=&var1; //	&	is	called	as	‘ampersand’.	It	means	‘address	of’	
*pointertovar1=20; //		*	denotes	the	‘thing	pointed	by’	
printf(“%d%”,	var1); //Now	the	value	of	var1	becomes	20.

* 1919



Memory	allocation	and	structures
• Memory	has	to	be	managed	manually	due	to	absence	of	‘Garbage	

collector’.
• Syntax	:

datatype *	varname =	(datatype *)	malloc	(sizeof(datatype));
eg.	struct	record	*Rec	=	(struct	record	*)malloc(sizeof(struct	record))

• Structures	are	similar	to	classes.
– struct	record{

char		name[20];
int				id;
float	GPA;
}

• A	structure	stores	only	variables	but	no	functions.
• Details	of	both	these	topics	in	the	next	session..

* 2020



That’s	all	for	today.
Please	remember	the	earlier	NOTE.

* 2121


