
CS 261 – Recitation 2

Spring 2016

Oregon State University
School of Electrical Engineering and Computer Science

CS 261 – Data Structures

Outline
• Programming in C

o Headers
o Structures
o Preprocessor
o Pointers

• Programming Assignment 1

2

Programming in C

CS 261 – Data Structures 3

• Headers

• To include a standard library in C, use “<>”.
E.g: #include <stdio.h>
• To include a header file, use quotation marks “”.
E.g: #include “sort.h”

• In fact, when using angle brackets, the preprocessor only searches for it in
certain directories.

• When using quotation marks, the preprocessor first looks for the file in the
current working directory.

Programming in C
• Special operators: `++` and `--` operators
• `++`: x is incremented (x=x+1)

Ø ++x : increments x before it is evaluated
Ø x++ : increments xafter it is evaluated

• `--` : x is decremented (x=x-1)
Ø --x : decrements x before it is evaluated
Ø x-- : decrements x after it is evaluated

CS 261 – Data Structures 4

Usually best to use x++ or x--

Programming in C
• The `struct` type:

– Like class in Java with no method.
• Declare a struct data type:

struct student /*student is the name of this struct*/
{
char name[40];
int id;
double gpa;

};
• Declare variables with the structure type:

struct student a1, a2;
struct student *pointer_to_a1;
struct student entireClass[100];

CS 261 – Data Structures 5

Programming in C
• Initialize structure variables:

struct article {char name[15]; char color[14]; double price;};
struct article flower=

{”rose”, ”green”, 2.49};
struct article bouquet[10] ;
bouquet [0] = flower;
struct article *pArticle = (struct article *) malloc (sizeof(struct article));

CS 261 – Data Structures 6

Programming in C
• Access structure members:

– Using the dot operator
flower.name // The array 'name'
flower.price // The double variable 'price'

– Using pointers
pArticle = &flower; // Let pArticle point to flower
pArticle->color // Access members of flower
pArticle->price // using the pointer pArticle

CS 261 – Data Structures 7

Programming in C
• C Preprocessor

– The C compiler preprocesses every source file before performing the actual
translation. The preprocessor removes comments and replaces macros with their
definitions.

– Every preprocessing directive appears on a line by itself. If the directive is long, it
can be continued on the next line by inserting a backslash (\) as the last character
before the line break.

• `#define` directive:
– Used to define macros
– Syntax:

#define name [replacement_text]

– Example:
#define BUF_SIZE 512 // Symbolic constant

#define MAX(a,b) ((a) > (b) ? (a) : (b))

CS 261 – Data Structures 8

Programming in C
• #ifdef and #ifndef

– The #ifdef and #ifndef directives are used to test if a certain directive has been
defined or not defined respectively.

– Syntax

#ifdef _WIN32 //Compiling under a windows environment
...
#endif

#ifndef _WIN32
...
#endif

CS 261 – Data Structures 9

Whats the difference between “if” and “ifdef” ?

Pointers
• A pointer represents the address and type of a variable or a function. In other words,

for a variable x, &x is a pointer to x.

• Two fundamental operators:
– &: address-of operator – to get a pointer to (address of) a variable
– *: dereference operator - get the thing the pointer points to.

• * is also used to declare a pointer variable
int i=5,

int *p;

• Note:
– The name of an array is automatically converted to a pointer to the array's first

element.
– The value of a null pointer is 0.

CS 261 – Data Structures 10

Why pointers
• A simple explanation found on Web
• To impress friends *wink*
• Pointers can give performance gains
• New data structure possibilities

CS 261 – Data Structures 11

Pointer arithmetic
• Two arithmetic operations can be performed on pointers:

– An integer can be added to or subtracted from a pointer.
– One pointer can be subtracted from another of the same type.

• In arithmetic operations on pointers, the size of the objects pointed to is automatically
taken into account.

int a[3] = { 0, 10, 20 }; // An array with three elements
int *ptr_a = a; // Let ptr_a point to a[0]

&a[i] , a+i , ptr_a+i // pointers to the i-th array element

a[i] , *(a+i) , *(ptr_a+i) , ptr_a[i] // the i-th array element

ptr_a = a+2; // Let pa point to a[2]
int n = ptr_a - a; // n = 2

CS 261 – Data Structures 12

printf(“%d”, &a[2]); //Ans : memory
location pointed by 20

printf(“%d”, *(a+1); //Ans : 10

More on pointers!

13

Pointer Value vs. Thing Pointed At

the value of the pointer
vs.

the value of the thing the pointer points to:

D3C2

42

Value at location D3C2

Pointer

pVal

*pVal

14

Pointers
int *pVal; /* Pointer uninitialized to

unallocated integer value. */

Pointer

pVal

?

15

Pointers
int *pVal; /* Pointer uninitialized to

unallocated integer value. */

pVal = 0; /* Initialize pointer to indicate that
it is not allocated. */

Pointer

pVal

Indicates
a “null”
pointer.

16

Pointers
int *pVal; /* Pointer uninitialized to

unallocated integer value. */

pVal = 0; /* Initialize pointer to indicate that
it is not allocated. */

.

.

.

/* Allocate integer and */
/* assign memory address to pVal. */

pVal = (int *) malloc(sizeof(int));

Pointer

pVal

???

Value

17

Pointers
int *pVal; /* Pointer uninitialized to

unallocated integer value. */

pVal = 0; /* Initialize pointer to indicate that
it is not allocated. */

.

.

.

/* Allocate integer and */
/* assign memory address to pVal. */
pVal = (int *) malloc(sizeof(int));

*pVal = 42;

Pointer

pVal

42

Value

18

Pointer Syntax
• Use * to

–declare a pointer,
–get value of pointer

• Use & to get address of a variable

double *ptr;

double pi, e;

19

Pointer Syntax

double *ptr;

double pi, e;

ptr = π

*ptr = 3.14159;

ptr = &e;

*ptr = 2.71828;

printf("Values: %p %g %g %g\n",
ptr, *ptr, pi, e);

&pi ptr

??.???

e

??.???

pi

20

Pointer Syntax

double *ptr;

double pi, e;

ptr = π

*ptr = 3.14159;

ptr = &e;

*ptr = 2.71828;

printf("Values: %p %g %g %g\n",
ptr, *ptr, pi, e);

&pi ptr

??.???

e

3.14159

pi

21

Pointer Syntax

double *ptr;

double pi, e;

ptr = π

*ptr = 3.14159;

ptr = &e;

*ptr = 2.71828;

printf("Values: %p %g %g %g\n",
ptr, *ptr, pi, e);

&e ptr

??.???

e

3.14159

pi

22

Pointer Syntax

double *ptr;

double pi, e;

ptr = π

*ptr = 3.14159;

ptr = &e;

*ptr = 2.71828;

printf("Values: %p %g %g %g\n",
ptr, *ptr, pi, e);

&e ptr

2.71828

e

3.14159

pi

23

Pointer Syntax

double *ptr;

double pi, e;

ptr = π

*ptr = 3.14159;

ptr = &e;

*ptr = 2.71828;

printf("%p %g %g %g\n",

ptr, *ptr, pi, e);

&e ptr

2.71828

e

3.14159

pi

Output: ? 24

Pointer Syntax

double *ptr;

double pi, e;

ptr = π

*ptr = 3.14159;

ptr = &e;

*ptr = 2.71828;

printf("%p %g %g %g\n",

ptr, *ptr, pi, e);
Output: ffbff958 2.71828 3.14159 2.71828

&e ptr

2.71828

e

3.14159

pi

25

Alternative Pointer Syntax
• Use [] to declare a pointer
• Use [0] to get the value of pointer

double data[]; /*pointer*/
double value = 5.3; /*variable*/

data = & value;

printf("%g",data[0]);

Output: ? 26

CS 261 – Data Structures

CS 261 – Data Structures

Programming Assignment 1 – Helpful Hints

• warning: implicit declaration of function …
– Probable reason: Function prototype not declared
– Fix: 2 choices

– Insert the function prototype before the main function in C
– Use a header file (myFunction.h) to declare the function prototype and

include this header file in main.c

• <filename>.h: No such file or directory
– Probable reason: wrong “include” definition

• warning: implicit declaration of function `malloc‘ (‘free’) or ‘assert’
– Probable reason: stdlib.h or assert.h library not included
– Fix: To call `malloc` and `free` functions, you need to include stdlib.h library at

the beginning of source files. To call ‘assert’ function, you need to include assert.h.

28

Programming Assignment 1 – Helpful Hints

• Even after a successful compilation, I'm not allowed to execute the program
- Example:

% gcc main.c sort.c -o myProg

% myProg

– Error message:
myProg: Too few arguments.

– Reason:
• Path to the executable file not provided.
• Executable file name is a UNIX keyword like cat, grep,

– Fix: provide the path to the executable file:
• ./myProg

– We can provide full path to the file, or just use `./` to indicate the current
directory

CS 261 – Data Structures 29

Programming Assignment 1 – Helpful Hints

• CodeBlocks errors:
– Message: Linking stage skipped (build target has no object files to link)
– Fix: The source file must belong in `debug` and ‘release` targets in order to be

compiled.

CS 261 – Data Structures 30

CS 261 – Data Structures

Test Assignment – Solution

• Question:
- Code in C for printing prime numbers in an infinite loop.
- Execution is stopped by the user
- Comments based on guidelines

• Helper function:

CS 261 – Data Structures 32

int isPrime(int n) {

for(int i = 2; i * i <= n; i++) { /* for every possible number i */
if (n % i == 0) return 0; /* if i divides n then n is not a prime number */

}
return 1; /* if no number divides n from 2 to sqrt(n), n is prime */

}

Test Assignment – Solution

• Question:
- Code in C for printing prime numbers in an infinite loop.
- Execution is stopped by the user
- Comments based on guidelines

• Main function:

CS 261 – Data Structures 33

int main() {
int j = 2; /* first prime number */
printf("Press enter for next prime number, give other character for termination\n");
while(true) {

if (isPrime(j)){ /* if j is a prime number */
printf("%d is prime",j); /* then print it */
char c = getchar();
if (c != '\n') /* if the user did not press enter alone */

return 0; /* then break out of the loop by returning */
}
j++; /* increase j to the next integer value */

}
return 0; /* purely cosmetic reasons, never executed */

}

CS 261 – Data Structures

More Questions ?

