
CS 261 – Recitation 8

Spring 2016

Oregon State University
School of Electrical Engineering and Computer Science

CS 261 – Data Structures

Outline
• Heaps and Priority Queues
• Command-line arguments
• File I/O

2

Heaps and priority queues
• What is a priority queue?

– A priority queue is a collection designed to make it easy to, find the element with
highest priority.

• What are the common functions that a priority queue
supports?

void add (EleType newValue);

EleType getFirst ();

void removeFirst ();

• What is a binary heap?
– A complete binary tree in which every node’s value is less than or equal to the

values of its children.

CS 261 – Data Structures 3

Heaps and priority queues
• How to present a binary heap?

– Using an array (dyArray)
• Suppose the root has index 0, what are the indices of the 2 children of

a node at index i ?
• What is the index of the parent of a node at index i ?

CS 261 – Data Structures 4

2

5

8

3

79 10

14 12 11 16
0

2

1

3

2

5

3

9

4

10

5

7

6

8

7

14

8

12

9

11

10

16

2 * i + 1, 2 * i + 2
(i-1)/2

Heaps and priority queues
• How to get the smallest element from a binary heap?

– Return the first element.
• How to add a new element to a binary heap?

– Insert the new element at the end of the heap
– Fix the heap order

CS 261 – Data Structures 5

2

5

8

3

79 10

14 12 11 16 4

Add 4 to this heap??

Heaps and priority queues
• How to get the smallest element from a binary heap?

– Return the first element.
• How to add a new element to a binary heap?

– Insert the new element at the end of the heap
– Fix the heap order

CS 261 – Data Structures 6

2

5

8

3

49 10

14 12 11 16 7

Add 4 to this heap??

Heaps and priority queues
• How to get the smallest element from a binary heap?

– Return the first element.
• How to add a new element to a binary heap?

– Insert the new element at the end of the heap
– Fix the heap order

CS 261 – Data Structures 7

2

4

8

3

59 10

14 12 11 16 7

Add 4 to this heap??

Heaps and priority queues
• Presenting a binary heap using a dynamic array
struct dyArray { /* dyArray Structure */

EleType *data;

int size;

int capacity;

};

• Function to swap value of 2 elements in the array:
void swap (struct dyArray * v, int i, int j);

• Function to get the index of the smallest element between 2 elements
in the heap:

int indexSmallest (struct dyArray * v, int i, int j);

CS 261 – Data Structures 8

Heaps and priority queues
• When removing the first element, which element will replace it?

– The last element !
• After removing, we need to call adjust heap to adjust the heap by

swapping with the smallest child.

CS 261 – Data Structures 9

2

5

8

3

79 10

14 12 11 16

Root = Smallest element

Last filled position

Heaps and priority queues
• When removing the first element, which element will replace it?

– The last element !
• After removing, we need to call adjust heap to adjust the heap by

swapping with the smallest child.

CS 261 – Data Structures 10

16

5

8

3

79 10

14 12 11

Heaps and priority queues
• When removing the first element, which element will replace it?

– The last element !
• After removing, we need to call adjust heap to adjust the heap by

swapping with the smallest child.

CS 261 – Data Structures 11

3

5

8

16

79 10

14 12 11

Heaps and priority queues
• When removing the first element, which element will replace it?

– The last element !
• After removing, we need to call adjust heap to adjust the heap by

swapping with the smallest child.

CS 261 – Data Structures 12

3

5

8

9

716 10

14 12 11

Heaps and priority queues
• When removing the first element, which element will replace it?

– The last element !
• After removing, we need to call adjust heap to adjust the heap by

swapping with the smallest child.

CS 261 – Data Structures 13

3

5

8

9

712 10

14 16 11

Command line arguments
• New prototype for main().. Similar to Java

int main (int argc, const char * argv[])
argc – number of arguments

argv[] – array of arguments.

• Example:
int main(int argc, char *argv[]){

int i;

printf("The number of arguments is %d\n", argc);

if (argc>0)

for (i=0;i<argc;i++)

printf("The argument number %d is %s\n",

i, argv[i]);
return 0;

}

CS 261 – Data Structures 14

Command Line Arguments
• Running the command line:

=> There is always a default argument, which is the name of the
executable file.

CS 261 – Data Structures 15

File processing in C
• C communicates with files using a new datatype called a file pointer.
• This type is defined within stdio.h, and written as FILE *
• Usage:

FILE *output_file;

CS 261 – Data Structures 16

Opening a file pointer
• Your program can open a file using the fopen function, which returns the

required file pointer.

• If the file cannot be opened for any reason then the value NULL will be
returned.

• Usage:
output_file = fopen("filename.txt", "w");
if (output_file != NULL) {

…. /* do something */
}

CS 261 – Data Structures 17

What is ‘w’ ?

Opening a file pointer
• fopen takes two arguments:

1. the name of the file to be opened (filename.txt).
2. an access character, which is usually one of:

• “r” - open for reading
• “w" - open for writing (creates file if it doesn't exist). Deletes content and

overwrites the file.

• “a” - open for appending (creates file if it doesn't exist)

• Also, r+, w+ & a+. (Please explore on your own)

CS 261 – Data Structures 18

Reading from a file
• You can read a single character using the function fgetc.

int fgetc(FILE *fp);

• String values are read from a file or from a console using the function fgets. The
function takes as argument a character array, the size of the array, and a file pointer

char buffer[100];

fgets(buffer, 100, stdin); //stdin means Standard i/p
printf("You just typed %s\n", buffer);

• But, next time you read, fgets overwrites the previous value stored in the array
(buffer[]). To solve this, we should copy a string value into a new array which can then
be stored in data structure

char * newStr (char * charBuffer) {
char * p = (char *) malloc(1 + strlen(charBuffer));

strcpy (p, charBuffer);

return p;

}

CS 261 – Data Structures 19

Writing to a file
• You can use the fputc function to write a single character

int fputc(int c, FILE *fp);

• To write a line into a file, use fputs function
int fputs(const char *s, FILE *fp);

CS 261 – Data Structures 20

Closing a file pointer
• The fclose command is used to disconnect a file pointer from a file.
• Usage:

fclose(output_file);

• Make sure to close any open files once you are done working on them to
avoid surprises.

CS 261 – Data Structures 21

