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Abstract

Joint reasoning about objects and 3D scene layout has
shown great promise in scene interpretation. One visual
cue that has been overlooked is texture arising from a spa-
tial repetition of objects in the scene (e.g., windows of a
building). Such texture provides scene-specific constraints
among objects, and thus facilitates scene interpretation.We
present an approach to: (1) detecting distinct textures of
objects in a scene, (2) reconstructing the 3D shape of de-
tected texture surfaces, and (3) combining object detections
and shape-from-texture toward a globally consistent scene
interpretation. Inference is formulated within the reinforce-
ment learning framework as a sequential interpretation of
image regions, starting from confident regions to guide the
interpretation of other regions. Our algorithm finds an op-
timal policy that maps states of detected objects and recon-
structed surfaces to actions which ought to be taken in those
states, including detecting new objects and identifying new
textures, so as to minimize a long-term loss. Tests against
ground truth obtained from stereo images demonstrate that
we can coarsely reconstruct a 3D model of the scene from a
single image, without learning the layout of common scene
surfaces, as done in prior work. We also show that reason-
ing about texture of objects improves object detection.

1. Introduction

Scene interpretation is a long-standing, basic problem in
computer vision. Recent work demonstrates that a synergis-
tic treatment of diverse image-understanding tasks, includ-
ing object recognition, image segmentation, and 3D-scene
reconstruction, may overcome many errors induced by ad-
dressing them in isolation [10, 2, 9, 7, 20, 6, 16]. These
approaches typically fuse object detections with supervised
priors of spatial layouts of common scene surfaces (e.g., the
sky is on the top, and the ground is planar and horizontal) .

While holistic scene intrepretation shows great promise,
the treatment of the 3D scene layout in existing work has
certain shorcomings. First, they make the restrictive as-

sumption that surfaces in the scene are planar, and discretize
surface orientations into a pre-specified number of classes
(e.g., buildings may face only left, right, or front). Second,
they typically estimate surface orientation classes too lo-
cally (e.g., per each superpixel), without accounting for the
long-rage spatial relations among image parts. This may
easily lead to implausible 3D layouts.

One visual cue that has been overlooked, and that could
address the aforementioned shortcomings of prior work, is
texture arising from a spatial repetition of objects in the
scene. In general, textures of recurring objects are ubiq-
uitous. For example, windows on a building facade jointly
give the percept of window texture, and a sequence of cars
parked along a street gives rise to car texture, as illustrated
in Fig 1. In a cafeteria scene, tables and chairs, and people
standing in a line comprise many distinct textures. Also, in
natural scenes, one can easily find textures corresponding to
flocks of birds, herds of animals, or tree lines.

In this paper, we focus on scenes where thickness and
depth differences of spatially repeating 3D objects are much
smaller than their distance from the camera. Thus, these
objects can be interpreted as texture elements lying on a
surface’s tangent plane at a point. Given distinct textures
of objects in an image, we estimate the 3D shape of their
surfaces via shape-from-texture. We use the estimated 3D
scene model to help detect and localize all object occur-
rences, and thus enable potential identification of new tex-
tures in the scene. We iterate these steps until obtaining a
coherent scene interpretation in which the world is not com-
posed of blocks in discrete, pre-specified depth and orien-
tation arrangements, as in existing work, but rather of more
realistic 3D shapes, as illustrated in Fig 1. We achieve this
without supervised learning of 3D scene layouts.

Recent work [2] also uses object detections to estimate
their supporting surfaces. However, they make the restric-
tive assumptions that the supporting surfaces are planar, and
parallel. Also, they have access to training examples of ob-
ject poses seen from all viewpoints. We relax their assump-
tions, and do not use 3D models of objects.

Our evaluation on street scenes demonstrates that rea-
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soning about texture of objects facilitates holistic scenein-
terpretation. This is because texture provides scene-specific
constraints among objects, which we use to relax the afore-
mentioned restrictive assumptions of prior work. Our key
contributions include a new approach to scene interpreta-
tion, based on shape-from-texture, and an efficient sequen-
tial inference procedure for texture detection.

2. Overview

The Problem: Given an image, our goal is to: (1) De-
tect and localize all occurrences of target object classes;
(2) Identify distinct textures whose texture elements are in-
stances of these classes; (3) Reconstruct a 3D model of the
identified texture surfaces, and appropriately place the de-
tected objects in the reconstructed 3D scene.

To address the above problem, we need to account for
long-range spatial relations in the image. The graphical-
modeling framework, common in related work (e.g., CRF
[6]), seems unsuitable here. Specifically, a graphical model
would need to encode higher-order cliques, and thus face se-
rious tractability issues in learning and inference. Instead,
we use a simpler “interpretation by synthesis” approach,
where image regions are sequentially explained, starting
from confident regions to guide the interpretation of other
regions. This is similar to [7]. They pick in each iteration
four regions that maximize a heuristic score of the scene
interpretation. By contrast, we seek to learn this scoring
function using reinforcement learning (RL) [14]. RL is par-
ticularly well-suited in our case, because it finds an optimal
policy that mapsstatesof an environment (detected objects
and reconstructed surfaces) toactionsthat anagentought
to take in those states (detecting new objects and identify-
ing new textures), so as to minimize a long-term loss.

The main steps of our approach are shown in Fig. 1.
Step 1: Given an image, we detect objects of interest us-

ing the state-of-the-art, latent-SVM detector of [5]. The de-
tector represents an object class by six models, correspond-
ing to six distinct object poses, as illustrated in Fig. 2. For
each pose, the respective model encodes the canonical 2D
locations and scales of 8 object parts. We associate with
each object pose the expected value of its surface normal,
N . When an object is detected, we take the following de-
tector outputs: confidence, bounding box, relative locations
and scales of 8 object parts, and the model responsible for
detection (i.e., 3D pose). For every object detection, a dif-
ference between the detected and canonical locations and
scales of object parts relative to the bounding box is used to
estimate the amount of their spatial deformations.

Step 2: For texture detection, we use the model of tex-
ture as a marked point process [15, 8, 17, 18, 19]. A surface
is textured by statistically marking its points, and placing
statistically similar objects (i.e., texture elements) atthese
points. Given candidate object detections from Step 1, we

identify one texture at a time by tracking instances of the
same object class, similar to [15, 8, 17]. To this end, we
use an RL-based labeler that sequentially visits object de-
tections, and labels them as being a part of texture or non-
texture. These decisions are informed by Gestalt grouping
cues. After detecting a texture, all of its texture elements
are removed from the pool of object detections, and the RL-
based labeling is run again. This is iterated until all remain-
ing object detections are labeled as non-texture.

Step 3: The identified textures are used for shape-from-
texture [18, 19]. Intuitively, texture elements may be slanted
away from the camera, causing foreshortening, and lie at
different distances from the camera, resulting in a change
of scale. We relate the relative locations and sizes of 8 parts
of a detected texture element to their canonical values by
an affine homography. The affine homography determines
the surface normal at that surface point. We apply diffu-
sion to the estimated set of surface normals, and thus recon-
struct the 3D texture surfaces. The surfaces corresponding
to image parts classified as non-texture are reconstructed
by defusing the normals of points along the boundaries that
the non-texture image regions share with the textured ones.
This ultimately gives a 3D model of the scene.

Step 4: We repeat Steps 2–3 until the resulting scene
interpretation reaches equilibrium.

The remainder of the paper presents details of each step
of our approach, starting from Step 2.

3. Identifying Image Textures

Given responses of the object detector (Step 1), we iden-
tify elements of a texture as a sequential assignment of bi-
nary labels to every object detection. The label is 0 for non-
texture, and 1 for part of texture. LetX=(X1, . . . ,Xn)∈X
andY =(y1, . . . , yn)∈Y denote a sequence of descriptor
vectorsXi associated with detections, and the correspond-
ing sequence of their labelsyi ∈ {0, 1}, which are obtained
in stepst = 1, . . . , n. Our goal is to learn the structured
predictionf : X → Y on available training images, and
usef to identify distinct textures in a new image.

We formulate the sequential labeling of objects (SL)
within one of the latest RL frameworks, called SEARN
[13]. SEARN integrates search and learning for solving
complex structured prediction problems. It transforms RL
into a classification problem, and shows that good classi-
fication performance entails good RL performance. It has
been extensively evaluated in [13], and it compares fa-
vorably to other techniques for structured prediction. In
SEARN, at every time step, a current state of the envi-
ronment is represented by a vector of observable features.
This vector is input to a classifier to predict the right action.
Thus, learning the optimal policy within SEARN amounts
to learning a classifier over state feature vectors, so as to
minimize a loss. Below, we first review SEARN, and show
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Figure 1. Overview of our approach. (1) Detections of the latent SVM detector [5] for cars, windows, trees, etc. (2) Most of the correct
bounding boxes are selected by SL, which uses both the 2D and the 3D structure, when available. (3) A surface normal is estimated
for each object, and all regions in the corresponding bounding box are assigned that particular normal (colored regions), then a diffusion
process interpolates the normals in the zone of influence of the objects, represented by the white regions. (4) The interpolated normals. (5)
The surface reconstruction. Our system correctly estimates that the ground is slanted and that the building is front-facing. This cannot be
handled by existing approaches, that typically assume thatthe ground surface is flat.
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Figure 2. The latent-SVM detector of [5]. An example for the cars. The detector consists of 6 models encoding 6 car poses with canonical
surface normalsN . Each model consists of 8 object parts. We use fewer models for the other object classes (e.g., only 1 for the trees).

how it is trained to fit our particular vision problem.
SEARN applies classifierf (e.g. SVM, or Decision

Tree) to a sequence of data samples,X∈X , to infer their
labelsY ∈Y. It requires that the ordering of instances inX
be well-defined. SEARN uses an iterative batch-learning.
Specifically, in each iterationτ , the results of classification,
f (τ):X→Y (τ), are compared with the ground-truth labels,
Ŷ . This induces lossL(Y (τ), Ŷ ), which is then used to
learn a new classifierh(τ+1). In the next iteration, SEARN
appliesf (τ+1) toX, wheref (τ+1) is defined as:

f (τ+1) = βh(τ+1) + (1 − β)f (τ), (1)

whereβ ∈ (0, 1] is the interpolation constant. This inter-
polation amounts to a probabilistic sampling of the itera-
tively learned classifiersh(1), h(2), . . . , h(τ+1). The classi-
fier sampling is governed by the multinomial distribution,
where, from (1), the probability of selecting classifierh(k)

in iterationτ is α
(k)
τ = β(1− β)τ−k, k = 1, . . . , τ . After τ

reaches the maximum allowed number of iterations,T , the
output is the last policyf (T ) from whichh(1) is removed,
i.e., the output is{h(2), . . . , h(T )} and their associated sam-

pling probabilities{α(2)
T , . . . , α

(T )
T }. Performance bounds

of SEARN are presented in [13].
We accommodate SEARN for our problem by specify-

ing: (i) Object descriptors that define data samplesX; (ii)
Ranking functionR, which provides an ordering ofX; and
(iii) Loss functionL for the iterative learning of policyf .
These specifications are presented in the sequel. They to-
gether define SL, summarized in Alg. 1.

A Descriptor of Object Detections. Our key idea is to
compute{Xi} online, from the cues of image parts that
have already been explained.X(t)

i is a descriptor that con-
sists of intrinsic object properties, and its pairwise spatial
relations with those objects that have been labeled as tex-
ture in the previoust steps. The intrinsic object properties,
ψi, include: (a) the detector confidence; (b) the model of
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the object pose that was used for detection; (c) 2D loca-
tion and scale of the object,(ci, si), normalized w.r.t. the
image; and (d) 2D location and scale of the object parts,
normalized w.r.t. the object’s bounding box. The pair-
wise properties,φ(t)

ij , include: (e) overlap of the bounding

boxes,bi∩bj

bi∪bj
; (f) displacement|ci − cj |; (g) scale ratiosi

sj
;

and (h) spatial relation between the bounding boxesbi and
bj whose value can be far, near, above, below, on-top, or

next-to, as in [4]. Note thatφ(t)
ij can provide evidence of

perceptual grouping of objects into texture. Whether the
grouping actually occurs at objecti has to be inferred by
SL. Thus, at a given stept of sequential labeling, we have
X

(t)
i = [ψi, [φ

(t)
ij , j = 1, 2...]].

Ranking Function R. At every stept, SEARN uses a rank-
ing function to label the next object, such that its labeling
reduces uncertainty about the other objects in the image.R

is specified as the confidence of classifiersh(τ). At t, de-
scriptorsX(t)

i of all unlabeled objects are updated based on

the current state, and then classified.R selectsX(t)
i with

the highest confidence in classification.

Loss Function L. L is defined as the overlap error between
bounding boxesb of objects that are labeled as texture and
the ground truth bounding boxesb̂. We pair bounding boxes
bi andb̂i with the largest overlap.L is a sum of the overlap

errors,L(Y , Ŷ ) = 1 − 1
t

∑t

i=1
bi∩b̂i

bi∪b̂i

.

4. Reconstructing 3D Scene Layout

Deformations of texture elements from the known
canonical pose can be used to estimate the underlying 3D
shape of the texture surface. To this end, we assume that
objects labeled as texture elements have planar parts. Then,
we estimate the 3D pose of each part using an affine ho-
mography. Since parts are smaller than objects, and much
smaller than surfaces, the reconstructed texture surfacesare
piecewise planar.

For all parts of an object labeled as texture, we relate the
detected part locations and scales with those of the canoni-
cal object pose through an affine homography. LetHi be the
homography of objecti from its canonical pose to its pose
in the image. We use the part centers to specify an overde-
termined linear system of equations to calculateHi with 6
degrees of freedom. After findingHi, we compute the nor-
mal of i asNi = HiN , whereN is the known canonical
normal from the latent-SVM detector of [5] (see Fig. 2).Ni

is further mapped to the 8 normals of individual object parts
Nik, k = 1, ..., 8, using the 8 homographies, known from
the latent-SVM detector, between the reference canonical
object pose and the planes of each object part.

The 3D texture surfaces can be reconstructed from the
set of estimated surface normals{Nik : i = 1, ..., n; k =

Algorithm 1: Learning SL
Input : Set of training imagesI = {I1, I2 . . . };

Candidate objects{V (I1), V (I2), . . . };
Ground-truth labels{Ŷ (I1), Ŷ (I2), . . . };
Loss-sensitive classifierh, and initialh(1);
Loss functionL; Interpolation constantβ = 0.1;
Maximum number of iterationsT

Output : Learned policyf(T )

Initialize: V
(1)

un = V ;1
for τ = 1, . . . , T do2

Initialize the set of descriptor sequencesX = ∅;3
for all I ∈ I do4

V = V (I); n = |V (I)|; Ŷ = Ŷ (I);5
for t = 1, . . . , n do6

for i ∈ V
(t)

un do7

ComputeX(t)
i

;8

Computeyi = f(τ)(Xi) as in (1);9

end10

Selecti from V
(t)

un with max confidence inyi;11

Add yi to Y
(τ);12

V
(t)

un ← V
(t)

un \ {i};13

end14

Estimate lossL(Y (τ), Ŷ );15
Add the estimated descriptor sequenceX toX ;16

end17

Learn a new classifierh(τ+1) ← h(X ; L);18

Interpolate:f(τ+1) = βh(τ+1) + (1− β)f(τ)19

end20

Returnf(T ) without h(1).21

1, ..., 8} of n texture elements by standard linear diffusion.
The accuracy of this reconstruction depends on the num-
ber of estimated normals and their layout. The diffusion
over the entire image, however, yields an over-smoothed 3D
model. We address this by estimating the spatial support of
detected textures, and then conducting the diffusion only
within each region of support. Specifically, we segment the
image with the state-of-the-art segmenter of [1]. All result-
ing segments that overlap with the objects of a specific tex-
ture are taken to form the spatial support of that texture. We
linearly diffuse the estimated normals of object parts within
the region of support of each texture. Figs. 1, 4 and 6 show
examples of the needle plot obtained by this method.

The spatial support of non-texture surfaces is defined by
the remaining segments that have not be assigned to any
textures. Non-texture surfaces are reconstructed by deffus-
ing, within the corresponding non-texture spatial support,
the normals of points along the boundaries that the non-
texture regions share with the textured ones. This ultimately
gives a 3D model of the scene.

Closing the loop. After the initial reconstruction of the 3D
scene in Steps 1–3 of our approach, we continue repeating
Step 2 and Step 3 until the resulting scene interpretation
reaches equilibrium.
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5. Results

For evaluation, we use street scenes that abound with
various textures. In particular, we are interested in textures
of cars lined-up along the streets, windows on building fa-
cades, and pedestrians and trees on the sidewalks. The num-
ber of these textures in each image is not known.

Datasets. We use two datasets for evaluation. First, we
query images from the LabelMe dataset [21] with the key-
word ’building+window+car’. LabelMe images with less
than 3 cars, or less than 3 windows are removed. This gives
a dataset of 316 images, where 166 images are used for
training, and the remaining 150 for testing. Note that our
dataset of 316 LabelMe images is larger than the geometric-
context dataset (GCD) [11] used as the benchmark by exist-
ing holistic approaches to scene interpretation. The GCD
has only 16 images with object repetition, and thus is
poor for evaluating our structure-from-texture method. Of
course, this is a limitation of the benchmark GCD, and does
not mean that scenes with spatially recurring objects are
rare. Second, we use the stereo images of the Leuven Mov-
ing Vehicle Sequence [3]. From this sequence, we remove
images that do not show at least 3 instances of cars or win-
dows. This gives a dataset of 72 images, all of which are
used for testing.

Training setup. Randomly selected 166 images of the
LabelMe dataset are used for training the sequential labeler
SL. For each image, we first detect candidate bounding
boxes, using the detector of [5]. Bounding boxes that com-
prise distinct textures in the image are labeled with 1, and
the remaining boxes are labeled with 0. We train a total of
10, C4.5 decision-tree classifiers, pruned with confidence
factorC = 0.25, on these labeled bounding boxes, as sum-
marized in Alg. 1.

Testing setup. Given a test image, we run the car, win-
dow, tree, and pedestrian detectors of [5] with a low detec-
tion thresholdτ = −3, so as to achieve high recall. Next,
we use SL to detect all textures of objects present, one at
a time, until no object detection can be labeled as belong-
ing to texture. The surface normals of parts of all identified
texture elements are estimated via an affine homography of
their known canonical poses. 3D shapes of the texture sur-
faces are reconstructed by linear diffusion of these surface
normals, within the spatial support of each texture, where
the support is estimated using the segmenter of [1] with
parameterPb = 10, as described in Sec. 4. We assume
that the identified distinct textures of windows correspond
to distinct building surfaces in the scene. Also, we assume
that cars, pedestrians, and trees are supported by the ground.
Hence, image regions located below the detected bounding
boxes of cars, pedestrians, and trees are defined as ground
regions. Surface normals of the ground regions are specified
as perpendicular to the estimated surface normals of cars,
pedestrians, and trees. We linearly diffuse these surface nor-

mals of the ground regions to reconstruct a 3D shape of the
ground. In this way, we relax the common assumption of
prior work that the ground is planar and horizontal. The
remaining non-texture surfaces are reconstructed by defus-
ing the normals of points along the boundaries that the non-
texture image regions share with the textured ones. For bet-
ter visualization of the resulting 3D model of the scene, we
place the detected cars, pedestrians, and trees in front of the
reconstructed building surfaces, at some ad hoc distanceδ,
in the direction of the objects’ normals.

Qualitative results. Fig. 4 shows our scene reconstruc-
tion results on examples from the LabelMe dataset. As can
be seen, in the top row, we are able to extract details of the
curvy facade, circled in red, and enlarged in Fig. 5(left). In
the bottom row, we accurately reconstruct the uphill street,
not as a horizontal surface, circled in red, and enlarged in
Fig. 5(right). These two results contrast much prior work
that typically allows only planar building surfaces, and re-
stricts the ground surface to be horizontal (e.g., [7]).

Fig. 6 compares our surface layout estimates to that of
the state-of-the-art approach, presented in [7], on a few
images from the benchmark GCD. Note that it is diffi-
cult to make this qualitative comparison exactly “apples-
to-apples”. Nevertheless, we believe that Fig. 6 shows im-
portant insights. While [7] does not use object detectors
as we do, they employ a battery of other detectors that we
do not use. For example, they take as input responses of
the surface-layout detector of [12], the sky and ground de-
tectors, as well as the light-medium-heavy density detector.
In [7], image regions are assigned one of the following la-
bels: ground, and vertical facing-left, facing-right, frontal,
porous, or solid. For fair comparison, we discretize our re-
sults into one of these classes, as follows. Each car and
pedestrian region detected by our approach is automatically
labeled as vertical solid. Similarly, tree regions detected
by our approach are labeled as vertical porous. For each
remaining region, we average its surface normals, and la-
bel the region as ground or vertical based on the resulting
average normal. For each vertical region, we compute the
angleα between the average normal and the z-axis (i.e.,
the estimated viewing direction) to determine the region’s
sub-class: frontal, facing-left or facing-right. The top row
of Fig. 6 shows that [7] merges two buildings with oppo-
site orientations as facing-left (cyan), whereas we correctly
classify the building on the left as facing-right (magenta).
We also correctly label the cars and pedestrians regions as
solid, and the pavement regions as ground, in the bottom
row of Fig. 6.

Quantitative results. We evaluate SL on the task of ob-
ject detection. We use the VOC challenge evaluation crite-
ria: precision and recall are obtained for bounding boxes of
the detected objects, average precision (AP) is computed
over the entire test set. Tab. 1 shows that SL improves
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Method Car Window Tree Ped. All
[5](1) 0.574 0.418 0.521 0.592 0.526
[5](2) 0.812 0.543 0.678 0.878 0.727
[4] 0.824 0.617 0.680 0.881 0.807
SL 0.871 0.793 0.719 0.897 0.820

±0.018 ±0.012 ±0.014 ±0.021 ±0.011
Table 1. LabelMe dataset: Average Precision (AP) of our detection
for cars, windows, trees and pedestrians. SL improves the state
of the art detector of [5] when we use a low detection threshold
τ = −3 (1), and when we use the learned detection threshold (2).
SL also outperforms the CRF method of [4].

Method [10] Ours
Surface layout 64.5% 72.1%±2.7%

Table 2. LabelMe dataset: Surface layout classification accuracy
over the vertical subclasses: frontal, facing-right and facing-left.
Our approach outperfoms the state of the art technique.
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Figure 3. Leuven dataset: 3D reconstruction error as a function
of (left) the number of correctly detected objects and (right) the
object detector’s thresholdτ .

by 30.6% the average precision of the low-precision-high-
recall detector of [5] used with the detection threshold set
to τ = −3. We also see that using the information about
3D spatial layout improves by 9.3% the precision of [5] in
its standard form, i.e., whenτ is learned in training.

We also compare the average precision of SL with that
of the CRF-based method of [4]. This is a fair comparison,
since [4] also uses the object detector of [5]. Tab. 1 shows
that SL outperforms [4] for all object classes. This could be,
because we incorporate 3D layout information in our object
detection that is richer than the 2D spatial constraints used
in [4].

For surface layout estimation, we compare against the
state of the art approach of [10]. We are not able to com-
pare with [7], since their code requires inputs from detectors
that are currently not public. We evaluate our surface clas-
sification results over regions labeled as vertical, where the
classification is done as described above for the results pre-
sented in Fig. 6. Table 2 shows that our classification accu-
racy is significantly larger than that of [10] on the LabelMe
images.

We also use 72 stereo pairs of images from the Leuven
dataset to quantitatively evaluate our 3D reconstruction.In
particular, we reconstruct a 3D model of the scene using the
standard stereo approach of [22]. From this 3D model, we

compute surface normals at each pixel, and take these nor-
mals as ground truth. The ground-truth normals are com-
pared with our reconstructed normals, obtained using only
one of the two stereo images. We define the reconstruction
error as the average Euclidean distance between ground-
truth and reconstructed normals. On the 72 images of the
Leuven sequence, we obtain an average reconstruction error
of 43.7% ± 2.4%. In Fig. 3(left), we analyze the influence
of the number of correctly detected objects on the recon-
struction error. As expected, the error decreases as the num-
ber of objects increases, since the accuracy of the estimated
normals is directly proportional to the number of objects.
In Fig. 3(right), we analyze the influence of the detector’s
threshold on the reconstruction error. For low thresholds,
the error does not change much, but it quickly increases as
the threshold gets larger than -2. This indicates that our ap-
proach requires an object detector with high recall.

SL is data-driven and typically selects to label textures in
the ordering cars-windows-trees-pedestrians. We evaluate a
variant of our approach where we force SL to have the fol-
lowing two orderings cars-windows-pedestrians-trees and
windows-cars-pedestrians-trees. These forced orderings
give worse 3D reconstruction performance by3.4%±0.05%
and5.9%±0.08% resp. Other combinations produce worse
results. By the nature of our images, there are more cars
and windows than there are pedestrians or trees, which ex-
plains why the reconstruction is better when one of these
two classes comes first in the ordering. Indeed, the more
objects of a particular class are detected in the scene, the
more accurate the reconstruction of its supporting surface,
see Fig. 3(left). The estimate of the ground surface is criti-
cal for pruning false alarms, which is why the combination
cars-windows works better than the combination windows-
cars. We have tried SL with SVM classifiers, but the re-
construction error increased by2.7% ± 0.4% compared to
SL with decision tree classifiers.

Implementation. Training SL on 166 LabelMe images
takes 18 hours on a 2.66Ghz, 3.4GB RAM PC. On a test
image, the Matlab implementation of SL takes on average
two minutes to label all objects, and to assign a normal to
every pixel. The 3D surface reconstruction is real-time.

6. Conclusion

We have presented an approach to scene interpretation
that exploits shape-from-texture to yield a 3D model of the
scene, and reduce the noise inherent in low-level object de-
tectors. Our approach does not use supervised learning of
3D scene layouts. It relaxes the assumptions of prior work
that supporting surfaces of objects are planar, horizontal,
and parallel, and that vertical surfaces are planar with a fi-
nite set of discrete orientations. Our results demonstrate
that our scene interpretation informed by texture is more
in tune with the particular geometry and semantic content
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Figure 4. LabelMe dataset: Our scene reconstruction results. From left to right: the objects selected by our sequentiallabeler SL, the
needle plot of the diffused surface normals, the reconstructed surfaces with texture mapping, the surfaces viewed fromthe top(top row)
and viewed from the left (bottom row). Fig. 5 presents the zoomed-in details of the circled regions. Both examples show that we correctly
reconstruct building surfaces at a 90 degrees angle. The toprow demonstrates our capability to reconstruct details of the facade (red circle),
in constrast with previous work that assumes planar surfaces. The bottom row shows that we correctly reconstruct the uphill street going
behind the scene (red circle), whereas [7] considers the ground to be a flat plane.

of the scene than alternative interpretations such as “blocks
world” or “image pop-up”. While our evaluation focuses on
street scenes, our appraoch can handle any scenes in which
instances of object classes spatially repeat.
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Figure 5. LabelMe dataset: Zoomed-in details of the circledregions in Fig. 4. The two left images correspond to the facade of Fig. 4(top)
viewed from the top. The two right images correspond to the ground surface of Fig. 4(bottom) viewed from the left. We correctly
reconstruct the curved parts of the facade, as well as the uphill street.

Figure 6. Comparison of our scene reconstruction results tothose of [7] on example images from the Geometric Context dataset. From left
to right: the detected objects after SL, our computed surface normals, the regions after discretization of our normals into surface layout
labels, the regions labeled by [7]. The color-coding of the labels is the same as in [7]. Top row shows that [7] merges the right building
with a part of the left building, whereas we succeed in separating buildings with different orientations. Bottom row shows that we are able
to correctly label the ground and car regions. We do not detect the sky region, because we do not use a sky detector.
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