
Temporal Deformable Residual Networks for Action Segmentation in Videos

Peng Lei and Sinisa Todorovic
Oregon State University

Corvallis, OR 97331, USA
{leip, sinisa}@oregonstate.edu

Abstract

This paper is about temporal segmentation of human
actions in videos. We introduce a new model – temporal
deformable residual network (TDRN) – aimed at analyzing
video intervals at multiple temporal scales for labeling video
frames. Our TDRN computes two parallel temporal streams:
i) Residual stream that analyzes video information at its full
temporal resolution, and ii) Pooling/unpooling stream that
captures long-range video information at different scales.
The former facilitates local, fine-scale action segmentation,
and the latter uses multiscale context for improving accuracy
of frame classification. These two streams are computed by
a set of temporal residual modules with deformable convo-
lutions, and fused by temporal residuals at the full video
resolution. Our evaluation on the University of Dundee 50
Salads, Georgia Tech Egocentric Activities, and JHU-ISI
Gesture and Skill Assessment Working Set demonstrates that
TDRN outperforms the state of the art in frame-wise segmen-
tation accuracy, segmental edit score, and segmental overlap
F1 score.

1. Introduction
In this paper, we address action segmentation where the

goal is to label video frames with appropriate action classes.
Action segmentation is a basic vision problem, and of great
importance to a wide range of applications, including video
surveillance and robot navigation.

Recent approaches typically address this problem in
two steps: i) Extraction of spatial or spatiotemporal fea-
tures using convolutional neural networks, e.g., two-stream
CNNs [36] or local 3D ConvNets [43], and ii) Classifica-
tion of the extracted features using a one-directional model,
e.g., encoder-decoder temporal convolutional networks (ED-
TCN) [22], or bi-directional LSTM networks (Bi-LSTM)
[37, 17]. Although recurrent deep models have shown
promise in capturing latent temporal patterns [37, 17, 6],
they are hard to train [28], and have a limited span of atten-
tion [37].

1 T

1
T

1 T

T/21

1
T

T
/2

1

T
/4

1

T
/4

1

T
/2

1

V

V

V

V

DTRM

DTRM

DTRM

Conv

+

+

+

Conv

FC

Input:

Output:

CNN CNNCNNCNN CNN CNN CNN CNN CNN CNN CNN

1 T 1 T 1 T

1 T

1 T

V
Temporal Unpooling

V Temporal Pooling

Element-wise Summation+

Temporal Residual Stream

Temporal Pooling Stream

Conv Temporal Convolution Layer

FC Fully-connected Layer

DTRM
Deformable Temporal Resid-
ual Module

Figure 1: For action segmentation, TDRN takes frame-level
CNN features as input and outputs frame-wise action la-
bels. TDRN computes two processing streams: Residual
stream (marked red) that analyzes video information at its
full temporal resolution for precise action segmentation, and
Pooling/unpooling stream (marked blue) that captures tem-
poral context at different scales for accurate action recogni-
tion. The two streams are fused through a set of deformable
temporal residual modules (DTRMs). Best viewed in color.

Toward overcoming these limitations, we present a new
temporal convolutional model, named temporal deformable
residual network (TDRN). TDRN classifies every video
frame using a deep temporal residual network. The residual
network takes frame-level CNN features as input and com-
putes deformable convolutions along time at multiple tem-
poral scales, starting at the frame-level resolution. As shown
in Fig. 1, this computation is done in two parallel temporal
streams: i) Residual stream that analyzes video information

1

at its full temporal resolution, and ii) Pooling/unpooling
stream that captures long-range video information at dif-
ferent scales. The first stream is aimed at resolving ambi-
guities about local, frame-to-frame segmentation, and the
second stream uses multiscale context for improving accu-
racy of frame classification. The temporal residual stream
and the temporal pooling stream are fused through a set of
deformable temporal residual modules (DTRMs), and cou-
pled with temporal residuals at the full temporal resolution.
In addition, TDRN computes deformable temporal convolu-
tions for modeling variations in temporal extents of human
actions, similar to deformable spatial convolution that has
been shown to improve object detection in images [3].

As our results demonstrate, the two-stream residual com-
putation and deformable temporal convolutions make TDRN
more robust against temporal transformations than recent
deep networks, including encoder-decoder temporal convolu-
tional networks (ED-TCNs) [25, 22], temporal convolutional
U-networks (TUNets) [34], and temporal residual networks
(TResNets) [15], illustrated in Fig. 2. As can be seen in
Fig. 2, ED-TCNs use a sequence of regular temporal convo-
lutions and temporal pooling/unpooling layers within a sin-
gle processing stream. TUNets simply concatenate features
computed in their unpooling path with the corresponding
features at the same temporal scale from the pooling path, as
indicated by the cyan arrows. TResNets add shortcut con-
nections (marked brown) between a layer and its succeeding
layer for allowing the gradients to propagate more effec-
tively through the network in learning. None of these models
use deformable temporal convolutions and two processing
streams since they all compute regular temporal convolutions
in a single processing stream. Unlike these related models,
we use two processing streams and deformable temporal con-
volutions, enabling robust action classification and accurate
action segmentation in videos.

We evaluate TDRN on the following benchmark datasets:
University of Dundee 50 Salads (50Salads), Georgia Tech
Egocentric Activities (GTEA) and JHU-ISI Gesture and Skill
Assessment Working Set (JIGSAWS). Our results demon-
strate that TDRN is capable of accurately capturing action
durations and transitions between distinct actions. Also,
TDRN outperforms the state of the art in frame-wise seg-
mentation accuracy, segmental edit score, and segmental
overlap F1 score.

Our key contributions include:

• A new fully-convolutional temporal residual network
that consists of two processing streams aimed at extract-
ing both multiscale temporal abstractions and frame-
level features for reliable action recognition and precise
action segmentation.
• We are not aware of any prior work that uses deformable

temporal convolutions; we show they improve action
segmentation over regular temporal convolutions.

(a) ED-TCN

V

V

V

V

Conv

FC

Conv

Conv

Conv

Conv

+

+

+

V

V

V

V

Conv

FC

Conv

Conv

Conv

Conv

Input

Output

V

V

V

V

Conv

FC

Conv

Conv

Conv

Conv

Input

Output

V

V

V

V

Conv

FC

Conv

ConvConv

+

+

+

Conv

Input

Output

(b) TUnet (c) TResNet

Figure 2: Deep architectures of recent work: (a) Encoder-
decoder temporal convolutional networks (ED-TCNs) [25],
(b) Temporal convolutional U-networks (TUNets) [34], (c)
Temporal residual networks (TResNets) [15]. A compari-
son of these architectures with our TDRN shown in Fig. 1
makes our differences obvious: none of these models use de-
formable temporal convolutions and two processing streams.
Best viewed in color.

• We outperform the state of the art in action segmenta-
tion on the 50Salads, GTEA and JIGSAWS datasets.

2. Related Work

This section reviews the most related work for action seg-
mentation and detection in which most of them are about
temporal modeling. A host of work on spatiotemporal mod-
eling for video recognition [41, 19, 45, 43, 36, 51, 2, 10, 11,
13, 46] and action detection [35, 18, 38, 16, 5] are beyond
the scope of this paper.

Action Segmentation. Existing approaches typically
first extract frame-level features, and then pass them to a
temporal model for frame labeling. For example, Yeung et
al. [48] use an attention LSTM network to model feature de-
pendencies over a fixed temporal interval. Singh et al. [37]
present a multi-stream bi-directional recurrent neural net-
work for fine-grained action detection. Fathi et al. [7, 9, 8]
use a segmental model that captures object states at the ac-
tion’s start and end. Richard et al. [32] resort to a statistical
language model for representing temporal and contextual
structure in videos of varying lengths. Kuehne et al. [21]
use Hidden Markov Models (HMMs) on dense-trajectory
features and propose an end-to-end generative approach for
action segmentation.

The approach of Lea et al. [22] is the most related to ours,
as they use two temporal convolutional networks for action
segmentation and detection. However, their model computes
regular temporal convolutions in a single processing stream,
whereas our TDRN computes deformable temporal convo-
lutions in two temporal streams. Ding et al. [6] replace the
convolutional decoder in the approach of Lea et al. [22]

with a bi-directional LSTM (Bi-LSTM) [14]. However, their
network is a hybrid of temporal convolutional network and
temporal recurrent network, and thus inherits the well-known
limitations of recurrent models, including difficult training
[28], and limited attention span [37].

Action Detection. A number of approaches to action
detection is also related to ours. For example, for action
detection, (a) Multi-region two-stream network [29] links
frame-level detections of the faster R-CNN [31]; (b) Re-
current models are learned from 3D skeleton data [26] and
under weak supervision [33]; (c) Reinforcement learning
is used for predicting temporal bounds of actions based on
observing only a fraction of the video [49]; (d) Structured
temporal pyramid models the temporal structure of actions
[52]; (e) Region convolutional 3D network (R-C3D) with
3D ROI pooling encodes video streams [47]; (f) Flow net-
work searches for temporal intervals with a maximum sum
of frame-wise classification scores [50]; (g) Temporal convo-
lutional model extracts context of action proposals through
a pair-wise sampling layer [4]; and (h) Temporal single shot
action detector network detects action instances [27].

In some of the aforementioned approaches, video features
are usually sampled at two temporal scales for generating
good action proposals. Also, some of the approaches consist
of modules that are typically not jointly trained end-to-end.
In contrast, our TDRN fuses multiscale temporal abstractions
with features extracted at the frame-wise temporal scale, and
can be trained in an end-to-end fashion.

There are some similarities between TDRN and recent
work on semantic image segmentation [30], which uses a
two-stream spatial residual network to compute pixel-level
semantic labeling in the image. In contrast, TDRN com-
putes temporal residual convolutions, which are additionally
deformable [3], i.e., capable of modeling variations of tempo-
ral extents of actions via deformable temporal convolutions.
Hence, we extend [30, 3] from the spatial to temporal do-
main, where TDRN also analyzes multiple temporal scales.

3. Temporal Deformable Residual Network
TDRN computes the residual and pooling/unpooling

streams in parallel. As shown in Fig. 1, features along the
residual stream are computed using a sequence of residuals at
the full temporal resolution, whereas features in the temporal
pooling stream are computed at coarser temporal scales by a
sequence of deformable temporal convolutions followed by
temporal pooling and corresponding unpooling. The residual
stream operates at the finest temporal scale for accurately lo-
calizing action boundaries. The temporal pooling/unpooling
stream computes contextual features at multiple temporal
scales for accurate action recognition using a sequence of
deformable temporal residual modules (DTRMs).

Fig. 3 shows key differences between a common temporal
residual module and our DTRM. The former has only one

+f1:T/2n
L-1 f1:T/2n

L

Temporal Residual Module
F(;)f1:T/2n

L-1 wL

Temporal Deformable Residual Module
F(, ;)

f1:T
L+f1:T

L-1

f1:T/2n
L-1 f1:T/2n

L
f1:T

L-1 f1:T/2n
L-1 wL

(a) A traditional temporal feed-forward module.

f1:T/2n
L-1 f1:T/2n

LTraditional Temporal Feedforward Module
F(;)f1:T/2n

L-1 wL

(b) A temporal residual module.

(c) A temporal deformable residual module.

+f1:T/2n
L-1 f1:T/2n

L

Temporal Residual Module
F(;)f1:T/2n

L-1 WL

Deformable Temporal Residual Module
F(, ;)
G(, ;)

f1:T
L+f1:T

L-1

f1:T/2n
L-1 f1:T/2n

Lf1:T
L-1 f1:T/2n

L-1 WL

(a) A temporal residual module.

(b) A deformable temporal residual module.

f1:T
L-1 f1:T/2n

L-1 WL

Figure 3: Key differences between: (a) Common tempo-
ral residual module with a single input and output; and (b)
Our deformable temporal residual module (DTRM) with
two inputs and two outputs. The input represents feature
sequences fL−11:T/2n and fL−11:T with temporal lengths of T/2n

and T , which are computed by the previous layer L − 1.
In (a), the output features are computed by a standard tem-
poral convolution, F (fL−11:T/2n ;W

L). In (b), the output is
computed using a cascade of a deformable temporal convo-
lution, G(fL−11:T , fL−11:T/2n ;W

L), followed by a convolution

and unpooling, F (fL−11:T , fL−11:T/2n ;W
L).

input and one output, while DTRM has two inputs and two
outputs. This is because DTRM simultaneously operates on
both the residual and pooling streams.

DTRM takes as input two feature sequences, fL−11:T/2n and

fL−11:T , with temporal lengths of T/2n and T , which are com-
puted by the previous layer L − 1 in TDRN. Specifically,
fL−11:T/2n is produced by the pooling stream and fL−11:T comes
from the residual stream of L− 1 layer. Note that the layer
numberL is correlated with the temporal scale n at which the
features are computed in TDRN. These are depicted in Fig. 1
as “vertical” and “horizontal” processing levels in TDRN,
respectively. For computing the output feature sequences,
fL1:T and fL1:T/2n , DTRM uses a deformable temporal convo-
lution, G(fL−11:T , fL−11:T/2n ;W

L), followed by a convolution

and unpooling, F (fL−11:T , fL−11:T/2n ;W
L), as

fL1:T = fL−11:T + F (fL−11:T , fL−11:T/2n ;W
L)

fL1:T/2n = G(fL−11:T , fL−11:T/2n ;W
L)

(1)

where WL denotes network parameters. In (1), the output
of G is input to F to produce the residual stream.

It is worth noting that our TDRN has similar training
characteristics as ResNet [15], since losses can be easily
propagated back to the input through the residual stream. In
the following section, we describe DTRM in greater detail.

V

Conv

FRTRM

V

FRTRM

+ +

FRTRM

V

+

V

Concat Conv FC

1 T

1
T

1 T

T/21

1
T

Input Output

Full-resolution Temporal
Residual Stream

Temporal Pooling Stream

T
/2

1

T
/4

1

T
/4

1

T
/2

1

V

V

Temporal Unpooling

Temporal Pooling

+

Concat

Conv

Conv 1x1

V

f1:T

L-1

f
1:T/2n

L-1

f1:T

L

f1:T
L

v

v

+

Deformable
Conv

Conv1x1

f1:T
L-1

f1:T/2n
L f1:T/2n

L-1 f1:T/2n
L

Figure 4: DTRM: Given the residual and pooling features
of the previous layer as inputs, DTRM applies pooling to
the residual stream and then concatenates the result with the
input pooling stream. The concatenated features are then
processed by the deformable temporal convolution, resulting
in the output pooling features, fL1:T/2n . Also, a temporal
residual is computed from fL1:T/2n by the 1 × 1 temporal
convolution and temporal unpooling, resulting in output
residual features, fL1:T .

3.1. Deformable Temporal Residual Module

The pooling and residual streams in our TDRN are fused
through a sequence of DTRMs. Fig. 4 illustrates the archi-
tecture of DTRM. DTRM takes as input the residual and
pooling features of the previous layer, fL−11:T and fL−11:T/2n ,
where the pooling sequence of features is computed at a
coarser temporal resolution, n, and hence is 2n times shorter
in time than the residual sequence of features. DTRM first
applies temporal pooling to fL−11:T , and then concatenates
the result with fL−11:T/2n . The concatenated features are then
processed by the deformable temporal convolution module,
explained in greater detail in Sec. 3.2, resulting in the output
pooling features, fL1:T/2n , of the same length as the cor-
responding input pooling features fL−11:T/2n . From fL1:T/2n ,
DTRM computes output residual features, fL1:T , using the
1× 1 temporal convolution and temporal unpooling.

3.2. Deformable Temporal Convolution Module

The deformable temporal convolution module is aimed at
improving standard fixed-structure temporal convolutions in
modeling temporal variations of action boundaries along the
video. It consists of a deformable temporal convolution layer
followed by a Normalized Rectified Linear Unit (NRLU)
[22], defined as follows:

NRLU(·) = ReLU(·)
max(ReLU(·)) + ε

(2)

where ReLU represents a ReLU layer, max(·) returns the
maximal ReLU activation within the layer, and ε = 0.00001.
Below, we specify deformable temporal convolution.

A temporal convolution can be decomposed into two
steps: sampling of input features at specified moments in

1

N

Conv

Offsets Field Offsets

1

N

Deformable Temporal Convolution
Input Feature Map Output Feature Map

Figure 5: An illustration of deformable temporal convolution
with kernel size 3 and dilation size 1. Both the temporal off-
sets and output features are obtained by applying a temporal
convolutional layer over the same input feature maps. The
offset fields have the same size as the input feature map.

time, and weighted summation of the sampled features. Anal-
ogous to deformable spatial convolutions of objects in im-
ages [3], in our approach, the temporal sampling locations
that specified by the convolutional kernel are augmented
with variable temporal offsets, which in turn are learned
end-to-end along with the other network parameters.

Let I denote the time interval of input feature map fin,
and W denote convolution weights. Note that I defines
the temporal receptive field size as well as the dilation size.
The temporal convolution consists of sampling over I and
summing the weighted sampled values with weights W as

fout(t0) =
∑
ti∈I

W (ti) · fin(t0 + ti). (3)

Deformable convolution specifies a set of offsets M=
{4ti|i = 1, 2, · · · , |I|}, and augments the temporal sam-
pling in (3) as

f deform
out (t0) =

∑
ti∈I

W (ti) · fin(t0 + ti +4ti). (4)

From (4), the sampling is defined over variable time mo-
ments ti +4ti.

Note that4ti is typically learned as a real number. Thus,
t0 + ti + 4ti is also a real number. We identify the set
of nearest integer temporal locations to t0 + ti + 4ti in
the feature map, and use bilinear temporal interpolation to
compute the ith input feature for the summation in (4).

As illustrated in Fig. 5, the temporal offsets {4ti} are
obtained by applying a temporal convolutional to the input
feature maps. The kernel size and the dilation size of the
temporal convolution kernel for computing the offsets are
the same as those of the temporal kernel used for computing
output features (e.g., 3 × 1 with dilation 1 in Fig. 5). The
resulting offset fields have the same size as the input fea-
ture map. During training, both the temporal convolutional
kernel for generating the output features and the kernel for
generating the offsets are learned end-to-end simultaneously.

Dataset 50Salads (mid) GTEA JIGSAWS

Model F1@{10,25,50} Edit Acc F1@{10,25,50} Edit Acc F1@{10} Edit Acc

ED-TCN [22] 68.0,63.9,52.6 59.8 64.7 72.2,69.3,56.0 - 64.0 89.2 84.7 80.8

TUnet [34] 59.3,55.6,44.8 50.6 60.6 67.1,63.7,51.9 60.3 59.9 85.9 79.8 80.2

TResNet [15] 69.2,65.0,54.4 60.5 66.0 74.1,69.9,57.6 64.4 65.8 86.2 85.2 81.1

TDRN 72.9,68.5,57.2 66.0 68.1 79.2,74.4,62.7 74.1 70.1 92.9 90.2 84.6

Table 1: Performance comparison with respect to the most related temporal convolution models including ED-TCN [22],
TUNet [34] and TResNet [15].

Layer/Module Kernel Specification

FC Dense(C, ’softmax’)

Conv Conv1D(64, 50, 1, 1)

DTRM Conv1D(64, 50, 1, 1, Offsets(96, 50, 1, 1))

DTRM Conv1D(96, 50, 1, 1, Offsets(64, 50, 1, 1))

DTRM Conv1D(64, 50, 1, 1, Offsets(64, 50, 1, 1))

Conv Conv1D(64, 50, 1, 1)

Table 2: TDRN architecture: The temporal convolution ker-
nel is described in the same format as in Keras [1], i.e.,
Conv1D(filters, kernel size, strides, dilation rate). The last
argument of a DTRM kernel specifies the temporal convolu-
tion kernel corresponding to offsets. C denotes the number
of action classes including background class. The fully-
connected layer, Dense, is applied to every temporal window
of the input video.

4. Network Configurations and Training

Our TDRN consists three DTRMs, which are imple-
mented with Keras [1] and TensorFlow. As input, TDRN
uses a set of frame-level video features computed by CNNs.
We use the same CNN features as in [22]. The output of
TDRN is the sequence of action labels assigned to video
frames. A detailed description of each module in TDRN
is summarized in Tab. 2. For simplicity, Tab. 2 omits the
details of NRLUs that follow every deformable temporal
convolution layer in DTRM and every temporal convolution
layer in TDRN. They are fully specified in Sec. 3.2.

Parameters of TDRNs are learned using the categorical
cross entropy loss with Stochastic Gradient Descent and
ADAM [20] step updates. The batch size and the number
of epoches are 8 and 200, respectively. Dropouts are also
applied in all the temporal convolutional layers.

Note that n does not require careful tuning, because it is
not a free parameter, but set to a fixed value that depends on
a given network architecture. Specifically, n is uniquely de-
termined by the number of pooling and unpooling operations
in the network, as the pooling reduces the temporal length
of video processing by a half, and the unpooling doubles the
temporal length of video processing. For the model depicted

in Fig. 1 and summarized in Tab. 2, there are 3 residual mod-
ules (DTRMs) and 2 pooling/unpooling operations, so the
values of n in each of the 3 DTRMs, bottom to top, must be
1, 2 and 1, respectively. We use the same architecture and
hence the same values of n for all datasets.

5. Experimental Results

We conduct experiments on three challenging action seg-
mentation datasets, including the University of Dundee 50
Salads (50Salads) [40], Georgia Tech Egocentric Activities
(GTEA) [9] and the JHU-ISI Gesture and Skill Assessment
Working Set (JIGSAWS) [12]. For evaluation, we use three
standard metrics, including F1@k, edit score and accuracy
of frame labeling.

5.1. Datasets, Metrics and Baselines

Datasets. The 50Salads contains 50 videos with 25 people
preparing salad. Each video contains 9000 to 18000 frames
with accelerometer data, depth information, RGB data and
action label. As input to TDRN, we use the same spatial
CNN features as in [22], where the CNN is trained on RGB
images showing 17 mid-level action classes. For evaluation
on this dataset, we perform the same 5-fold cross-validation
as the state of the art, and report the average results.

The GTEA dataset contains 28 videos of seven fine-
grained types of daily activities in a kitchen. An activity
is performed by four different subjects and each video con-
tains about 1800 RGB frames, showing a sequence of 20
actions including the background action. For fair compar-
ison, input to TDRN are the same CNN features as those
used in [22]. For this dataset, we perform the same 4-fold
cross-validation as prior work, and report the average results.

The JIGSAWS dataset contains 39 surgical videos with
10 different actions. Each video contains about 3000 frames
showing about 20 actions. For fair comparison, we use the
same input features of 39 suturing videos as in [25, 22], and
perform the same 8-fold cross-validation as prior work, and
report the average results.

As in related work [22], we first downsample the video
frames and then handle different lengths of downsampled
video clips as follows. We first identify the maximum tem-

GT Acc

TDRN

TRN

ED-TCN

ST-CNN

Bi-LSTM

DilatedTCN

86.3

82.6

76.8

74.8

68.2

65.0

GT

TDRN

TRN

ED-TCN

ST-CNN

Bi-LSTM

DilatedTCN

Acc

89.6

83.9

80.2

74.8

67.4

66.4

GT

TDRN

TRN

ED-TCN

ST-CNN

Bi-LSTM

DilatedTCN

Acc

94.2

88.9

81.6

79.7

79.7

77.6

Figure 6: Action segmentations for a sample test video named rgb-22-2.avi from the 50 Salads dataset. Top-down, the rows
correspond to ground truth sequence of actions {place lettuce into bowl, cut cheese, place cheese into bowl, peel cucumber,
background, cut cucumber, place cucumber into bowl, mix ingredients, serve salad onto plate, add dressing}, and predictions
of TDRN, TRN, ED-TCN [22], ST-CNN [23], Bi-LSTM [37] and Dilated TCN [22].

poral length in the dataset, and then pad zeros to those clips
that are shorter than the maximum length.

Metrics. For all the three datasets, we use the following
evaluation metrics as in [22]: frame-wise accuracy, segmen-
tal edit score, and segmental overlap F1 score with threshold
k/100, denoted as F1@k. Frame-wise accuracy is one of
the most common evaluation metrics for action segmenta-
tion. Its drawback is that it does not take into account the
temporal structure of the prediction. Consequently, results
with large qualitative differences may have the same frame-
wise accuracy. Also, this metric does not capture the case of
oversegmentation, when the results do not respect the true
temporal continuity of human actions, and yet score high
frame-wise accuracy. To address these limitations, evalua-
tions presented in [23, 24] additionally use a segmental edit
score, which penalizes oversegmentation. The approach of
[22] uses F1@k as a suitable metric for testing both action
segmentation and action detection, since it also penalizes
oversegmentation errors, but ignores minor temporal shifts
between the predictions and ground truth (which might arise
from annotation noise). F1@k score is determined by the
total number actions but not depend on the duration of each
action instance. It is a metric that similar to mean aver-
age precision (mAP) with an Intersection-Over-Union (IoU)
overlap criterion which is commonly used in object detec-
tion.

Baselines. For ablation studies, we specify the following
TDRN variants: (1) TRN : TDRN without deformable con-
volution (i.e., uses a standard temporal convolution); and
(2) TDRN+UNet : TDRN with added TUnet connections,
marked cyan in Fig. 2. We also compare with the follow-
ing closely related work: (3) Spatial CNN [23]: Frame-wise
classification using CNN features of a single RGB frame that
capture object texture and spatial location; (4) ST-CNN [23]:
Temporal convolutional filter that builds on top of spatial
CNN to capture scene changes over the course of action; (5)
Bi-LSTM [37]: Bi-directional temporal LSTM; 6) ED-TCN

50 Salads (mid) F1@{10,25,50} Edit Acc

Spatial CNN [23] 32.3,27.1,18.9 24.8 54.9
IDT+LM [32] 44.4,38.9,27.8 45.8 48.7

Dilated TCN [22] 52.2,47.6,37.4 43.1 59.3
ST-CNN [23] 55.9,49.6,37.1 45.9 59.4
Bi-LSTM [37] 62.6,58.3,47.0 55.6 55.7
ED-TCN [22] 68.0,63.9,52.6 59.8 64.7

TRN 70.2,65.4,56.3 63.7 66.9
TDRN+UNet 69.6,65.0,53.6 62.2 66.1

TDRN 72.9,68.5,57.2 66.0 68.1

Table 3: Results on 50 Salads (mid).

[22]: encoder-decoder temporal convolution neural network;
and 7) Dilated TCN [22]: encoder-decoder temporal con-
volution neural network with dilated temporal convolution.
In addition, we compare with the baselines IDT+LM [32],
EgoNet+TDD [39], and MSM-CRF [42] and TCN [25] on
50Salads, GTEA and JIGSAWS, respectively.

In our experiments, for fair comparison, we use the same
number of temporal convolution layers and kernels as in
[22].

5.2. Comparison with Convolution Models

Tab. 1 presents a comparison of TDRN with the most
related temporal convolution models, including ED-TCN
[22], TUnet [34] and TResNet [15], illustrated in Fig. 2. The
table shows that the performance of TUnet is worse than
that of ED-TCN, and that TResNet is able to improve over
ED-TCN. Our TDRN outperforms the three related models
on all of the datasets. This suggests advantages of explicitly
computing the pooling and residual feature streams in TDRN
for capturing contextual and fine-scale details, respectively,
whereas the three related models do not explicitly compute
these streams, as depicted in Fig. 2.

GT Acc

TDRN

TRN

ED-TCN

ST-CNN

Bi-LSTM

DilatedTCN

86.3

82.6

76.8

74.8

68.2

65.0

GT

TDRN

TRN

ED-TCN

ST-CNN

Bi-LSTM

DilatedTCN

Acc

89.6

83.9

80.2

74.8

67.4

66.4

GT

TDRN

TRN

ED-TCN

ST-CNN

Bi-LSTM

DilatedTCN

Acc

94.2

88.9

81.6

79.7

79.7

77.6

Figure 7: Action segmentations for a sample test video named S3-CofHoney-C1.mp4 from the GTEA dataset. Top-down, the
rows correspond to ground truth sequence of actions { background, take, background, take, open, background, scoop, pour,
background, scoop, pour, background, put, close, background, take, background, open, background, pour, background, put,
close, background, take, background, open, background, pour, put, close, background, stir }, and predictions of TDRN, TRN,
ED-TCN [22], Bi-LSTM [37], ST-CNN [23] and Dilated TCN [22].

GTEA F1@{10,25,50} Edit Acc

Spatial CNN [23] 41.8,36.0,25.1 - 54.1
ST-CNN [23] 58.7,54.4,41.9 - 60.6
Bi-LSTM [37] 66.5,59.0,43.6 - 55.5

Dilated TCN [22] 58.8,52.2,42.2 - 58.3
ED-TCN [22] 72.2,69.3,56.0 - 64.0

EgoNet+TDD [39] - - 64.4
TRN 77.4,71.3,59.1 72.2 67.8

TDRN+UNet 78.1,73.8,62.2 73.7 69.3
TDRN 79.2,74.4,62.7 74.1 70.1

Table 4: Results on GTEA.

5.3. Comparison with the State of the Art

50Salads. Tab. 3 presents the results of the state of the
art, TDRN and its variants. As can be seen, TDRN gives
the best performance, since TDRN accounts for multiscale
long-range/high-order temporal dependencies as well as
frame-level features. Also, TDRN outperforms its variant
TRN which uses a standard temporal convolution, suggest-
ing that TDRN is more robust to temporal variations of
action boundaries than TRN. We also observe that augment-
ing TDRN with UNet-like connections in the variant called
TDRN+UNet deteriorates performance of TDRN. This is
consistent with the results presented in Sec. 5.2. Fig. 6 quali-
tatively compares our segmentation results with those of the
state of the art on a sample test video from the 50 Salads
dataset. As can be seen, TDRN does not suffer from over-
segmentation. TDRN produces more accurate action recog-
nition than ED-TCN. For example, in Fig. 6, ED-TCN com-
pletely misclassifies the second action in the video, while
TDRN is able to generate partially correct prediction. Also,
Fig. 6 shows that TDRN predicts more precise action bound-
aries. This suggests that using deformable temporal convolu-
tion is critical for improving accuracy of prediction of action
boundaries.
GTEA. Tab. 4 shows that TDRN and its variants achieve

superior segmental overlap F1 score, segmental edit score
and frame-wise accuracy than the baselines on the GTEA
dataset. Among the state of the art, the best accuracy was
achieved by the approach of [39], which combines CNN
features with trajectory-pooled deep-convolutional descrip-
tors (TDD) [44]. This suggests that our results could be
further improved by incorporating the TDD features. Fig. 7
qualitatively compares our segmentation results with those
of the state of the art on a sample test video from the GTEA
dataset.
JIGSAWS. Tab. 5 compares TDRN with the state of the art
on the JIGSAWS dataset. Similar to the results on 50Salads
and GTEA, TDRN achieves superior performance in all the
three metrics. A qualitative comparison on a sample test
video from JIGSAWS is depicted in Fig. 8.

In general, we find that explicit capturing of long-range
temporal dependencies by TDRN makes its predictions more
reliable than that of the state of the art, especially in cases
when distinct actions are visual very similar. For example, in
Fig. 6, ED-TCN wrongly predicts the ground truth class peel
cucumber as background while neglecting the temporal de-
pendencies between consecutive action pair {peel cucumber,
cut cucumber}. On the other hand, TDRN manages to cor-
rectly predict peel cucumber most likely because it explicitly
accounts for long-range action dependencies. We also find
similar examples in the results on the GTEA and JIGSAWS
datasets (see Fig. 7 and Fig. 8). Empirically, we find that
our TDRN sometimes misses the prediction of extremely
short action instance that fall in between two long actions,
as shown in Fig. 6 and Fig. 7.

5.4. Effect of Kernel Size and Network Depth

We study performance of TDRN as a function of varying
kernel size and network depth, i.e., varying temporal recep-
tive size and number of DTRMs. Fig. 9 shows F1@10 score
of our TDRN on 50Salads (mid). For all network depths, we
observe that the score first increases and then drops as the
kernel size becomes larger (i.e., when using longer temporal

GT Acc

TDRN

TRN

ED-TCN

ST-CNN

Bi-LSTM

DilatedTCN

86.3

82.6

76.8

74.8

68.2

65.0

GT

TDRN

TRN

ED-TCN

ST-CNN

Bi-LSTM

DilatedTCN

Acc

89.6

83.9

80.2

74.8

67.4

66.4

GT

TDRN

TRN

ED-TCN

ST-CNN

Bi-LSTM

DilatedTCN

Acc

94.2

88.9

81.6

79.7

79.7

77.6

Figure 8: Action segmentations for a sample test video named Suturing-B002.avi from the JIGSAWS dataset. Top-down, the
rows correspond to ground truth sequence of actions in different gestures {G1, G5, G8, G2, G3, G6, G4, G2, G3, G6, G4, G2,
G3, G6, G4, G2, G3, G6, G11}, and predictions of TDRN, TRN, Bi-LSTM [37], ED-TCN [22], ST-CNN [23] and Dilated
TCN [22].

JIGSAWS F1@{10} Edit Acc

MSM-CRF [42] - - 71.7
Spatial CNN [23] - 37.7 74.0

ST-CNN [23] 78.3 68.6 78.4
Bi-LSTM [37] 77.8 66.8 77.4
ED-TCN [22] 89.2 84.7 80.8

TCN [25] - 83.1 81.4
TRN 91.4 87.7 83.3

TDRN+UNet 92.1 89.4 83.9
TDRN 92.9 90.2 84.6

Table 5: Results on JIGSAWS.

context). This suggests the importance of selecting a suitable
kernel size. Our TDRN achieves the best score when the
number of DTRMs is 3 (i.e., network depth 6 as specified
in Tab. 2) and the kernel size is 50 on the 50Salad dataset.
Our optimal network depth agrees with that in [22]. That is,
we use the same architecture as specified in Tab. 2 for all
datasets for fair comparison with [22].

Note that TDRN training takes 10x less time than for
Bi-LSTM, on a Telsa K80 Nvidia gpu card. This is due to
independent activations within each temporal convolution
layer in TDRN while the activations within Bi-LSTM depend
on its previous activations. Hence, for our TDRN, operations
can be computed simultaneously in batches.

6. Conclusion

We have presented a new deep architecture, called tempo-
ral deformable convolution neural network (TDRN), for ac-
tion segmentation in videos. TDRN consists of two process-
ing streams: a temporal pooling stream that captures long-
range and high-level features at multiple temporal scales,
and a temporal residual stream that computes features at
the same frame-level temporal resolution as the input video.
As the pooling stream accounts for temporal context, it is
aimed at improving action recognition. The residual stream

10 25 50 100 200

Kernel Size

55

60

65

70

75

F
1
@
1
0

7 DTRMs

5 DTRMs

3 DTRMs

1 DTRM

Figure 9: F1@10 of TDRN as a fucntion of temporal kernel
size and network depth on 50Salads (mid).

is aimed at improving localization of action boundaries. The
two streams are aggregated by a cascade of deformable tem-
poral residual modules, each computing deformable tempo-
ral convolutions for modeling temporal variations in action
boundaries.

Our empirical evaluation on the benchmark University
of Dundee 50 Salads (50Salads), Georgia Tech Egocentric
Activities (GTEA) and JHU-ISI Gesture and Skill Assess-
ment Working Set (JIGSAWS) demonstrates that TDRN
outperforms the state-of-the-art convolution and temporal
convolution models. TDRN produces more accurate action
boundary detections, which suggest advantages of our end-
to-end learning of deformable temporal convolution over us-
ing the standard temporal convolution. Also, TDRN’s results
tend to better respect common-sense temporal arrangement
of actions, due to its explicit learning of long-range temporal
dependencies. We have empirically found that TDRN some-
times poorly segments very short actions that fall in between
two long actions.

Acknowledgement. This work was supported in part by
DARPA XAI Award N66001-17-2-4029.

References
[1] F. Chollet. Keras (2015). http://keras.io, 2017. 5
[2] I. Cosmin Duta, B. Ionescu, K. Aizawa, and N. Sebe. Spatio-

temporal vector of locally max pooled features for action
recognition in videos. In CVPR, pages 3097–3106, 2017. 2

[3] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei.
Deformable convolutional networks. In ICCV, 2017. 2, 3, 4

[4] X. Dai, B. Singh, G. Zhang, L. S. Davis, and Y. Q. Chen.
Temporal context network for activity localization in videos.
In ICCV, 2017. 3

[5] A. Dave, O. Russakovsky, and D. Ramanan. Predictive-
corrective networks for action detection. In CVPR, 2017.
2

[6] L. Ding and C. Xu. Tricornet: A hybrid temporal convolu-
tional and recurrent network for video action segmentation.
arXiv preprint arXiv:1705.07818, 2017. 1, 2

[7] A. Fathi, A. Farhadi, and J. M. Rehg. Understanding egocen-
tric activities. In ICCV, pages 407–414. IEEE, 2011. 2

[8] A. Fathi and J. M. Rehg. Modeling actions through state
changes. In CVPR, pages 2579–2586, 2013. 2

[9] A. Fathi, X. Ren, and J. M. Rehg. Learning to recognize
objects in egocentric activities. In CVPR, pages 3281–3288.
IEEE, 2011. 2, 5

[10] C. Feichtenhofer, A. Pinz, and R. Wildes. Spatiotemporal
residual networks for video action recognition. In NIPS, pages
3468–3476, 2016. 2

[11] C. Feichtenhofer, A. Pinz, and R. P. Wildes. Spatiotemporal
multiplier networks for video action recognition. In CVPR,
pages 4768–4777, 2017. 2

[12] Y. Gao, S. S. Vedula, C. E. Reiley, N. Ahmidi, B. Varadarajan,
H. C. Lin, L. Tao, L. Zappella, B. Béjar, D. D. Yuh, et al.
Jhu-isi gesture and skill assessment working set (jigsaws):
A surgical activity dataset for human motion modeling. In
MICCAI Workshop, volume 3, 2014. 5

[13] R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell.
Actionvlad: Learning spatio-temporal aggregation for action
classification. In CVPR, 2017. 2

[14] A. Graves, S. Fernández, and J. Schmidhuber. Bidirectional
lstm networks for improved phoneme classification and recog-
nition. Artificial Neural Networks: Formal Models and Their
Applications–ICANN 2005, pages 753–753, 2005. 3

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, pages 770–778, 2016. 2, 3,
5, 6

[16] R. Hou, C. Chen, and M. Shah. Tube convolutional neural
network (t-cnn) for action detection in videos. In ICCV, 2017.
2

[17] D.-A. Huang, L. Fei-Fei, and J. C. Niebles. Connectionist
temporal modeling for weakly supervised action labeling. In
ECCV, pages 137–153. Springer, 2016. 1

[18] V. Kalogeiton, P. Weinzaepfel, V. Ferrari, and C. Schmid.
Action tubelet detector for spatio-temporal action localization.
In ICCV, 2017. 2

[19] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei. Large-scale video classification with convo-
lutional neural networks. In CVPR, pages 1725–1732, 2014.
2

[20] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. In ICLR, 2015. 5

[21] H. Kuehne, J. Gall, and T. Serre. An end-to-end generative
framework for video segmentation and recognition. In WACV,
pages 1–8. IEEE, 2016. 2

[22] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager.
Temporal convolutional networks for action segmentation and
detection. In CVPR, 2017. 1, 2, 4, 5, 6, 7, 8

[23] C. Lea, A. Reiter, R. Vidal, and G. D. Hager. Segmental
spatiotemporal cnns for fine-grained action segmentation. In
ECCV, pages 36–52. Springer, 2016. 6, 7, 8

[24] C. Lea, R. Vidal, and G. D. Hager. Learning convolutional
action primitives for fine-grained action recognition. In ICRA,
pages 1642–1649. IEEE, 2016. 6

[25] C. Lea, R. Vidal, A. Reiter, and G. D. Hager. Temporal convo-
lutional networks: A unified approach to action segmentation.
In ECCV Workshops, pages 47–54. Springer, 2016. 2, 5, 6, 8

[26] Y. Li, C. Lan, J. Xing, W. Zeng, C. Yuan, and J. Liu. Online
human action detection using joint classification-regression
recurrent neural networks. In ECCV, pages 203–220. Springer,
2016. 3

[27] T. Lin, X. Zhao, and Z. Shou. Single shot temporal action
detection. In MM, 2017. 3

[28] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of
training recurrent neural networks. In ICML, pages 1310–
1318, 2013. 1, 3

[29] X. Peng and C. Schmid. Multi-region two-stream r-cnn for
action detection. In ECCV, pages 744–759. Springer, 2016. 3

[30] T. Pohlen, A. Hermans, M. Mathias, and B. Leibe. Full-
resolution residual networks for semantic segmentation in
street scenes. In CVPR, 2017. 3

[31] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
NIPS, pages 91–99, 2015. 3

[32] A. Richard and J. Gall. Temporal action detection using a
statistical language model. In CVPR, pages 3131–3140, 2016.
2, 6

[33] A. Richard, H. Kuehne, and J. Gall. Weakly supervised action
learning with rnn based fine-to-coarse modeling. In CVPR,
2017. 3

[34] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional
networks for biomedical image segmentation. In MICCAI,
pages 234–241. Springer, 2015. 2, 5, 6

[35] Z. Shou, J. Chan, A. Zareian, K. Miyazawa, and S.-F. Chang.
Cdc: Convolutional-de-convolutional networks for precise
temporal action localization in untrimmed videos. In CVPR,
2017. 2

[36] K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos. In NIPS, pages
568–576, 2014. 1, 2

[37] B. Singh, T. K. Marks, M. Jones, O. Tuzel, and M. Shao.
A multi-stream bi-directional recurrent neural network for
fine-grained action detection. In CVPR, pages 1961–1970,
2016. 1, 2, 3, 6, 7, 8

[38] G. Singh, S. Saha, and F. Cuzzolin. Online real time multiple
spatiotemporal action localisation and prediction on a single
platform. In ICCV, 2017. 2

[39] S. Singh, C. Arora, and C. Jawahar. First person action
recognition using deep learned descriptors. In CVPR, pages
2620–2628, 2016. 6, 7

[40] S. Stein and S. J. McKenna. Combining embedded accelerom-
eters with computer vision for recognizing food preparation
activities. In Ubicomp, pages 729–738. ACM, 2013. 5

[41] L. Sun, K. Jia, D.-Y. Yeung, and B. E. Shi. Human action
recognition using factorized spatio-temporal convolutional
networks. In ICCV, pages 4597–4605, 2015. 2

[42] L. Tao, L. Zappella, G. D. Hager, and R. Vidal. Surgical
gesture segmentation and recognition. In MICCAI, pages
339–346. Springer, 2013. 6, 8

[43] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.
Learning spatiotemporal features with 3d convolutional net-
works. In ICCV, pages 4489–4497, 2015. 1, 2

[44] L. Wang, Y. Qiao, and X. Tang. Action recognition with
trajectory-pooled deep-convolutional descriptors. In CVPR,
pages 4305–4314, 2015. 7

[45] L. Wang, Y. Xiong, D. Lin, and L. Van Gool. Untrimmednets
for weakly supervised action recognition and detection. In
CVPR, pages 4325–4334, 2017. 2

[46] Y. Wang, M. Long, J. Wang, and P. S. Yu. Spatiotemporal
pyramid network for video action recognition. In CVPR,
pages 1529–1538, 2017. 2

[47] H. Xu, A. Das, and K. Saenko. R-c3d: Region convolutional
3d network for temporal activity detection. In ICCV, 2017. 3

[48] S. Yeung, O. Russakovsky, N. Jin, M. Andriluka, G. Mori, and
L. Fei-Fei. Every moment counts: Dense detailed labeling of
actions in complex videos. International Journal of Computer
Vision, pages 1–15, 2015. 2

[49] S. Yeung, O. Russakovsky, G. Mori, and L. Fei-Fei. End-
to-end learning of action detection from frame glimpses in
videos. In CVPR, pages 2678–2687, 2016. 3

[50] Z. Yuan, J. C. Stroud, T. Lu, and J. Deng. Temporal action
localization by structured maximal sums. In CVPR, 2017. 3

[51] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan,
O. Vinyals, R. Monga, and G. Toderici. Beyond short snip-
pets: Deep networks for video classification. In CVPR, pages
4694–4702, 2015. 2

[52] Y. Zhao, Y. Xiong, L. Wang, Z. Wu, D. Lin, and X. Tang.
Temporal action detection with structured segment networks.
In ICCV, 2017. 3

