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Abstract. This paper presents an approach to object discovery in a given un-
labeled image set, based on mining repetitive spatial configurations of image
contours. Contours that similarly deform from one image to another are viewed
as collaborating, or, otherwise, conflicting. This is captured by a graph over all
pairs of matching contours, whose maximum a posteriori multicoloring assign-
ment is taken to represent the shapes of discovered objects.Multicoloring is con-
ducted by our new Coordinate Ascent Swendsen-Wang cut (CASW). CASW uses
the Metropolis-Hastings (MH) reversible jumps to probabilistically sample graph
edges, and color nodes. CASW extends SW cut by introducing a regularization
in the posterior of multicoloring assignments that prevents the MH jumps to ar-
rive at trivial solutions. Also, CASW seeks to learn parameters of the posterior
via maximizing a lower bound of the MH acceptance rate. This speeds up multi-
coloring iterations, and facilitates MH jumps from local minima. On benchmark
datasets, we outperform all existing approaches to unsupervised object discovery.

1 Introduction

This paper explores a long-standing question in computer vision, that of the role of
shape in representing and recognizing objects from certaincategories occurring in im-
ages. In psychophysics, it is widely recognized that shape is one of the most categorical
object properties [1]. Nevertheless, most recognition systems rather resort to appearance
features (e.g., color, textured patches). Recent work combines shape with appearance
features [2,3], but the relative significance of each feature type, and their optimal fusion
for recognition still remains unclear.

Toward answering this fundamental question, we here focus on the problem of dis-
covering and segmenting instances of frequently occurringobject categories in arbitrary
image sets. For object discovery, we use only the geometric properties of contour lay-
outs in the images, deliberately disregarding appearance features. In this manner, our
objective is to show that shape, on its own, without photometric features, is expressive
and discriminative enough to provide robust detection and segmentation of common
objects (e.g, faces, bikes, giraffes, etc.) in the midst of background clutter. To this end,
we develop an approach to mining repetitive spatial configurations of contours across
a given set of unlabeled images. As demonstrated in this paper, our shape mining in-
deed results in extracting (i.e., simultaneously detecting and segmenting) semantically
meaningful objects recurring in the image set.

To our knowledge, this paper presents the first approach to extracting frequently
occurring object contours from a clutter of image contours without any supervision,
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Fig. 1. Overview: Given a set of unlabeled images (left), we extracttheir contours (middle left),
and then build a graph of pairs of matching contours. Contourpairs that similarly deform from
one image to another are viewed as collaborating (straight graph edges), or conflicting (zigzag
graph edges), otherwise. Such coupling of contour pairs facilitates their clustering, conducted
by our new algorithm, called Coordinate Ascent Swendsen-Wang cut (CASW). The resulting
clusters represent shapes of discovered objects (right). (best viewed in color)

and without any help from appearance features. Existing work that uses only shape
cues for recognition in real-world images requires either amanually specified shape
template [4, 5], or manually segmented training images to learn the object shape [6].
Also, all previous work on unsupervised object-category discovery exploits the pho-
tometric properties of segments [7, 8], textured patches [9], and patches along image
contours [10]. In our experiments, we outperform all these appearance-based, unsuper-
vised approaches in both object detection and segmentationon benchmark datasets.

Approach: Our approach consists of three major steps, illustrated in Fig. 1.Step 1:
Given a set of unlabeled images, we detect their contours by the minimum-cover algo-
rithm of [11]. Each contour is characterized as a sequence ofbeam-angle descriptors,
which are beam-angle histograms at points sampled along thecontour. Similarity be-
tween two contours is estimated by the standard dynamic timewarping (DTW) of the
corresponding sequences of beam-angle descriptors.Step 2 builds a weighted graph
of matching contours, aimed at facilitating the separationof background from object
shapes in Step 3. We expect that there will be many similarly shaped curves, belong-
ing to the background in the images. Since the backgrounds vary, by definition, similar
background curves will most likely have different spatial layouts across the image set.
In contrast, object contours (e.g., curves delineating a giraffe’s neck) are more likely
to preserve both shape and layout similarity in the set. Therefore, for object discov-
ery, it is critical that we capture similar configurations ofcontours. To this end, in our
graph, nodes correspond to pairs of matching contours, and graph edges capture spatial
layouts of quadruples of contours. All graph edges can be both positive andnegative,
where their polarity is probabilistically sampled during clustering of image contours,
performed in the next step. Positive edges support, and negative edges hinder the group-
ing of the corresponding contour pairs within the same cluster, if the contoursjointly
undergo similar (different) geometric transformation from one image to another. This
provides stronger coupling of nodes than the common case of graph edges being only
strongly or weakly “positive”, and thus leads to faster convergence to more accurate
object discovery.Step 3 conducts a probabilistic, iterative multicoloring of the graph,
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Fig. 2. BAH is a weighted
histogram of beam angles
θij at contour pointsPi,
i=1, 2, ...

Contour detectors BAH BAH-U [14] [15] [2]

Canny
0.23±0.01 0.21 0.18 0.15 0.21

0.59±0.02 0.57 0.48 0.48 0.52

[3]
0.32±0.03 0.30 0.25 0.18 0.29

0.78±0.03 0.75 0.62 0.61 0.72

gPb+ [11]
0.37±0.02 0.34 0.26 0.20 0.34

0.81±0.03 0.78 0.63 0.61 0.74

Table 1. Contour matching on the ETHZ image dataset [3]. Top
is Precision, bottom isRecall. The rightmost column shows
matching results of Oriented Chamfer Distance [2], and other
columns show DTW results. Descriptors (left to right): our BAH,
unweighted BAH, Shape Context [14], and SIFT [15].

by our new algorithm, called Coordinate-Ascent Swendsen-Wang (CASW) cut. In each
iteration, CASW cut probabilistically samples graph edges, and then assigns colors to
the resulting groups of connected nodes. The assignments are accepted by the standard
Metropolis-Hastings (MH) mechanism. To enable MH jumps to better solutions with
higher posterior distributions, we estimate parameters ofthe posterior by maximizing a
lower bound of the MH acceptance rate. After convergence, the resulting clusters rep-
resent shapes of objects discovered, and simultaneously segmented, in the image set.

Contributions: Related to ours is the image matching approach of [12]. They build
a similar graph of contours extracted from only two images, and then conduct multi-
coloring by the standard SW cut [12,13]. They pre-specify the polarity of graph edges,
which remains fixed during multicoloring. Also, they hand-pick parameters of the pos-
terior governing multicoloring assignments. In contrast,our graph is designed to accom-
modate transitive matches of many images, and we allow our graph edges to probabilis-
tically change their polarity, in every MH iteration. We introduce a new regularization
term in the posterior, which provides a better control of theprobabilistic sampling of
graph edges during MH jumps. Finally, we seek tolearn parameters of our posterior via
maximizing a lower bound of the MH acceptance rate. Our experiments show that this
learning speeds up MH iterations, and allows jumps to solutions with higher posteriors.

Sec. 2 specifies our new shape descriptor. Sec. 3 describes how to build the graph
from all pairs of image contours. Sec. 4 presents our new CASWcut for multicoloring
of the graph. Sec. 5–6 present experimental evaluation, andour concluding remarks.

2 Image Representation Using Shapes and Shape Description

This section presents Step 1 of our approach. In each image, we extract relatively long,
open contours using the minimum-cover algorithm of [11], referred to as gPb+ [11].
Similarity between two contours is estimated by aligning their sequences of points by
the standard Dynamic Time Warping (DTW). Each contour pointis characterized by
our new descriptor, called weighted Beam Angle Histogram (BAH). BAH is a weighted
version of the standard unweighted BAH, aimed at mitigatingthe uncertainty in contour
extraction. BAH down-weights the interaction of distant shape parts, as they are more
likely to belong to different objects in the scene.
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The beam angles,θij , at contour pointsPi, i = 1, 2, . . . , are subtended by lines
(Pi−j , Pi) and (Pi, Pi+j), as illustrated in Fig. 2.Pi−j andPi+j are two neighbor-
ing points equally distant byj points along the contour fromPi, j = 1, 2, . . . . BAH
is a weighted histogram, where the weight of angleθij is computed asexp(−κj),
j = 1, 2, . . . (κ = 0.01). BAH is invariant to translation, in-plane rotation, and scale.
Experimentally, we find that BAH with 12 bins gives optimal and stable results.

Table 1 compares BAH with other popular shape descriptors onthe task of contour
matching. We match contours from all pairs of images belonging to the same class in the
ETHZ dataset [3], and select the top 5% best matches. True positives (false positives)
are pixels of the matched contour that fall in (outside of) the bounding box of the target
object. The ground truth is determined from pixels of the initial set of detected contours
that fall inside the bounding box. For matching, we use DTW, and Oriented Chamfer
Distance [2]. Tab. 1 shows that our BAH descriptor gives the best performance with all
contour detectors, and the highest accuracy with gPb+ [11].Also, DTW with our BAH
outperforms Oriented Chamfer Distance.

3 Constructing the Graph of Pairs of Image Contours

This section presents Step 2 which constructs a weighted graph,G = (V, E, ρ), from
contours extracted from the image set. Nodes ofG represent candidate matches of con-
tours,(u, u′)∈V , whereu andu′ belong to different images. Similarity of two contours
is estimated by DTW. We keep only the best 5% of contour matches as nodes ofG.

Edges ofG, e = ((u, u′), (v, v′)) ∈ E, capture spatial relations of corresponding
image contours. If contoursu andv in image 1, and their matchesu′ andv′ in image 2
have similar spatial layout, then they are less likely to belong to the background clutter.
All such contour pairs will have a high probability to becomepositively coupled inG.
Otherwise, matches(u, u′) and(v, v′) will have a high probability to become negatively
coupled inG, so that CASW could place them in different clusters. This probabilis-
tic coupling of nodes inG is encoded by edge weights,ρe, defined as the likelihood
ρ+

e ∝ exp(−w+
δ δe), given the positive polarity ofe, andρ−e ∝ exp(−w−

δ (1−δe)), given
the negative polarity ofe. w+

δ andw−
δ are the parameters of the exponential distribution,

andδe ∈ [0, 1] measures a difference in spatial layouts ofu andv in image 1, and their
matchesu′ andv′ in image 2. We specifyδe for the following two cases. In Cases 1 and
2, there are at least two contours that lie in the same image. This allows establishing
geometric transforms between((u, u′), (v, v′)). Note that this would be impossible, in
a more general case, where((u, u′), (v, v′)) come from four distinct images.

Case 1: (u, u′) and(v, v′) come fromtwo images, whereu andv are in image 1,
andu′ andv′ are in image 2, as illustrated in Fig. 3a. We estimateδe in terms of affine
homographies between the matching contours, denoted asHuu′ , andHvv′ . Note that
if u, v in image 1 preserve that same spatial layout in image 2, thenHvv′=HvuHuu′ .
Since the estimation ofHvu between arbitrary, non-similar contoursu andv in image 1
is difficult, we use the following strategy. From the DTW alignment of points alongu
andu′, we estimate their affine homographyHuu′ . Similarly, forv andv′, we estimate
Hvv′ . Then, we projectu′ to image 1, asu′′=Hvv′u′, and, similarly, projectv′ to im-
age 1 asv′′=Huu′v′ (Fig. 3a right). Next, in image 1, we measure distances between
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Image 1 Image 2 u’ and s’ projected in image 1

Image 2 Image 1 Image 3

Fig. 3. (a) Case 1: Estimatingδ(u,u′,v,v′) when contoursu andv are in image 1, and their matches
u′ and v′ are in image 2. We use the affine-homography projection ofu′ and v′ to image 1,
u′′ = Hvv′u′ andv′′ = Huu′v′, and computeδ as the average distance betweenu andu′′, and
v andv′′. As can be seen, pairs(u, s′) and(v, v′) do not have similar layouts in image 1 and
image 2. (b) Case 2: Estimatingδ(u,u′,v,v′) whenu andv are in image 1, and their matchesu′

andv′ are in image 2 and image 3. We use multiple affine-homography projections ofu′ andv′

to image 1 via auxiliary, context contourss′ andt′ in a vicinity of u′ andv′.

corresponding points ofu andu′′, where the point correspondence is obtained from
DTW of u andu′. Similarly, we measure distances between corresponding points of v
andv′′. δe is defined as the average point distance betweenu andu′′, andv andv′′.

Case 2: (u, u′) and(v, v′) come fromthree images, whereu andv belong to im-
age 1,u′ is in image 2, andv′ is in image 3. In this case, we can neither useHvv′ to
projectu′ from image 2 to image 1, norHuu′ to projectv′ from image 3 to image 1.
Instead, we resort to context provided by auxiliary contours s′ in a vicinity of u′, and
auxiliary contourst′ in a vicinity of v′. For every neighbors′ of u′ in image 2, we
find its best DTW matchs in image 1, and compute homographyHss′ . Similarly, for
every neighbort′ of v′ in image 3, we find its best DTW matcht in image 1, and com-
pute homographyHtt′ . Then, we use all these homographies to projectu′ to image 1,
multiple times, asu′′

s=Hss′u′, and, similarly, projectv′′ to image 1, multiple times, as
v′′t =Htt′v

′. Next, as in Case 1, we measure distances between corresponding points of
all u andu′′

s pairs, and allv andv′′t pairs.δe is defined as the average point distance.

4 Coordinate-Ascent Swendsen-Wang Cut

This section presents Step 3. Given the graphG = (V, E, ρ), specified in the previ-
ous section, our goal is to perform multicoloring ofG, which will partitionG into two
subgraphs. One subgraph will represent a composite clusterof nodes, consisting of a
number of connected components (CCPs), receiving distinctcolors, as illustrated in
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Fig. 4. This composite cluster contains contours of the discovered object categories.
Nodes outside of the composite cluster are interpreted as the background. All edges
e ∈ E can be negative and positive. A negative edge indicates thatthe nodes are con-
flicting, and thus should not be assigned the same color. A positive edge indicates that
the nodes are collaborative, and thus should be favored to get the same color. If nodes
are connected by positive edges, they form a CCP, and receivethe same color (Fig. 4).
A CCP cannot contain a negative edge. CCPs connected by negative edges form a com-
posite cluster. The amount of conflict and collaboration between two nodes is defined
by the likelihoodρ, defined in Sec. 3.

For multicoloring ofG, we formulate a new Coordinate Ascent Swendsen-Wang cut
(CASW) that uses the iterative Metropolis-Hastings algorithm. CASW iterates the fol-
lowing three steps: (1) Sample a composite cluster fromG, by probabilistically cutting
and sampling positive and negative edges between nodes ofG. This results in splitting
and merging nodes into a new configuration of CCPs. (2) Assignnew colors to the re-
sulting CCPs within the selected composite cluster, and usethe Metropolis-Hastings
(MH) algorithm to estimate whether to accept this new multicoloring assignment ofG,
or to keep the previous state. (3) If the new state is accepted, go to step (1); otherwise,
it the algorithm converged, re-estimate parameters of the pdf’s controlling the MH iter-
ations, and go to step (1), until the pdf re-estimation does not affect convergence.

CASW is characterized by large MH moves, involving many strongly-coupledgraph
nodes. This typically helps avoid local minima, and allows fast convergence, unlike
other related MCMC methods. In comparison with [12], our three key contributions
include: (a) the on-line learning of parameters of pdf’s governing MH jumps; (b) en-
forcing stronger node coupling by allowing the polarity of edges to be dynamically
estimated during the MH iterations; and (c) regularizing the posterior of multicolor-
ing assignments to help MH jumps escape from trivial solutions. In the following, we
present our Bayesian formulation of CASW, inference, and learning.

Bayesian Formulation: Multi-coloring of G amounts to associating labelsli to
nodes inV , i=1, . . . , |V |, whereli ∈ {0, 1, . . . , K}. K denotes the total number of
target objects, which is a priori unknown, and(K + 1)th label is the background. The
multicoloring solution can be formalized asM=(K, {li}i=1,...,|V |). To find M, we
maximize the posterior distributionp(M|G), as

M∗ = arg max
M

p(M|G) = arg max
M

p(M)p(G|M). (1)

Let N denote the number of nodes that are labeled as backgroundli = 0. Also, let
binary functions1li 6=lj and1li=lj indicate whether node labelsli andlj are different,
and the same. Then, we define the priorp(M) and likelihoodp(G|M) as

p(M) ∝ e−wKKe−wN N , (2)

p(G|M) ∝
∏

e∈E+ ρ+
e

∏

e∈E− ρ−e
∏

e∈E0(1 − ρ+
e )1li 6=lj · (1 − ρ−e )1li=lj , (3)

wherep(M) penalizes largeK andN . wK andwN are the parameters of the exponen-
tial distribution.E+ andE

− denote positive and negative edges present in the composite
cluster, andE0 denotes edges that are probabilistically cut (i.e., not present in the solu-
tion). Ourp(G|M), defined in (3), differs from the likelihood defined in [12]. In [12],
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(a) StateA (b) StateB
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(c) Probabilities for this example

Fig. 4. (a) In stateA, probabilistically sampled positive (straight bold) and negative (zigzag bold)
edges define composite clusterVcc={CCP3, CCP4, CCP5} (cut edges are dashed). The cut is
a set of edges (red) that have not been probabilistically sampled, which would otherwise connect
Vcc to external CCPs. (b) The coloring of CCPs withinVcc is randomly changed, resulting in
new stateB. This also changes the type of edgesρ1, ρ2, ρ6, ρ8, since the positive (negative) edge
may link only two CCPs with the same (different) label(s). (c) Probabilities in statesA andB.

nodes can be connected by only one type of edges. They pre-select a threshold on edge
weights, which splits the edges into positive and negative,and thus define the likelihood
asp(G|M) ∝

∏

e∈E+ ρ+
e

∏

e∈E− ρ−e . Since we allow both types of edges to connect ev-
ery pair of nodes, where the right edge type gets probabilistically sampled in every MH
iteration, we enforce a stronger coupling of nodes. As shownin Sec. 5, this advanced
feature of our approach yields faster convergence and better clustering performance.
This is because our formulation maximizes the likelihoodp(G|M) when every two
nodes with the same label are (i) connected by a strong positive edge (e ∈ E+, andρ+

e

large), or (ii) remain unconnected, but the likelihood thatthese nodes should not have
the same label is very low (e ∈ E0, andρ−e small). Similarly, our likelihoodp(G|M)
is maximized when every two nodes with different labels are (i) connected by a strong
negative edge (e ∈ E

−, andρ−e large), or (ii) remain unconnected, but the likelihood
that these nodes should have the same label is very low (e ∈ E0, andρ+

e small).

Inference: We here explain the aforementioned iterative steps (1) and (2) of our
CASW cut. Fig. 4 shows an illustrative example. In step (1), edges ofG are proba-
bilistically sampled. If two nodes have the same label, their positive edge is sampled,
with likelihood ρ+

e . Otherwise, if the nodes have different labels, their negative edge
is sampled, with likelihoodρ−e . This re-connects all nodes into new connected compo-
nents (CCPs). The negative edges that are sampled will connect CCPs into a number
of composite clusters, denoted byVcc. This configuration is referred to stateA. In step
(2), we choose at random one composite cluster,Vcc, and probabilistically reassign new
colors to the CCPs withinVcc, resulting in a new stateB. Note that all nodes within one
CCP receive the same label, which allows large moves in the search space.

The CASW accepts the new stateB as follows. Letq(A → B) be the proposal
probability for moving from stateA to B, and letq(B → A) denote the reverse. The
acceptance rate,α(A→B), of the move fromA to B is defined as

α(A → B) = min

(

1,
q(B → A)p(M = B|G)

q(A → B)p(M = A|G)

)

. (4)
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Note that complexity of each move is relatively low, since computingq(B→A)
q(A→B) involves

only those edges that are probabilistically cut aroundVcc in statesA andB — not all
edges. Also,p(M=B|G)

p(M=A|G) accounts only for the recolored CCPs inVcc — not the entire

graphG. Below, we deriveq(B→A)
q(A→B) and p(M=B|G)

p(M=A|G) , and present a toy example (Fig. 4).
q(A → B) is defined as a product of two probabilities: (i) the probability of gener-

atingVcc in stateA, q(Vcc|A); and (ii) the probability of recoloring the CCPs within
Vcc in stateB, whereVcc is obtained in state A,q(B(Vcc)|Vcc, A). Thus, we have
q(B→A)
q(A→B)=

q(Vcc|B)q(A(Vcc)|Vcc,B)
q(Vcc|A)q(B(Vcc)|Vcc,A) . The ratioq(A(Vcc)|Vcc,B)

q(B(Vcc)|Vcc,A) can be canceled out, because

the CCPs withinVcc are assigned colors under the uniform distribution. Let Cut+
A and

Cut−A (Cut+B and Cut−B) denote positive and negative edges which are probabilistically
“cut” aroundVcc in stateA (stateB). Since the probabilities of cutting the positive and
negative edges are(1−ρ+

e ) and(1−ρ−e ), we have

q(B→A)

q(A→B)
=

q(Vcc|B)

q(Vcc|A)
=

∏

e∈Cut+
B
(1−ρ+

e )
∏

e∈Cut−
B
(1−ρ−e )

∏

e∈Cut+A
(1−ρ+

e )
∏

e∈Cut−A
(1−ρ−e )

. (5)

For the example shown in Figure 4, we computeq(B→A)
q(A→B) =

(1−ρ
+
1 )(1−ρ

−
2 )(1−ρ

−
6 )

(1−ρ
−
1 )(1−ρ

+
2 )(1−ρ

+
6 )

.

Also, p(M=B|G)
p(M=A|G) = p(M=B)p(G|M=B)

p(M=A)p(G|M=A) can be efficiently computed.p(M = B) can

be directly computed from the new coloring in stateB, and p(G|M=B)
p(G|M=A) depends only

on those edges that have changed their polarity. For the example shown in Fig.4, we

computep(M=B|G)
p(M=A|G)=

ρ
+
8

ρ
−
8

.

Whenα(A → B) has a low value, and new stateB cannot be accepted by MH,
CD-SW remains in stateA. In the next iteration, CD-SW either probabilistically selects
a differentVcc, or proposes a different coloring scheme for the sameVcc.

Learning: Our Bayesian model is characterized by a number of parameters that we
seek to learn from data. We specify that learning occurs at a standstill moment when
MH stops accepting new states (we wait for 100 iterations). In that moment, the previ-
ous stateA is likely to have the largest pdf in this part of the search space. By learning
new model parameters, our goal is to allow for larger MH moves, and thus facilitate
exploring other parts of the search space characterized by higher posterior distributions
p(M|G). Since the moves are controlled byα(A→B), given by (4), we learn the pa-
rameters by maximizing a lower bound ofα(A→B). If this learning still does not result
in accepting new states, we conclude that the algorithm has converged.

From (3) and (4), and the definitions of edge likelihoodsρ+
e andρ−e given in Sec. 3,

we derive a lower bound oflog(α(A → B)) as

log(α(A → B)) ≥ φTw , (6)

wherew =
[

wK , wN , w+
δ , w−

δ

]T
, andφ = [φ1, φ2, φ3, φ4]

T is the vector of observed
features, defined asφ1 = KA−KB, φ2 = NA−NB, φ3 =

∑

e∈E
+
A

δe−
∑

e∈Ẽ
+
B

δe,

and φ4 =
∑

e∈E
−
A
(1−δe)−

∑

e∈Ẽ
−
B
(1−δe). Ẽ

+
B denotes all edges in stateB whose

likelihood isρ+, Ẽ
+
B = E

+
B ∪ Cut+B ∪ E

0−
B , andẼ

−
B denotes all edges in stateB whose
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likelihood is ρ−, Ẽ
−
B = E

−
B ∪ Cut−B ∪ E

0+
B . From (6), we formulate learning as the

following linear program

max
w

φTw , s.t. ‖w‖2 = 1 , (7)

which has a closed-form solution [16],w = 1
‖φ+‖φ+, where(φ)+ = max(0, φ).

5 Results

Given a set of images, we perform object discovery in two stages, as in [9, 10, 17]. We
first coarsely cluster images based on their contours using CASW cut, and then again
use CASW to cluster contours from only those images that belong to the same coarse
cluster. The first stage serves to discover different objectcategories in the image set,
whereas the second, fine-resolution stage serves to separate object contours from back-
ground clutter, and also extract characteristic parts of each discovered object category.

We use the following benchmark datasets: Caltech-101 [18],ETHZ [3], LabelMe
[19], and Weizmann Horses [20]. In the experiments on Caltech-101, we use all Cal-
tech images showing the same categories as those used in [9].Evaluation on ETHZ and
Weizmann Horses uses the entire datasets. For LabelMe, we keep the 15 first images
retrieved by keywordscar side, car rear, face, airplane andmotorbike. ETHZ and La-
belMe increase complexity over Caltech-101, since their images contain multiple object
instances, which may: (a) appear at different resolutions,(b) have low contrasts with
textured background, and (c) be partially occluded. The Weizmann Horses are suitable
to evaluate performance on articulated, non-rigid objects.

We study two settings S1 and S2. In S1, we use only ETHZ to generate the input
image set. The set consists of positive and negative examples, where positive images
show a unique category, and negative ones show objects from other categories in ETHZ.
In S2, the image set contains examples of all object categories from the considered
dataset. S1 is used for evaluating particular contributions of our approach, and S2 is
used for evaluating our overall performance.

In the first stage of object discovery, CASW finds clusters of images. This is evalu-
ated bypurity. Purity measures the extent to which a cluster contains images of a single
dominant object category. When running CASW in the second stage, on each of these
image clusters, we useBounding Box Hit Rate (BBHR) to verify whether contours de-
tected by CASW fall within the true foreground regions. The ground truth is defined as
all pixels of the extracted image contours that fall in the bounding boxes or segments
of target objects. A contour detected by CASW is counted as “hit” whenever the con-
tour covers 50% or more of the ground-truth pixels. Since we discard contours that are
less than 50 pixels, this means that at least 25 ground-truthpixels need to be detected
within the bounding box. Our accuracy in the second clustering stage depends on the
initial set of pairs of matching contours (i.e., nodes of graph G) input to CASW. This
is evaluated by plotting the ROC curve, parameterized by a threshold on the minimum
DTW similarity between pairs of matching contours which areincluded inG.

Evaluation in S1: We present three experiments in S1.Experiment 1 in S1: We
evaluate the merit of: (a) using pairs of contours as nodes ofG, and (b) accounting for
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Fig. 5. Evaluation in S1 on the ETHZ dataset. (a): We evaluate five distinct formulations of
object discovery, explained in the text, by computing FalsePositive Rate (FPR) at Bounding
Box Hit Rate BBHR=0.5. Our approachG+CASW gives the best performance. (b):Precision

and Recall as a function of the number of positive examples in the input image set. Perfor-
mance increases with more positive examples, until about 20positive images. (c): Evolution of
log(p(M)p(G|M) estimated by our CASW (magenta), and standard SW [12] (cyan)on all pos-
itive examples of classGiraffes, and the same number of negative examples from ETHZ.

spatial configuration of contours as edge weights ofG, against the more common use
of individual contours as graph nodes, and contour similarities as edge weights. To this
end, we build three weighted graphsG1, G2 andG3 of contours extracted only from
all positive examples of a single object category in the ETHZdataset (i.e., the set of
negative examples is empty). Nodes ofG1 are individual contours, edges connect can-
didate matches(u, u′), and edge weightssuu′ represent the DTW similarity of contours
u andu′. In G2 andG3, nodes are instead pairs of contours(u, u′). In G2, each edge
((u, u′), (v, v′)) receives weight(suu′+svv′)/2. In G3, edges can only be positive and
receive weightsρ+

e , defined in Sec. 3. For all three graphs, we apply the standardPageR-
ank algorithm, also used in [9,10,17], to identify the most relevant contours, which are
then interpreted as object contours. False Positive Rate (FPR) is computed for BBHR
= 0.5, and averaged across all categories in the ETHZ dataset. Fig. 5(a) shows that
G2+PageRank decreases the FPR ofG1+PageRank by 3.2%. However,G2+PageRank
still yields a relatively high value of FPR, which suggests that accounting only for shape
similarity and ignoring the spatial layout of contours may not be sufficient to handle the
very difficult problem of object discovery. UsingG3+PageRank significantly decreases
FPR, which motivates our approach. We also run our CASW on graph G3, and on
G, specified in Sec. 3. In comparison withG3+CASW, our approachG+CASW addi-
tionally allows the negative polarity of graph edges. Fig. 5(a) shows thatG3+CASW
outperformsG3+PageRank, and thatG+CASW gives the best results.

Experiment 2 in S1: We test performance in object detection as a function of the
number of positive examples in the input image set. The totalnumber of imagesM =
32 is set to the number of images of the “smallest” class in the ETHZ dataset. In
Fig.5(b), we plot the ROC curves when the number of positive images increases, while
the number of negative ones proportionally decreases. As expected, performance im-
proves with the increase of positive examples, until reaching a certain number (on av-
erage about 20 for the ETHZ dataset).

Experiment 3 in S1: Finally, we test our learning of pdf parameters. Fig.5(c) shows
the evolution oflog(p(M)p(G|M)) in the first stage of object discovery in the image
set consisting of all positive examples of classGiraffes, and the same number of neg-
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Caltech categoriesOur method [10] [9] [17]
A,C,F,M 98.62±0.51 98.03 98.55 88.82

A,C,F,M,W 97.57±0.46 96.92 97.30 N/A
A,C,F,M,W,K 97.13±0.42 96.15 95.42 N/A

ETHZ categories Our method [10]
A,B,G,M,S (bbox) 96.16±0.41 95.85

A,B,G,M,S (expanded) 87.35±0.37 76.47
A,B,G,M,S (entire image)85.49±0.33 N/A

Table 2. Mean purity of category discovery for Caltech-101 (A:Airplanes, C: Cars, F: Faces, M:
Motorbikes, W: Watches, K: Ketches), and ETHZ dataset (A:Applelogos, B: Bottles, G: Giraffes,
M: Mugs, S: Swans).

FACES AIRPLANESALL CLASSES
CASW [9] [10]

A 0.11±0.01 0.21 0.17
F 0.12±0.01 0.30 0.15
K 0.06±0.003 0.19 0.08
M 0.04±0.002 0.11 0.07
W 0.02±0.003 0.08 0.03

GIRAFFES MUGSALL CLASSES
CASW [9] [10]

A 0.15±0.02 N/A 0.18
B 0.18±0.01 N/A 0.20
G 0.16±0.01 0.32 0.18
M 0.23±0.04 N/A 0.27
S 0.09±0.002 N/A 0.11

Fig. 6. Bounding Box Hit Rates (BBHR) vs False Positive Rates (FPR). Top is Caltech-101,
bottom is ETHZ. Left column is our CASW on all classes, and middle and right columns show
a comparison with [9, 10] on a specific class (lower curves arebetter). The tables show FPR
at BBHR=0.5. Caltech-101: A: Airplanes, F: Faces, K: Ketches, M: Motorbikes, W: Watches.
ETHZ: A: Applelogs, B: Bottles, G: Giraffes, M: Mugs, S: Swans. (best viewed in color)

ative examples showing other object categories from the ETHZ dataset. We compare
our CASW with the standard SW of [12], where the pdf parameters are not learned, but
pre-specified. Since these parameters are unknown, to compute both the ground-truth
value and the value produced by [12] oflog(p(M)p(G|M)), we use the pdf parame-
ters learned by our approach after CASW converged. As CASW and SW make progress
through iterative clustering of the images, Fig. 5(c) showsthat CASW yields a steeper
increase inlog(p(M)p(G|M)) to higher values, closer to the ground-truth. Notice that
CASW avoids local minima and converges after only few iterations.

Evaluation in S2: We evaluate the first and second stages of object discovery in
S2.First Stage in S2: We build a graph whose nodes represent entire images. Edges be-
tween images in the graph are characterized by weights, defined as an average of DTW
similarities of contour matches from the corresponding pair of images. A similar char-
acterization of graph edges is used in [9,10]. For object discovery, we apply CASW to
the graph, resulting in image clusters. Each cluster is taken to consist of images showing
a unique object category. Unlike [9, 10], we do not have to specify the number of cate-
gories present in the image set, as an input parameter, sinceit is automatically inferred
by CASW. Evaluation is done on Caltech-101 and the ETHZ dataset. Table 2 shows
that our mean purity is superior to that of [9, 10, 17]. On Caltech-101, CASW succes-
sively findsK = 4, 5, 6 clusters of images, as we gradually increase the true number
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of categories from 4 to 6. This demonstrates that we are able to automatically find the
number of categories present, with no supervision. On ETHZ,CASW again correctly
findsK = 5 categories. As in [10], we evaluate purity when similarity between the im-
ages (i.e., weights of edges in the graph) is estimated basedon contours falling within:
(a) the bounding boxes of target objects, (b) twice the size of the original bounding
boxes (called expanded in Table 2), and (c) the entire images. On ETHZ, CASW does
not suffer a major performance degradation when moving fromthe bounding boxes, to
the challenging case of using all contours from the entire images. Overall, our purity
rates are high, which enables accurate clustering of contours in the second stage.

Second Stage in S2: We use contours from all images grouped within one clus-
ter in the first stage to build our graphG, and then conduct CASW. This is repeated
for all image clusters. The clustering of contours by CASW amounts to foreground
detection, since the identified contour clusters are taken to represent parts of the discov-
ered object category. We evaluate BBHR and FPR on Caltech-101, ETHZ, LabelMe,
and Weizmann Horses. Fig.6 shows that our BBHR and FPR valuesare higher than
those of [9, 10] on the Caltech and ETHZ. CASW findsK = 1 for Airplanes, Cars
Rear, Faces, Ketches, Watches in Caltech-101,Apples, Bottles, Mugs in ETHZ, andCar
rear, Face, Airplane in LabelMe. These objects do not have articulated parts thatmove
independently, hence, only one contour cluster is found. Onthe other hand, it finds
K = 2 for Giraffes, Swans in ETHZ, Cars side, Motorbikes in Caltech and LabelMe,
andK = 3 for Weizmann Horses. In Fig.7, we highlight contours from different clus-
ters with distinct colors. Fig.7 demonstrates that CASW is capable not only to discover
foreground objects, but also to detect their characteristic parts, e.g., wheels and roof for
Cars side, wheels and seat forMotorbikes, head and legs forGiraffes, etc. The plot in
Fig.7 evaluates our object detection on LabelMe and Weizmann Horses. Detection ac-
curacy is estimated as the standard ratio of intersection over union of ground-truth and
detection bounding boxes,(BBgt ∩ BBd)/(BBgt ∪ BBd), whereBBd is the small-
est bounding box that encloses detected contours in the image. The average detection
accuracy for each category is: [Face(F): 0.52, Airplane(A): 0.45, Motorbike(M): 0.42,
Car Rear(C): 0.34], whereas [10] achieves only [(F): 0.48, (A): 0.43, (M): 0.38, (C):
0.31]. For Weizmann Horses, we obtainPrecision andRecall of 84.9%±0.68% and
82.4%±0.51%, whereas [8] achieves only81.5% and78.6%.

Remark: The probability of contour patterns that repeat in the background in-
creases with the number of images. On large datasets, CASW islikely to extract clusters
of those background patterns. However, the number of contours in these clusters is rel-
atively small, as compared to clusters that contain true object contours, because the fre-
quency of such patterns is, by definition, smaller than that of foreground objects. There-
fore, these spurious clusters can be easily identified, and interpreted as background. For
example, in setting S1, when the input image set consists of only positive, 100 images
of Weizmann Horses, we obtainK = 3 very large clusters (Fig.7), and 9 additional
clusters with only 5 to 10 background contours.

Implementation. The C-implementation of our CASW runs in less than 2 minutes
on any dataset of less than 100 images, on a 2.40GHz PC with 3.48GB RAM.
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6 Conclusion

We have shown that shape alone is sufficiently discriminative and expressive to provide
robust and efficient object discovery in unlabeled images, without using any photomet-
ric features. This is done by clustering image contours based on their intrinsic geo-
metric properties, and spatial layouts. We have also made contributions to the popular
research topic in vision, that of probabilistic multicoloring of a graph, including: (a) the
on-line learning of pdf parameters governing multicoloring assignments; (b) enforcing
stronger positive and negative coupling nodes in the graph,by allowing the polarity of
graph edges to dynamically vary during the Metropolis-Hestings (MH) jumps; and (c)
regularizing the posterior of multicoloring assignments to help MH jumps escape from
trivial solutions. These extensions lead to faster convergence to higher values of the
graph’s posterior distribution than the well-known SW cut.
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