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ABSTRACT

The 2.1D sketch is a layered representation of occluding andoc-
cluded surfaces of the scene. Extracting the 2.1D sketch from a sin-
gle image is a difficult and important problem arising in manyappli-
cations. We present a fast and robust algorithm that uses boundaries
of image regions and T-junctions, as important visual cues about
the scene structure, to estimate the scene layers. The estimation is
a quadratic optimization with hinge-loss based constraints, so the
2.1D sketch is smooth in all image areas except on image contours,
and image regions forming “stems” of the T-junctions correspond
to occluded surfaces in the scene. Quantitative and qualitative re-
sults on challenging, real-world images—namely, Stanforddepth-
map and Berkeley segmentation dataset—demonstrate high accu-
racy, efficiency, and robustness of our approach.

Index Terms— Layered 2.1D sketch, T-Junctions, segmenta-
tion, quadratic optimization with hinge-loss penalty

1. INTRODUCTION

This paper is about extracting, from a single image, a layered 3D-
scene representation, called the 2.1D sketch [1–4]. In thisrepre-
sentation, surfaces of the scene are assumed to form planes (layers)
whose normals lie along the camera viewing direction. Occluding
surfaces of the scene comprise a layer closer to the camera than the
layer formed by occluded surfaces. Actual 3D distances are mapped
onto integer distances between the corresponding layers.

Monocular extraction of the 2.1D sketch is required by many ap-
plications, including range analysis [3], object recognition [5], and
image-based walkthrough [6]. However, due to the loss of 3D in-
formation in the imaging process, this problem is very difficult. For
example, the depth-ordering between objects in the scene may not
be well-defined, because of self-occlusions and entanglements.

Prior work seeks to model interactions between image features,
such as regions, contours and junctions, and thus infer the 2.1D
sketch. Examples of these models include the “dead leaves” model
of occlusion [1]; minimum description length of image support maps
[3]; layered Markov Random Fields and hierarchical graphical mod-
els [4]; and classifiers discriminating image regions into vertical,
horizontal, or support surfaces in the scene [5,6]. These approaches
typically make heuristic assumptions about the number of scene lay-
ers. Although occlusions may occur over large spatial extents in
the image, these methods usually analyze only pairwise (local) in-
teractions between image features. Our approach addressesthese
limitations by conducting a global analysis of higher-order interac-
tions among image features, to infer the data-driven numberof scene
layers and their globally consistent layout.

Our work is most related to Gestalt-based methods that analyze
T-junctions as power visual cues of occlusion [1, 7, 8]. The “cap”
of the T indicates the occlusion boundary between two surfaces,
and the “stem” of the T is formed by an occluded surface and the

background. However, some T-junctions do not arise from occlu-
sion, but brightness discontinuities along a surface. Thisambiguity
is resolved in [7, 8] by estimating a globally consistent 2.1D sketch,
based ongradients of the depth map. The gradients are inferred from
stems and caps of the T-junctions, and used to estimate either a diffu-
sion map [7], or a directed acyclic graph of T-junctions in which the
graph edges point to occluded image parts [8]. However, thisgra-
dient based formulation has limitations. T-junctions could provide
only the orientation of depth-map gradients, whereas the gradient
magnitudes (e.g., edge weights in the DAG [8]) have to be heuristi-
cally selected.

Our key contribution is a new, more natural way of exploitingT-
junctions within a hinge-loss regularized quadratic optimization for
extracting the 2.1D sketch. Instead of using the depth-map gradients,
we specify an optimization problem which directly constraints that
image regions forming the T’s “cap” should be closer to the camera
than regions forming the “stem”. Our optimization relies onan iter-
ative framework where every iteration involves the solution of large
scale set of linear equations. To efficiently solve for the linear equa-
tion at each iteration, we use a two step method. Two step methods
offer significant speedups (e.g., Krylov space methods [9]), and thus
gain rising popularity in many fields, including sparse reconstruction
and compressed sensing. We consider a similar framework forthe
reconstruction of layered representation.

Fig. 1 shows an illustration of our approach. As input to the op-
timization, we use image segments and detected T-junctionsto en-
force smoothness and global-consistency constraints on the resulting
2.1D sketch. Since extracting T-junctions and image regions are two
difficult problems in and of themselves, this paper only focuses on
the optimization, for brevity. In the following, we will thus assume
that region boundaries and “stems” and “caps” of T-junctions are
given, while the image segmenter and T-junction detector weused
in our experiments are briefly described in the results section.

2. PROBLEM FORMULATION

This section formulates a new optimization problem for estimating
the 2.1D sketch. We proceed with necessary notation.

Let D(x, y) denote the 2.1D sketch, obtained from the image
supportS, D(·, ·) : (x, y) ∈ S 7→ D(x, y). Let B ⊂ S be the
input set of points that belong to region boundaries. We willaccount
for B in our quadratic optimization via the boundary maskM(·, ·) :
(x, y) ∈ S 7→ M(x, y), whereM(x, y) = 1 if (x, y) /∈ B and zero
otherwise. We estimateD(x, y) using the following two principles.

Smoothness –Image regions, by definition, represent 3D scene
surfaces with homogeneous photometric properties. Therefore, it is
reasonable to expect that an image region cannot split over several
distinct layers in the 2.1D sketch. This means thatD(x, y) should
be smooth within every image region. This can be enforced through
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Fig. 1. Our approach: From the input image (left) we extract segments (middle left) and T-junctions (middle right). The segments and
foreground-ground relations between pairs of segments obtained from the detected T-junctions are used to enforce smoothness and global-
consistency constraints in a quadratic optimization whichestimates the 2.1D sketch. The scene-depth layers are color-coded so that layers
closer to the camera have “warmer” colors.

the minimization of restricted Laplacian ofD(x, y) as

min
D(·,·)
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dxdy. (1)

While the resultingD would be constant over every image region,
as required, these constants may take arbitrary values, since (1) can
be solved separately for each region. Therefore, (1) needs to be aug-
mented with constraints that would enforce globally consistent de-
pendencies between the values ofD, as explained below.

T-junction consistency –Instead of constraining the gradients
of D, as done in prior work [7, 8], we use a more natural way to
incorporate T-junctions in estimation of the 2.1D sketch—namely,
the value ofD(x, y) at the “cap” of a T-junction should be strictly
larger than the value at the two sides of the “stem”. For theith T-
junction, we consider three points: above the “cap”(xi1, yi1), to the
right of the “stem”(xi2, yi2), and to the left of the “stem”(xi3, yi3),
and specify the following constraints fori = 1, 2, . . . , T

D(xi1, yi1)≥D(xi2, yi2)+1, D(xi1, yi1)≥D(xi3, yi3)+1. (2)

By combining (1) and (2), the resultingD will be constant within
each segment and satisfy the required constraints, and thusrepre-
sent the desired 2.1D sketch. Note that T-junctions, being local cues,
may introduce globally inconsistent constraints, e.g., when two ob-
jects are intertwined. The above formulation is capable of gracefully
solving this problem. The global inconsistencies will result in D
with smoothly varying values in the corresponding regions.This
will reflect that some objects may indeed extend across two distinct
scene layers.

To formulate our algorithm, we simplify notation by represent-
ing D(x, y) and M(x, y) with column vectorsd and m, where
all pixels are stacked in the vector. Operators can be expressed
as matrices, and are denoted by boldface capital letters. Specif-
ically, the restricted Laplacian from (1) is given bydT

Ld where
L = D

T
xdiag(m)Dx + D

T
ydiag(m)Dy, andDx andDy are the

differentiation operators along thex-axis and they-axis, respec-
tively. Note that diag(m) corresponds to a diagonal matrix with
m on its diagonal. Also, the multiplication with diag(m) cor-
responds to an elementwise multiplication withm. To represent
the T-junction constraints of (2), we defineai1 and ai2 vectors
of the same size asd, such thataT

i1d=D(xi1, yi1)−D(xi2, yi2)
and a

T
i2d=D(xi1, yi1)−D(xi3, yi3). Note thatai1 allows us to

measure the “cap-to-right-of-stem” difference, andai2 allows us
to measure the “cap-to-left-of-stem” difference. Using the above
vector notation in (1) and (2), we formalize our algorithm as

min
d

d
T
Ld

subject to a
T
ijd ≥ 1, i = 1, . . . , T, j = 1, 2. (3)

The constraintsaT
ijd ≥ 1 can be replaced with a penalty term

f1(a
T
ijd) in the minimization (3), wherefγ(·) is the standard hinge

loss function, given byfγ(δ)=(γ−δ)111(δ<γ), and where111(·) is the
indicator function. As a result, we obtain the equivalent optimization
problem

min
d

J(d), J(d) = d
T
Ld + 2λ

PT
i=1

P2
j=1 f1(a

T
ijd), (4)

whereλ controls the trade-off smoothness vs T-junction constraints.
Minimizing J(d) is not trivial, since the hinge loss function
f1(a

T
ijd) is not differentiable ataT

ijd=1. We proceed with an
optimization transfer approach for the solution of (4).

3. ALGORITHMIC SOLUTION

This section presents optimization transfer [10] for solving the min-
imization in (4). The key idea of our approach is to replace the
minimization that cannot be solved in closed-form, with an iterative
method with strong theoretical guarantees of convergence.

Any general objective function of the formJ(d), as in (4), can
be minimized with respect tod by iteratively minimizing a surro-
gate function,H(d,d′), asd

(k+1) = arg mind H(d,d(k)). For
this, H(d,d′) must satisfy:J(d)≤H(d,d′) andJ(d)=H(d,d).
These two criteria guarantee thatJ(d(k)) is non-increasing with iter-
ationsk. Also, under some mild conditions, the optimization transfer
guarantees convergence to local minima [10].

We use the optimization transfer to minimizeJ(d) in (4). To
identifying surrogateH(d,d′) for J(d), consider the following
bound on the hinge loss function:

fγ(δ) ≤
δ2

4|γ|
+ (γ − δ)111(δ′ < γ). (5)

Sincef1(a
T
ijd) = f1−a

T
ij

d′(aT
ij(d − d

′)), from (5), we have

f1(a
T
ijd) ≤

(aT
ij(d − d

′))2

4|1 − aT
ijd

′|
+ (1 − a

T
ijd)111(aT

ijd
′ < 1). (6)

From (6) and (4), we derive the upper bound ofJ(d) as

H(d,d′) = d
T
Ld + λ

`

T
X

i=1

2
X

j=1

(aT
ij(d − d

′))2

2|1 − aT
ijd

′|

+ 2(1 − a
T
ijd)111(aT

ijd
′ < 1)

´

. (7)

From a quick glance at (7),H(d,d′) has the standard quadratic form

H(d,d′) = d
T
A(d′)d − 2b(d′)T

d + c(d′), (8)
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where

A(d′) = L + λ
T

X

i=1

2
X

j=1

aija
T
ij

2|1 − aT
ijd

′|
, (9)
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`
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˜
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c(d′) = λ
`
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X
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(aT
ijd

′)2

2|1 − aT
ijd

′|
+ 2 111(aT
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. (11)

Next, we apply the optimization transfer on (4), i.e., minimize
H(d,d′), given by (8), which yields

A(d(k))d(k+1) = b(d(k)). (12)

In the following, we explain how to solve the system of linearequa-
tions in (12). Note that the inversion ofA(d(k)) is not trivial. Recall
thatA(d(k)) contains the restricted Laplacian operator, defined as a
matrix of sizeN × N , whereN is the total number of pixels in the
image. In our experiments, this component ofA(d(k)) is often im-
possible to store, let alone invert, due to its large size. Instead, we
consider an accelerated iterative solution to the minimization of (8)

f
(l+1) = f

(l)+αl(f
(l−1)−f

(l))+βl(b(d(k))−A(d(k))f (l)), (13)

whereαl andβl are coefficients that can be found directly by sub-
stituting the right-hand-side of (13) into (8), and minimizing with
respect toαl andβl. Our main motivation to use (13) is that it pro-
vides faster convergence than the standard gradient descent, which
can be obtained by settingαl = 0 in (13). Typically, the conver-
gence of (13) is of the order of square root of the convergencetime
of gradient descent. In theory, the solution can be obtainedafter the
iterations have converged. In practice, a finite number of iterations
suffices, i.e.,d(k+1) = f

(L), whereL is sufficiently large to allow a
desired decrease in the objective function.

Per iteration, complexity is dominated by application ofA(d(k))

to f
(l). Complexity of the first term inA(d(k)) (i.e., the restricted

Laplacian) isO(N), whereN is the number of image pixels, since
differentiation along thex-axis, y-axis, and multiplication with
a mask, are allO(N). The contribution of the second term in
A(d(k)) associated with the T-junctions isO(T ) whereT is the
number ofT junctions. SinceT is by definition smaller thanN , the
overall complexity per iteration isO(N).

4. RESULTS

This section presents qualitative and quantitative evaluation of our
approach. We use challenging, real-world images of Berkeley seg-
mentation dataset [11], shown in Figs. 1, 2, and 3, and Stanford
Make3D dataset [12], shown in Fig. 4. The Berkeley dataset does not
provide ground-truth annotations of the 2.1D sketch; therefore we
use these images for the qualitative evaluation. The Stanford dataset
consists of eight images, each accompanied by a real-valueddepth
map. The ground-truth depths were collected using a laser scanner.
To provide image segmentation as input to our algorithm, we used
the Berkeley’s latest code available online, though any other off-the-
shelf segmenter could have been used. T-junctions are detected by
finding the intersection of any three boundaries, which is done by
overlaying segments on top of each other and finding points that
had three boundaries sharing it. After detecting T-junctions, their
“stems” and “caps” are simply identified by examining the variances

of pixel values across the edges forming each T-junction. Evaluation
of the image segmenter and T-junction detector is not our focus.

Qualitative evaluation – Figures 1–4 show examples of our re-
sults. Layers closer to the camera are color-coded with “warmer”
colors. As can be seen, our approach successfully estimatesthe
scene layers and their relative distances from the camera.

Quantitative evaluation – Most prior work uses only qualita-
tive evaluation (e.g., [7, 8]). Accuracy of our layer ordering is es-
timated for the Stanford images with respect to their ground-truth
depth maps. Since the depth maps have real values, we adapt them
to be suitable for comparison with our resulting 2.1D sketches. To
this end, we first segment the Stanford images using the Berkeley’s
code, and average the associated depth map values over each re-
gion in the segmentation. Then, we form a region adjacency matrix,
Wdepth, whose entries are defined as sign(di − dj), wheredi anddj

are average depths of regionsi andj. We compute a similar matrix,
Wsketch, based on estimated values of the 2.1D sketch,d, over image
regions. Finally, the error is computed as the Hamming distance be-
tweenWdepth-mapandWsketch, averaged over all pairs of regions. As
can be seen in Fig. 5, this error over eight Stanford images isabout
37%. Fig. 5 also shows that our approach is relatively insensitive
to lower recall rates of T-junction detection in the image, up to the
recall of 80%. The relatively simple T-junction detector that we use
in this paper has recall that is on average larger than 85%.

Only qualitative comparison is possible with [7, 8] and other
competing approaches, as they do not report quantitative results.
On their much simpler examples (e.g., synthetic images) we achieve
qualitatively the same performance.

5. CONCLUSION

We have presented a new approach to monocular extraction of the
2.1D sketch from the image segmentation and T-junctions. The
problem is formulated as an optimization, involving the minimiza-
tion of a smoothness term, which incorporates information about the
segmentation, subject to a set of constraints that enforce Gestalt cues
of the T-junctions. The T-junction constraints are incorporated into
the objective function through a hinge-loss regularization term. We
have specified an optimization-transfer based, iterative method to
solve the problem. The algorithm is evaluated both qualitatively and
quantitatively. The qualitative tests demonstrate that, given image
segmentation and T-junctions, our algorithm is capable of resolving
a layered scene representation which is consistent with human in-
terpretation of challenging natural images. Quantitativeresults that
compare a ground truth depth map with our performance demon-
strate that our method can correctly recover the 2.1D sketchunder
the decreasing recall rate of T-junction detection. Occlusion may
lead to an incorrect 2.1D sketch. This limitation is a consequence
of using only low-level segmentation and T-junctions as visual cues.
Our future work will deal with extensions that will include high-level
image interpretation in the optimization constraints.
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Fig. 2. An example from the Berkeley segmentation dataset [11]. Original image (left), input segmentation and T-junctions (middle), the
output 2.1D sketch. The two airplanes are split into distinct layers due to occlusion, but the ordering of the scene layers is correctly estimated.
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Fig. 4. An example from Stanford dataset [12] (left), and the associated ground-truth depth map (right). The input segmentation and T-
junctions (middle left), and the output layered scene representation (middle right).
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