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ABSTRACT

The 2.1D sketch is a layered representation of occluding aand
cluded surfaces of the scene. Extracting the 2.1D sketch &gin-
gle image is a difficult and important problem arising in mapypli-
cations. We present a fast and robust algorithm that usezlaoies
of image regions and T-junctions, as important visual cussua
the scene structure, to estimate the scene layers. Theaéistinis
a quadratic optimization with hinge-loss based constsaisb the
2.1D sketch is smooth in all image areas except on image @m)to
and image regions forming “stems” of the T-junctions cqpoesl
to occluded surfaces in the scene. Quantitative and gtinaditee-
sults on challenging, real-world images—namely, Stanfiegth-
map and Berkeley segmentation dataset—demonstrate high ac
racy, efficiency, and robustness of our approach.

background. However, some T-junctions do not arise fromuscc
sion, but brightness discontinuities along a surface. &hmbiguity
is resolved in [7, 8] by estimating a globally consistentz2sketch,
based omgradients of the depth map. The gradients are inferred from
stems and caps of the T-junctions, and used to estimate aittiftu-
sion map [7], or a directed acyclic graph of T-junctions inieththe
graph edges point to occluded image parts [8]. However,dgtas
dient based formulation has limitations. T-junctions cbptovide
only the orientation of depth-map gradients, whereas theignt
magnitudes (e.g., edge weights in the DAG [8]) have to beisgur
cally selected.

Our key contribution is a new, more natural way of exploiting
junctions within a hinge-loss regularized quadratic optation for
extracting the 2.1D sketch. Instead of using the depth-magients,
we specify an optimization problem which directly consttaithat

Index Terms— Layered 2.1D sketch, T-Junctions, segmenta-image regions forming the T's “cap” should be closer to theem

tion, quadratic optimization with hinge-loss penalty

1. INTRODUCTION
This paper is about extracting, from a single image, a lay&ie-
scene representation, called the 2.1D sketch [1-4]. Inr&pse-
sentation, surfaces of the scene are assumed to form plagess]
whose normals lie along the camera viewing direction. Giioly
surfaces of the scene comprise a layer closer to the canaarahb
layer formed by occluded surfaces. Actual 3D distances aigped
onto integer distances between the corresponding layers.
Monocular extraction of the 2.1D sketch is required by mamy a
plications, including range analysis [3], object recoigmit[5], and
image-based walkthrough [6]. However, due to the loss of 18D i
formation in the imaging process, this problem is very dificFor
example, the depth-ordering between objects in the scegenota
be well-defined, because of self-occlusions and entangiesne
Prior work seeks to model interactions between image featur
such as regions, contours and junctions, and thus infer thie 2
sketch. Examples of these models include the “dead leavedem
of occlusion [1]; minimum description length of image sugpoaps
[3]; layered Markov Random Fields and hierarchical graphicod-
els [4]; and classifiers discriminating image regions inéstical,
horizontal, or support surfaces in the scene [5, 6]. Thepeoaghes
typically make heuristic assumptions about the numberafsday-
ers. Although occlusions may occur over large spatial égten
the image, these methods usually analyze only pairwiseljlda-
teractions between image features. Our approach addrissss
limitations by conducting a global analysis of higher-araeerac-
tions among image features, to infer the data-driven nuobsrene
layers and their globally consistent layout.

than regions forming the “stem”. Our optimization reliesamiter-
ative framework where every iteration involves the solutid large
scale set of linear equations. To efficiently solve for thedir equa-
tion at each iteration, we use a two step method. Two stepadsth
offer significant speedups (e.g., Krylov space methods {9l thus
gain rising popularity in many fields, including sparse rstouction
and compressed sensing. We consider a similar frameworthéor
reconstruction of layered representation.

Fig. 1 shows an illustration of our approach. As input to the o
timization, we use image segments and detected T-junctmes-
force smoothness and global-consistency constraintseorefulting
2.1D sketch. Since extracting T-junctions and image regare two
difficult problems in and of themselves, this paper only &&sion
the optimization, for brevity. In the following, we will tlruassume
that region boundaries and “stems” and “caps” of T-junciiane
given, while the image segmenter and T-junction detectousesl
in our experiments are briefly described in the results secti

2. PROBLEM FORMULATION

This section formulates a new optimization problem forraating
the 2.1D sketch. We proceed with necessary notation.

Let D(x,y) denote the 2.1D sketch, obtained from the image
supportS, D(-,-) : (z,y) € S — D(z,y). Let B C S be the
input set of points that belong to region boundaries. Weagilount
for B in our quadratic optimization via the boundary magk-, -) :
(z,y) € S+ M(z,y), whereM (xz,y) = 1if (z,y) ¢ B and zero
otherwise. We estimat®(x, y) using the following two principles.

Smoothness -tmage regions, by definition, represent 3D scene

Our work is most related to Gestalt-based methods that amaly surfaces with homogeneous photometric properties. Toergit is

T-junctions as power visual cues of occlusion [1, 7, 8]. Thap”
of the T indicates the occlusion boundary between two sesfac

reasonable to expect that an image region cannot split @veral
distinct layers in the 2.1D sketch. This means tbdt:, y) should

and the “stem” of the T is formed by an occluded surface and thée smooth within every image region. This can be enforcealigin
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Fig. 1. Our approach: From the input image (left) we extract segmémiddle left) and T-junctions (middle right). The segrseand
foreground-ground relations between pairs of segmentsradd from the detected T-junctions are used to enforce gmess and global-
consistency constraints in a quadratic optimization wiastimates the 2.1D sketch. The scene-depth layers areamled so that layers

closer to the camera have “warmer” colors.

the minimization of restricted Laplacian &f(z,

//M(:c,y)<(8Dgz’ y))2 + (8%2’ y))2> drdy. (1)

y) as

min
D(,)

The constraintsa; ;d > 1 can be replaced with a penalty term
fl(aZJ ) in the m|n|m|zat|on (3), wherg, (+) is the standard hinge
loss function, given by, (§)=(y—4§)1(6<~), and wherd (-) is the
indicator function. As a result, we obtain the equivaleritrofzation

While the resultingD would be constant over every image region, problem

as required, these constants may take arbitrary values €l can
be solved separately for each region. Therefore, (1) nedols aug-
mented with constraints that would enforce globally caesisde-
pendencies between the valuedfas explained below.

min J(d), J(d)=d"Ld+ 2\, Y5 fiald),  (4)

where\ controls the trade-off smoothness vs T-junction constsain

T-junction consistency —Instead of constraining the gradients Minimizing J(d) is not trivial, ?ince the hinge loss function
of D, as done in prior work [7, 8], we use a more natural way to/1(al;d) is not differentiable atj;d=1. We proceed with an

incorporate T-junctions in estimation of the 2.1D sketclamely,
the value ofD(z, y) at the “cap” of a T-junction should be strictly
larger than the value at the two sides of the “stem”. Forithel-
junction, we consider three points: above the “cap1, v:1), to the
right of the “stem”(z;2, yi2), and to the left of the “stem(’z;s3, y:3),
and specify the following constraints foe=1,2,...,T

D(xi1,yi1)>D(xi2, yiz)+1, D(xir, yin)>D(xi3, yiz)+1. (2)

By combining (1) and (2), the resulting will be constant within
each segment and satisfy the required constraints, andrepus-
sent the desired 2.1D sketch. Note that T-junctions, be&iogllcues,
may introduce globally inconsistent constraints, e.g.emtwo ob-
jects are intertwined. The above formulation is capableatefully
solving this problem. The global inconsistencies will desa D
with smoothly varying values in the corresponding regiofihis
will reflect that some objects may indeed extend across tatingdt
scene layers.

To formulate our algorithm, we simplify notation by represe
ing D(z,y) and M (x,y) with column vectorsd and m, where
all pixels are stacked in the vector. Operators can be espdes
as matrices, and are denoted by boldface capital letterecifSp
ically, the restricted Laplacian from (1) is given lf/ Ld where
L = D diagm)D, + D;diagm)D,, andD, andD, are the
differentiation operators along the-axis and they-axis, respec-
tively. Note that diagm) corresponds to a diagonal matrix with
m on its diagonal. Also, the multiplication with di@g) cor-
responds to an elementwise multiplication wiilt. To represent
the T-junction constraints of (2), we defire; and a;» vectors
of the same size ad, such thata];d=D(z1,yi1)—D(zi2, yi2)
and al,d=D(x1, yi1)—D(zi3,vi3). Note thata;; allows us to
measure the “cap-to-right-of-stem” difference, amd allows us
to measure the “cap-to-left-of-stem” difference. Using #ibove
vector notation in (1) and (2), we formalize our algorithm as

min d'Ld
d

subjectto aj;d > 1, i=1,...,T, j=1,2.

optimization transfer approach for the solution of (4).

3. ALGORITHMIC SOLUTION

This section presents optimization transfer [10] for sodvihe min-
imization in (4). The key idea of our approach is to replace th
minimization that cannot be solved in closed-form, with tendtive
method with strong theoretical guarantees of convergence.

Any general objective function of the formi(d), as in (4), can
be minimized with respect td by iteratively minimizing a surro-
gate function,H(d,d’), asd**" = argming H(d,d®). For
this, H(d,d’) must satisfy:J(d)<H(d,d’) and.J(d)=H(d,d).
These two criteria guarantee th&id*’) is non-increasing with iter-
ationsk. Also, under some mild conditions, the optimization transf
guarantees convergence to local minima [10].

We use the optimization transfer to minimizéd) in (4). To
identifying surrogate (d,d’) for .J(d), consider the following
bound on the hinge loss function:

52 ,
J2(8) < g+ (7 = 9107 <), (5)
Sincefi(al;d) = f,_.1 4 (al;(d — d’)), from (5), we have
(aL(d—d’)f T T 4
<~ 2 —al T )
fl(azgd) = 4|1 — azjd/| + (1 amd)l(azgd < 1) (6)
From (6) and (4), we derive the upper bound/dél) as
T 2 ’
N 4T d d ))
H(d,d")=d"Ld + \( 2; 2|1 T
From a quick glance at (7J{ (d, d’) has the standard quadratic form
H(d,d") =d"A(d")d — 2b(d’)"d + ¢(d’), (8)
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where
T 2 aaT
A(d’):L+AZZm, 9
i=1j=1 ij
T2 al.d’
b(d,) = )\(Z Z [m + l(alTjd'<1)] az-j)7 (10)
i=1j=1 ij

/ U 2 (a;!—jd,)2 T 4/
c@d)=x>_>" Moald] +21(aj;d'<1)).  (11)

i=1 j=1

Next, we apply the optimization transfer on (4), i.e., miizen
H(d,d’), given by (8), which yields

A(d®)d* D =pa®). (12)

In the following, we explain how to solve the system of linegua-
tions in (12). Note that the inversion af(d*)) is not trivial. Recall

of pixel values across the edges forming each T-junctioaluition
of the image segmenter and T-junction detector is not ourdoc
Qualitative evaluation — Figures 1-4 show examples of our re-
sults. Layers closer to the camera are color-coded with riveat
colors. As can be seen, our approach successfully estirtteges
scene layers and their relative distances from the camera.
Quantitative evaluation — Most prior work uses only qualita-
tive evaluation (e.g., [7, 8]). Accuracy of our layer orderiis es-
timated for the Stanford images with respect to their greunth
depth maps. Since the depth maps have real values, we adapt th
to be suitable for comparison with our resulting 2.1D sketchTo
this end, we first segment the Stanford images using the Bgrke
code, and average the associated depth map values overesach r
gion in the segmentation. Then, we form a region adjacendyixma
Waepth Whose entries are defined as Sign— d;), whered; andd;
are average depths of regiohand;. We compute a similar matrix,
Wsketch based on estimated values of the 2.1D skedglover image
regions. Finally, the error is computed as the Hamming déstde-

thatA (d®)) contains the restricted Laplacian operator, defined as #/€€NWeepth-map@Nd Waieteh averaged over all pairs of regions. As
matrix of sizeN x N, whereN is the total number of pixels in the &0 be seen in Fig. 5, this error over eight Stanford imagebasit

image. In our experiments, this componentAon"“)) is often im-
possible to store, let alone invert, due to its large sizetelad, we
consider an accelerated iterative solution to the minitionaof (8)

f(l+1) _ f(l)—l—oq(f(l*l)—f(l))—l—ﬁl(b(d(k))—A(d(k))f(l)), (13)

37%. Fig. 5 also shows that our approach is relatively inteas
to lower recall rates of T-junction detection in the imagp,ta the
recall of 80%. The relatively simple T-junction detectoathwve use
in this paper has recall that is on average larger than 85%.

Only qualitative comparison is possible with [7, 8] and othe
competing approaches, as they do not report quantitatsaltse

whereo; andg; are coefficients that can be found directly by sub- On their much simpler examples (e.g., synthetic images)chieae

stituting the right-hand-side of (13) into (8), and miniinig with

respect tay; and ;. Our main motivation to use (13) is that it pro-

vides faster convergence than the standard gradient desdgch
can be obtained by settingg = 0 in (13). Typically, the conver-
gence of (13) is of the order of square root of the converg¢inoe
of gradient descent. In theory, the solution can be obtaéfient the
iterations have converged. In practice, a finite numbereshitons
suffices, i.e.d®*tY = £(I) whereL is sufficiently large to allow a
desired decrease in the objective function.

Per iteration, complexity is dominated by applicatiorAdfd *))
to f). Complexity of the first term il (d*)) (i.e., the restricted

qualitatively the same performance.

5. CONCLUSION

We have presented a new approach to monocular extractidreof t
2.1D sketch from the image segmentation and T-junctionse Th
problem is formulated as an optimization, involving the imiza-
tion of a smoothness term, which incorporates informatlmouathe
segmentation, subject to a set of constraints that enfoestal cues

of the T-junctions. The T-junction constraints are incogted into
the objective function through a hinge-loss regularizaterm. We

Laplacian) isO(N'), whereN is the number of image pixels, since haye specified an optimization-transfer based, iteratiethod to

differentiation along ther-axis, y-axis, and multiplication with
a mask, are alO(N).
A(d®) associated with the T-junctions (T") whereT is the
number ofT" junctions. Sincd is by definition smaller thaiv, the
overall complexity per iteration i©(N).

4. RESULTS

This section presents qualitative and quantitative ev@anaf our
approach. We use challenging, real-world images of Beykebg-

solve the problem. The algorithm is evaluated both qualiégt and

The contribution of the second term in qyantitatively. The qualitative tests demonstrate thargimage

segmentation and T-junctions, our algorithm is capableesblving
a layered scene representation which is consistent withahum
terpretation of challenging natural images. Quantitatasults that
compare a ground truth depth map with our performance demon-
strate that our method can correctly recover the 2.1D skatcler
the decreasing recall rate of T-junction detection. Odolusnay
lead to an incorrect 2.1D sketch. This limitation is a consege
of using only low-level segmentation and T-junctions asiaiues.

mentation dataset [11], shown in Figs. 1, 2, and 3, and Stanfo Our future work will deal with extensions that will includegh-level

Make3D dataset [12], shown in Fig. 4. The Berkeley datases dot
provide ground-truth annotations of the 2.1D sketch; tlreeewe
use these images for the qualitative evaluation. The Staufataset
consists of eight images, each accompanied by a real-valegtth
map. The ground-truth depths were collected using a lasemst.

To provide image segmentation as input to our algorithm, sedu

the Berkeley’s latest code available online, though angmoif-the-
shelf segmenter could have been used. T-junctions aretddtby
finding the intersection of any three boundaries, which isedby

image interpretation in the optimization constraints.
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Fig. 5. Our approach is relatively insensitive to a drop in recéll o
T-junction detections up to 80%.



