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Abstract

Given an ensemble of distinct, low-level segmentationsdfreage, our goal is to
identify visually “meaningful” segments in the ensemblend@vledge about any
specific objects and surfaces present in the image is ndabiai The selection of
image regions occupied by objects is formalized as the maxisweight indepen-
dent set (MWIS) problem. MWIS is the heaviest subset of nliytu@n-adjacent
nodes of an attributed graph. We construct such a graph ftbsegments in
the ensemble. Then, MWIS selects maximally distinctiversents that together
partition the image. A new MWIS algorithm is presented. Tlypdathm seeks a
solution directly in the discrete domain, instead of rebgxMWIS to a continu-
ous problem, as common in previous work. It iteratively findsndidate discrete
solution of the Taylor series expansion of the original MVdligective function
around the previous solution. The algorithm is shown to eoge to an optimum.
Our empirical evaluation on the benchmark Berkeley segatiemt dataset shows
that the new algorithm eliminates the need for hand-picldpgmal input pa-
rameters of the state-of-the-art segmenters, and outpesfiheir best, manually
optimized results.

1 Introduction

This paper presents: (1) a new formulation of image segrtientas the maximum-weightindepen-
dent set (MWIS) problem; and (2) a new algorithm for solving\&.

Image segmentation is a fundamental problem, and an arectioé aesearch in computer vision
and machine learning. It seeks to group image pixels intoalig “meaningful” segments, i.e.,
those segments that are occupied by objects and otherassidacurring in the scene. The literature
abounds with diverse formulations. For example, normelizet [1], and dominant set [2] formu-
late segmentation as a combinatorial optimization prold&na graph representing image pixels.
“Meaningful” segments may give rise to modes of the pixelshability distribution [3], or min-
imize the Mumford-Shah energy [4]. Segmentation can alsddme by: (i) integrating edge and
region detection [5], (ii) learning to detect and close abj@oundaries [6, 7], and (iii) identifying
segments which can be more easily described by their owa theam by other image parts [8, 9, 10].

From prior work, we draw the following two hypotheses. Fisirfaces of real-world objects are
typically made of a uniqgue material, and thus their corresiity segments in the image are char-
acterized by unique photometric properties, distinct friimnmse of other regions. To capture this
distinctiveness, it seems beneficial to use more expressidelevel image features (e.g., superpix-
els, regions) which will provide richer visual informatiéor segmentation, rather than start from
pixels. Second, it seems that none of a host of segmentatiorufations are able to correctly de-
lineate every object boundary present. However, an enseafldistinct segmentations is likely to
contain a subset of segments that provides accurate spapipbrt of object occurrences. Based on
these two hypotheses, below, we present a new formulationaigfe segmentation.
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Given an ensemble of segments, extracted from the image bynder of different low-level seg-
menters, our goal is to select those segments from the etesémalb are distinct, and together par-
tition the image area. Suppose all segments from the enseanbrepresented as nodes of a graph,
where node weights capture the distinctiveness of corratipg segments, and graph edges con-
nect nodes whose corresponding segments overlap in theeinTdgn, the selection of maximally
distinctive and non-overlapping segments that will pantithe image naturally lends itself to the
maximum-weight independent set (MWIS) formulation.

The MWIS problem is to find the heaviest subset of mutually-adjacent nodes of an attributed
graph. It is a well-researched combinatorial optimizafooblem that arises in many applications.
It is known to be NP-hard, and hard to approximate [11]. Nwusrheuristic approaches exist.
For example, iterated tabu search [12] and branch-ane-[ir8} use a trial-and-error, greedy search
in the space of possible solutions, with an optimistic caxjpy estimate ofO(n?), wheren is
the number of nodes in the graph. The message passing [84EseeMWIS into a linear program
(LP), and solves it using loopy belief propagation with n@gntees of convergence for general
graphs; the “tightness” of this relaxation holds only fopdnitite graphs [15]. The semi-definite
programming formulation of MWIS [16] provides an upper bdusf the sum of weights of all
independent nodes in MWIS. However, this is done by refoatind MWIS as a large LP of a new
graph withn? nodes, which is unsuitable for large-scale problems as dtirslly, the replicator
dynamics [17, 18] converts the original graph into its coempént, and solves MWIS as a continuous
relaxation of the maximum weight clique (MWC) problem. Batsome domains, including ours,
important hard constraints captured by edges of the olligig@h may be lost in this conversion.

In this paper, we present a new MWIS algorithm, which represa fixed-point iteration, guaran-
teed to converge to an optimum. It goes back and forth betthesediscrete and continuous domains.
It visits a sequence of poinfg/® },—; o, defined in the continuous domaiy?) [0, 1]”. Around
each of these points, the algorithm tries to maximize theaihje function of MWIS in the discrete
domain. Each iteration consists of two steps. First, we beeTaylor expansion to approximate
the objective function aroung®). Maximization in the discrete domain of the approximatioreg

a candidate discrete solutio<{0,1}". Second, ifz increases the original objective, then this
candidate is taken as the current solutigrand the algorithm visits that point in the next iteration,
yt*tD=z; else, the algorithm visits the interpolation poigt!t!)=y® +n(z—y®), which can
be shown to be a local maximizer of the original objectivedauitably chosern. The algorithm
always improves the objective, finally converging to a maxim For non-convex objective func-
tions, our method tends to pass either through or near déssodutions, and the best discrete one
a* encountered along the path is returned. Our algorithm Hatway low complexity,O(|E]),
where, in our caseF| < n? is the number of edges in the graph, and converges in only atfgys.

Contributions: To the best of our knowledge, this paper presents the firgtdtation of image
segmentation as MWIS. We derive a new MWIS algorithm thatiascomplexity, and prove that
it converges to a maximum. Selecting segments from an ersesulihey cover the entire image
and minimize a total energy has been used for supervisedtadggmentation [19]. They estimate
“good” segments by using classifiers of a pre-selected numwibebject classes. In contrast, our
input, and our approach are genuinely low-level, i.e., atjop@bout any particular objects in the
image. Our MWIS algorithm has lower complexity, and is atgyaasier to implement than the
dual decomposition they use for energy minimization. Ognsentation outperforms the state of the
art on the benchmark Berkeley segmentation dataset, and\WIi® algorithm runs faster and yields
on average more accurate solutions on benchmark dataaatsttier existing MWIS algorithms.

Overview: Our approach consists of the following steps (see Figgph 1: The image is segmented
using a number of different, off-the-shelf, low-level segmters, including meanshift [3], Ncuts [1],
and gPb-OWT-UCM [7]. Since the right scale at which objecisur in the image is unknown, each
of these segmentations is conducted at an exhaustive rdsgeles.Sep 2: The resulting segments
are represented as nodes of a graph whose edges connetiomgysegments that (partially) overlap
in the image. A small overlap between two segments, relativibeir area, may be ignored, for
robustness. A weight is associated with each node capttiméndgjstinctiveness of the corresponding
segment from the otherStep 3: We find the MWIS of this graphStep 4: The segments selected in
the MWIS may not be able to cover the entire image, or may sigiverlap (holes and overlaps are
marked red in Fig.1). The final segmentation is obtained loygustandard morphological operators
on region boundaries to eliminate these holes and overlpi® that there is no need for Step 4 if
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(b) (© (d)

Figure 1: Our main steps: (a) Input segments extracted dipteuscales by different segmenta-
tion algorithms; (b) Constructing a graph of all segments] finding its MWIS (marked green);
(c) Segments selected by our MWIS algorithm (red areas @telioverlaps and holes); (d) Final
segmentation after region-boundary refinement (actualtrasing Meanshift and NCuts as input).

the input low-level segmentation is strictly hierarchjad gPb-OWT-UCM [7]. The same holds if
we added the intersections of all input segments to the iepsgmble, as in [19], because our MWIS
algorithm will continue selecting non-overlapping segitsamtil the entire image is covered.

Paper Organization: Sec. 2 formulates MWIS, and presents our MWIS algorithm #theoret-
ical analysis. Sec. 3 formulates image segmentation as M#fi& describes how to construct the
segmentation graph. Sec. 4 and Sec. 5 present our expegireeatuation and conclusions.

2 MWIS Formulation and Our Algorithm

Consider a graply = (V, E,w), whereV andE are the sets of nodes and undirected edges, with
cardlnallt|es|V|_n and|E|, andw : VR* associates positive weights to every node € V,
i=1,...,n. A subset oft” can be represented by an indicator veater(x;)c{0,1}", wherez;=1
means that is in the subset, and,=0 means that is not in the subset. A subsetis called an
independent set if no two nodes in the subset are connectad bygey(i, j)€E : z;2;=0. We

are interested in finding a maximum-weight independentd&{IS), denoted ag:*. MWIS can be
naturally posed as the following integer program (IP):

IP: x* = argmax, w'z, (1)
stVieV:z; €{0,1}, andV(i,j)eE: z;2; =0

The non-adjacency constraint in (1) can be equivalentimédized aSZ(i,j)eE x;x;=0. The latter

expression can be written as a quadratic constraihtiz=0, whereA=(A ;) is the adjacency
matrix, with A;;=1if (i,j)€eE, andA;;=0if (i,j)¢E. Consequently, IP can be reformulated as
the following integer quadratic program (IQP):

x* = argmax, w'x, N IQP:z* = argmax,[w'z — Sax' Ax]
st.VieVix; €{0,1}, 2"Axz =0 3qer st.VieV:x; €{0,1}
()

where there exists a positive regularization parametey such that the problem on the implication
in (2) holds. Next, we present our new algorithm for solvingis.

2.1 The Algorithm

As reviewed in Sec. 1, to solve IQP in (2), the integer coistis usually either ignored, or relaxed
to a continuous QP, e.g., BYicV: ;>0 and ||x|| =1. For example, wherf; norm is used as
relaxation, the solutiom* of (2) can be found using the replicator dynamics in the cartus
domain [17]. Also, when onlyicV: z;>0 is used as relaxation, then the IP of (1) can be solved via
message passing [14]. Usually, the solution found in theicoous domain is binarized to obtain

a discrete solution. This may lead to errors, especialljgfrelaxed QP is nonconvex [20]. In this
paper, we present a new MWIS algorithm that iteratively seelsolution directly in the discrete
domain. A discrete solution is computed by maximizing thetfarder Taylor series approximation
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of the quadratic objective in (2) around a solution foundha previous iteration. This is similar
to the method of [20], which, however, makes the restricigsumptions that the matrix of the
guadratic term (analog of o) is “close” to positive-semi-definite (PSD), or that it isikal with
non-negative elements. These assumptions are not suftabimage segmentation. Graduated
assignment [21] also iteratively maximizes a Taylor segigzansion of a continuous QP around the
previous solution; but this is done in the continuous dom&inceA in (2) is not PSD, our algorithm
guarantees convergence only to a local maximum, as mostafdahe-art MWIS algorithms [12, 13,
14,17, 18]. Below, we describe the main steps of our MWIS rétigian.

Let f(z) = w'z — Loz Az denote the objective function of IQP in (2). Also, in our rtaa,
x,z,z* € {0,1}" denote a point, candidate solution, and solution, resgagtiin the discrete
domain; andy € [0, 1]™ denotes a point in the continuous domain. Our algorithm igedfpoint
iteration that solves a sequence of integer programs whi&ba@nvex approximations gf, around

a solution found in the previous iteration. The key intuitis that the approximations are simpler
functions thary, and thus facilitate computing the candidate discretetigols in each iteration. The
algorithm increaseg in every iteration until convergence.

Our algorithm visits a sequence of continuous pofa§”, ..., y®, ...}, y® < [0,1]?, in itera-
tionst = 1,2, ..., and finds discrete candidate solutiahs {0, 1}" in their respective neighbor-
hoods, until convergence. Each iteratioconsists of two steps. First, for any pomte [0,1]™ in
the neighborhood af*), we find the first-order Taylor series approximatioryef) as

Fy) ~ h(y,yD) = FlyD) + (g — y®) (w — aAy®) = y(w — aAy™) +const  (3)

where ‘const’ does not depend gn Note that the approximatioh(y, y®) is convex iny, and
simpler thanf (y), which allows us to easily compute a discrete maximizer(ef as

1, if ithelementofw — aAy®); >0 @)

T = argmax h(w,y(t)) & Z = { 0 otherwise

xec{0,1}"
To avoid the trivial discrete solution, wheh= 0 we instead set = [0,...,0,1,0,..., O]T, with
&; = 1 wherei is the index of the minimum element 6iy — aAy®).

In the second step of iteratianthe algorithm verifies ife can be accepted as a new, valid discrete
solution. This will be possible only if is non-decreasing, i.e., f(&)> f(y®). In this case, the
algorithm visits pointy(*+1) =2z, in the next iteration. In casg(z)<f(y*), this means that there
must be a local maximum of in the neighborhood of pointg® and&. We estimate this local
maximizer of f in the continuous domain by linear interpolatiayi!+") =y*) +n(z—y®). The
optimal value of the interpolation parametgg[0, 1] is computed such thatf (y*+1))/on > 0,

which ensures that is non-decreasing in the next iteration. As shown in Seg.tBe2optimal; has
a closed-form solution:

i o ((w—aAy ) @ —y)
" ( b <a(:z=_y<t>)TA(5;_y<t>)’O>’1>' ®)

Having computed,(**1), the algorithm starts the next iteration by finding a Taylenies approxi-
mation in the neighborhood of poigt!t!). After convergence, the latest discrete solutios taken
to represent the final solution of MWI%;=x. Our MWIS algorithm is summarized in Alg. 1

2.2 Theoretical Analysis

This section presents the proof that our MWIS algorithm esges to a maximum. We also show
that its complexity isO(|E|). We begin by stating a lemma that pertains to linear intexpmh

y ) =y 4 (—y®) such that the IQP objective functighis non-decreasing at‘t1).

Lemma 1 Suppose that the IQP objective function f is increasing at point y; € [0,1]", and de-
creasing at point y» € [0,1]™, y1 # y2. Then, there exists a point, y = y1 + n(y2 — y1), and
y € [0,1]™, such that f isincreasing at y, where ) is an interpolation parameter, n € [0, 1].

Proof: It is straightforward to show that if € [0,1] = y € [0,1]*. Forn = 0, we obtain
y = vy, Where f is said to be increasing. For # 0, y can be found by estimating such
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that Bf(yl—i—n(yg—yl))/anzo. It follows: (w—aAyl)T(yg—yl)—na(yg—yl)TA(yg—yl)20.
Define auxiliary termg = (w — aAyl)T(yg —y1) andd = a(yz — yl)TA(yg — vy1). Sinced
is not PSD, we obtaip < g, ford > 0, andn > ¢, ford < 0. Sincen € [0,1], we compute
7 = min(max(<, 0), 1), which is equivalent to (5), fog; = y® andy, = . O

In the following, we define the notion of maximum, and provatthlg. 1 converges to a maximum.

Definition We refer to pointy* as a maximum of a real, differentiable functig(y), defined
over domainD, g : D — R, if there exists a neighborhood ef*, A'(y*) C D, such that

Yy e N(y*): g9(y*) = g(y).
Proposition 1 Alg. 1 increases f in every iteration, and converges to a maximum.

Proof: Initerationt of Alg. 1, if f(&) > f(y®)) then the next point visited by Alg. 1 ig(‘t!) = z.
Thus, f increases in this case. Elgg!t!) = ¢y + (2 — y*), yielding

1
Sy )=y D) in(w—aAy®) @y ) + ﬁ2§0‘(5f—y<t))TA(i—y(“)- (6)
Sincez maximizesh, given by (3), we havé (&, y®)—h(y®, y(t)):(w—aAy(t))T(:ﬁ—y(t))20.
Also, from Lemma 1) is non-negative. Consequently, the second term in (6) ismegative. Re-
garding the third term in (6), from (5) we haye(—y®) A (z—y®)=(w—aAy®) (F—y®)
which we have already proved to be non-negative. THiwdso increases in this second case. Since
f <w'1, andf increases in every iteration, thgrconverges to a maximurf

Complexity: Alg. 1 has complexity) (| E|) per iteration. Complexity depends only on a few matrix-
vector multiplications withA, where each take®(|E|). This is because is sparse and binary,
where each elemem; ;=1 iff (i,7) € E. Thus, any computation in Alg. 1 pertaining to particular
nodeicV depends on the number of positive element&lirow A,., i.e., on the branching factor
of . Computingz in (4) has complexityD(n), wheren < |E|, and thus does not affect the final
complexity. For the special case of balanced graphs, Al@sldomplexityO(|E|) = O(nlogn).

In our experiments, Alg. 1 converges in 5-10 iterations apgs with about 300 nodes.

3 Formulating Segmentation as MWIS

We formulate image segmentation as the MWIS of a graph of @megions obtained from different
segmentations. Below, we explain how to construct this lgraBiven a set of all segmentg;,
extracted from the image by a number of distinct segmentergonstruct a grapldy = (V, F,w),
whereV andE are the sets of nodes and undirected edgesyand —R™ assigns positive weights
w; to every node € V, i=1,...,n. Two nodes andj are adjacentyi, j) € F, if their respective
segments; andsS; overlap in the imageS; N.S; # (0. This can be conceptualized by the adjacency
matrix A = (A;;), whereA;; = 1iff S; N S; # 0, andA;; = 0iff S; N S; = 0. For robustness
in our experiments, we tolerate a relatively small amourtwalap by setting a tolerance threshold

6, such thatA;; = 1 if % > ¢, andA;; = 0 otherwise. (In our experiments we use

6 = 0.2). Note that the IQP in (2) also permits a “soft” definitionAfwhich is beyond our scope.

The weightsw; should be larger for more “meaningful” segmessts so that these segments are
more likely included in the MWIS of7. Following the compositionality-based approaches of [8, 9
we define that a “meaningful” segment can be easily descitbedms of its own parts, but difficult
to describe via other parts of the image. Note that this d&finis suitable for identifying both:
(i) distinct textures in the image, since texture can be éefims a spatial repetition of elementary
2D patterns; and (ii) homogeneous regions with smooth trans of brightness. To define;,
we use the formalism of [8], where the easiness and diffiaflifescribingS; is evaluated by its
description length in terms of visual codewords. Specifjcglven a dictionary of visual codewords,
and the histogram of occurrence of the codewords; jnwe definew; = |S;| K L(S;, S;), whereK L
denotes the Kullback Leibler divergendeis the input image, and; = I\S;. All the weightsw
are normalized bynax; w;. Below, we explain how to extract the dictionary of codewsord

Similar to [22], we describe every pixel with an 11-dimemsibdescriptor vector consisting of the
Lab colors and filter responses of the rotationally invariaotlimear MR8 filter bank, along with
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the Laplacian of Gaussian filters. The pixel descriptorsthem clustered using K-means (with
K = 100). All pixels grouped within one cluster are labeled with d@que codeword id of that
cluster. Then, the histogram of their occurrence in evegiores; is estimated.

Givend, as described in this section, we use our MWIS algorithm liecs&meaningful” segments,
and thus partition the image. Note that the selected segmethbptimally cover the entire image,
otherwise any uncovered image areas will be immediatedfitiut by available segmentslinthat
do not overlap with already selected ones, because thisneikase the IQP objective functigh

In the case when the input segments do not form a strict luieyaand intersections of the input
segments have not been added/towe eliminate holes (or “soft” overlaps) between the sel@ct
segments by applying the standard morphological ope{mg., thinning and dilating of regions).

4 Results

This section presents qualitative and quantitative ev@naf our segmentation on 200 images
from the benchmark Berkeley segmentation dataset (BSO) [R3SD images are challenging for
segmentation, because they contain complex layouts ancliseéxtures (e.g., boundaries of several
regions meet at one point), thin and elongated shapes, ktidedy large illumination changes. We
also evaluate the generality and execution time of our MW¢®rithm on a synthetic graph from
benchmark OR-Library [24], and the problem sets from [12].

Our MWIS algorithm is evaluated for the following three tgpef input segmentations. The first
type is a hierarchy of segments produced by the gPb-OWT-UGHthad of [7]. gPb-OWT-UCM
uses the perceptual significance of a region bounddrys [0,100], as an input parameter. To
obtain the hierarchy, we var, = 20:5:70. The second type is a hierarchy of segments produced
by the multiscale algorithm of [5]. This method uses pixgknsity contrasty € [0, 255], as an
input parameter. To obtain the hierarchy, we vary= 30:20:120. Finally, the third type is a
union of NCut [1] and Meanshift [3] segments. Ncut uses opefmparameter — namely, the total
number of regions)V, in the image. Meanshift uses three input parameters: readndwidthb ¢,
spatial bandwidtlh, and minimum region areé,in. We vary these parametersigs= 10:10:100,

by = 5.5:0.5:8.5, by = 4:2:10, and Smin = 100:200:900. The variants [7]+Ours and [5]+Ours
serve to test whether our approach is capable of extractimgahingful” regions from a multiscale
segmentation. The variant ([3]+[1])+Ours evaluates oyrdtlyesis that reasoning over an ensemble
of distinct segmentations improves each individual one.

Segmentation of BSD images is used for a comparison withicaplk dynamics approach of [17],

which transforms the MWIS problem into the maximum weiglieé problem, and then relaxes it
into a continuous problem, denoted as MWC. In addition, vge alse data from other domains —
specifically, OR-Library [24] and the problem sets from [£Zpr a comparison with other state-of-
the-art MWIS algorithms.

Qualitative evaluation: Fig. 3 and Fig. 4 show the performance of our variant [7]+Qamrsex-
ample images from BSD. Fig. 4 also shows the best segmemdgatid7] and [25], obtained by an
exhaustive search for the optimal values of their input petars. As can be seen in Fig. 4, the
method of [7] misses to segment the grass under the tigerpe@egments the starfish and the
camel, which we correct. Our approach eliminates the neelafiod-picking the optimal input pa-
rameters in [7], and yields results that are good even inscaten objects have complex textures
(e.g. tiger and starfish), or when the boundaries are blunrgatyged (e.g. camel).

Quantitative evaluation: Table 1 presents segmentations of BSD images using ourvhareats:
[7]+Ours, [5]+0urs, and ([3]+[1])+Ours. We consider tharslard metrics: Probabilistic Rand
Index (PRI), and Variation of Information(I) [26]. PRI between estimated and ground-truth
segmentations§ andG, is defined as the sum of the number of pairs of pixels that Havsame
label in S and G, and those that have different labels in both segmentatiinsled by the total
number of pairs of pixelsV I measures the distance betwegmnd G in terms of their average
conditional entropy. PRI should be large, an#'/ small. For all variants of our approach, we
run the MWIS algorithm 10 times, starting from differenttial points, and report the average
PRI andV I values. For [7], we report their best results obtained byxraestive search for the
optimal value of their input parameté. As can be seen, [7]+O0urs does not hand-pick the optimal
input parameters, and outperforms the best results ofr@li§f]. Surprisingly, when working with
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Algorithm 1: Our MWIS Algorithm
Input: Graphd includingw andA, convergence

threshold, regularization parameter = 2 | Method [ PRI VI ]
Output: The MWIS of G denoted ag:* Human 0.87 | 1.16
1 Define IQP objectivef(x) £ w'e — Jax"Ax ; 7 0.81 | 1.68
2 Initialize t=0, andz*=0, y(* €{0, 1}, y(©)£0; (ISHID+MWC || 0.78 | 1.75
3 repeat [5]+Ours 0.79 | 1.69
s | Findh(y,y®) asin (3): (B+[ID+Ours || 0.80 | 1.71
Y.y * [7]+Ours 0.83 | 1.59
5 Use (4) fore= argmax, ¢ (o 1} h(z, y®);
6 | if f(&) > f(y™)then Table 1: A comparison on BSD. Prob-
7 | yt+h = & ; abilistic Rand Index® RI) should be
s else large, and Variation of Information
9 Use (5) for (VI)small. Input segments are gener-
— argmax f ( ® (G- (t))) ated by the methods of [7, 5, 3, 1], and
= ng’[o 1] yrrETy then selected by the maximum weight
(t4+1) — o (t) = (D) - clique formulation (MWC) of [17], or
10 endy v an@ -y by our algorithm. For [7], we report
1 it (@) > ) then their best results obtained by an ex-
12 ! f(:ﬁ): fw ) haustive search for the optimal value
1 |zt =2, of their input parametep,.
14 end

=
ol

until [y — y®| <6

segments generated by Meanshift, Ncuts, and [5], the pedioces of [5]+Ours and ([3]+[1])+Ours
come very close to those of [7]. This is unexpected, becawsanghift, Ncuts, and the method of
[5] are known to produce poor performance in termg’at/ andV I values, relative to [7]. Also,
note that ([3]+[1])+Ours outperforms the relaxation-thseethod ([3]+[1])+MWC.

Fig. 2 shows the sensitivity of the convergence rate of opr@gch to a specific choice of The
penalty termmy " Ay of the IQP objective function is averaged over all 200 graphsh with about
300 nodes, obtained from 200 BSD images. As can be seen, for2, the penalty termyvy’ Ay
converges to 0 with some initial oscillations. Experimédlgtdahe convergence rate is maximum
whena = 2. We use this value in all our experiments.

— a2
S8 —w<?
,_i o [ Method | 2500 [24] | p3000-7000 [12]]
3 [12] | avg 2 175
05 sec 74 1650
o) = = = Ours | avg 0 62
Number of iterations Sec 21 427

Figure 2: Convergence rate vs. a specific choicelable 2: Average of solution difference, and
of «, averaged over 200 BSD images: < 2is  computationtime in seconds for problem sets
marked red, and > 2 is marked blue. from [24] and [12].

MWIS performance: We also test our Alg. 1 on two sets of problems beyond imageseatation.
As input we use a graph constructed from data from the ORakyjR4], and from the problem sets
presented in [12]. For the first set of problems (b2500), wig consider the largest graphs. We use
ten instances, called b2500-1 to b2500-10, of size 2500 atihddensity 10%. For the second set
of problem (p3000 to p7000), we take into account graphszef 4000, 5000, 6000 and 7000. Five
graph instances per size are used. Tab. 2 shows the aveffagerdie between the estimated and
ground-truth solution, and computation time in secondse ptesented comparison with Iterative
Tabu Search (ITS) [12] demonstrates that, on average, wewvachetter performance, under much
smaller running times.
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Figure 3: Segmentation of BSD images. (top) Original imagbsttom) Results using our variant
[7]+Ours. Failures, such as the painters’ shoulder, thé#*biower body part, and the top left fish,
occur simply because these regions are not present in toesagmentations.

Figure 4. Comparison with the state-of-the-art segmemtatigorithms on BSD images. (top row)
Original images. (middle row) The three left results arexfri@’], and the rightmost result is from
[25]. (bottom row) Results of [7]+Ours. By extracting “méagful” segments from a segmentation
hierarchy produced by [7] we correct the best, manuallynoigtd results of [7].

5 Conclusion

To our knowledge, this is the first attempt to formulate imaggmentation as MWIS. Our empirical
findings suggest that this is a powerful framework that peymood segmentation performance
regardless of a particular MWIS algorithm used. We havegiresl a new fixed point algorithm that
efficiently solves MWIS, with complexit@)(|E|), on a graph with E| edges, and proved that the
algorithm converges to a maximum. Our MWIS algorithm seekslation directly in the discrete
domain, instead of resorting to the relaxation, as is commahe literature. We have empirically
observed that our algorithm runs faster and outperformstiher competing MWIS algorithms on
benchmark datasets. Also, we have shown a comparison vétistiie-of-the-art segmenter [7]
on the benchmark Berkeley segmentation dataset. Our isgleat “meaningful” regions from a
segmentation hierarchy produced by [7] outperforms theuabyoptimized best results of [7], in
terms of Probabilistic Rand Index and Variation of Inforioat
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