

CVPR 2008

MOTIVATION

Objects in 3D world: Their image projections:	
cohesive \rightarrow regions of contiguous pixels = 2D objects	
have distinct locations & finite volume \rightarrow geometric properties: shape, area	
different materials on their surfaces \rightarrow photometric properties: color, texture	
structure of surface materials \rightarrow layout and embedding of subregions within re	egions
comprised of other objects = parts \rightarrow spatial layout and hierarchy of 2D objects	
PROBLEM STATEMENT	
GIVEN images, each containing >= 0 occurrences of an object category	
IDENTIFY all regions occupied by the category in the image set	
LEARN a model of the category that JOINTLY captures:	
- Geometric properties (e.g., shape, area, relative displacements)	
- Photometric properties (e.g., intensity contrast along the boundary)	
- Embedding (or containment) relationships	
- Neighbor relationships and their strength	

of the regions identified to represent category occurrences.

GIVEN a new image, use the learned category model to DETECT, RECOGNIZE, SEGMENT any occurrences of the category.

PRIOR WORK we	PROPOSED O	RIECT REPRESENTATION
		DIECI NEI NESENIAIION

hierarchy of adjacency graphs different connected segmentation trees for different layouts

modeling properties of regions occupied by 2D objects	photometric	geometric	spatial layout	embedding
bag of keypoints		X	X	X
planar-graph models		 ✓ 		×
hierarchical models		 ✓ 	X	
Connected Segmentation Tree				

1) Regions are exposed to one other through their nearby boundary segments

3) Relative degrees of boundary exposure to neighbors = Strengths of a region's neighborliness 4) Region neighborliness is asymmetric

Connected Segmentation Tree -- A Joint Representation of Region Layout and Hierarchy Narendra Ahuja and Sinisa Todorovic {n-ahuja, sintod}@uiuc.edu

OVERVIEW OF OUR APPROACH

- 1) Images = Connected segmentation trees (CST) \Rightarrow Similar objects = Similar subgraphs
- 2) Similarity defined in terms of region properties:
 - Geometric and photometric
 - Strengths of region neighbor relationships
- and recursively the same properties of embedded subregions
- 3) Similar subgraphs found by using max-clique based graph matching
- 4) Maximally matching subgraphs are fused into a graph-union = CST category model
- 5) Matching the model with the CST of a new image:
 - Simultaneous recognition and segmentation all category occurrences
 - Explanation of recognition in terms of object parts and their neighbor relationships

CONTRIBUTIONS -- DEFINITION OF REGION NEIGHBORLINESS

- 2) If boundary parts of two regions are:
 - Visible to each other
 - Nearby
 - Sufficiently far from other region boundaries

CONTRIBUTIONS -- GENERALIZED VORONOI DIAGRAM

Boundary pixels and their corresponding standard Voronoi polygons for points

 \Rightarrow The two regions are called neighbors

Generalized Voronoi polygons for regions Union of Voronoi polygons of boundary pixels

- Regions are neighbors if their generalized Voronoi polygons touch
- Strength of neighborliness = Percentage of a Voronoi polygon's perimeter that is shared

<u>Properties of the proposed algorithm</u>:

CONTRIBUTIONS -- GENERALIZED MAX-CLIQUE GRAPH MATCHING

<u>Problem</u>: How to match graphs whose both edges and nodes are weighted?

Given two CST image representations: G = (V, E) and G' = (V', E')find structure-preserving bijection: $f = \{(v, v')\} \subset V imes V'$ which maximizes their similarity measure defined as

$$S_{GG'} = \max_{f} \left[\sum_{(v,v') \in f} \psi_{vv'} + \sum_{(v,v',u,u') \in f \times f} \phi_{vv'uu'} \right]$$

unary potential = function of region intrinsic properties

pairwise potential = function of region neighborliness and embedding

- It matches regions with regions, and separately region spatial relationships with corresponding relationships - The maximum common subgraph, found by the algorithm, preserves the original structure of input graphs - It seeks legal region-region and relationship-relationship matches whose unary and pairwise potentials are large

Rec. error

RESULTS

UIUC Hoofed Animals Dataset [1] (http://vision.ai.uiuc.edu/~sintod/datasets.html)

Simultaneous recognition and segmentation of category "cow" represented by the CST model (middle row), and the segmentation-tree (ST) model [1, 2] (bottom row). CSTs outperform STs.

ACKNOWLEDGMENT

The support of the National Science Foundation under grant NSF IIS 07-43014 is gratefully acknowledged

REFERENCES

[1] N. Ahuja and S. Todorovic, "Learning the taxonomy and models of categories present in arbitrary images," in ICCV 2007 [2] S. Todorovic and N. Ahuja, "Unsupervised category modeling, recognition and segmentation in images," in IEEE TPAMI, 2008