

GIVEN an arbitrary set of images, with:

1) ≥ 0 occurrences of ≥ 0 categories per image
2)
3) Varying illumination
4) Small changes in scale, viewpoint
 Learn
the models and spatial taxonomy
of discovered categories.

In a new image
DETECT, RECOGNIZE, SEGMENT
all occurrences of the learned categories, and
recognition via subcategory grammar.

RECURSIVE DEFINITION OF CATEGOR
Category = Set of similar and frequently occurring 2D objects in the training set
Similarity is defined in terms of subcategory properties Geometric: area, shape
Phormetral gay level contrast, variance

1) Images $=$ Segmentation trees [Ahuja PAMI 96]
2) Region properties computed relative to parent regions \Rightarrow Rotation-in-plane and scale invariance
3) Similar objects $=$ Similar subtrees
) Finding similarity values between subtrees:
GIVEN two trees t and t^{\prime}, FIND consistent subtree
isomorphism $f:\left(v, v^{\prime}\right), v \in t, v^{\prime} \in t^{\prime}$ which MAXIMIZES

$$
\mathcal{S}_{t t^{\prime}}=\max _{f} \sum_{\left(v, v^{\prime}\right) \in f}[\underbrace{r_{v}+r_{v^{\prime}}}-\underbrace{\left|r_{v}-r_{v^{\prime}}\right|}]
$$

similarity measure region saliency cost of region matching

$$
r_{v}=\xi^{\mathrm{T}} \psi_{v}, \quad \xi \geq 0, \quad \xi^{\mathrm{T}} \xi=1
$$

region properties relative significance to recognition

DISCOVERING ALL CATEGORIES OF ALL COMPLEXITIES

1) Agglomerative binary clustering of all regions from all image 2) KS-test with sensitivity $\alpha=5 \%$ for selecting valid clusters 3) Valid cluster = Discovered category

TAXONOMY OF ALL DISCOVERED CATEGORIES: Region containment to category containment \rightarrow Region co-occurrence to category co-occurrence "umul|lum

Co-occurrence category $\quad=$ Layout of co-occurring categories

segmentation trees of the training images

EVALUATION ON A NEW DATASET - HOOFED ANIMALS http://vision.ai.uiuc.edu/~sintod/datasets.html

1) Recognition is invariant to: translation, in-plane rotation, articulation, patti occlusion, clutter, small variations in scale, illumination, and viewpoint.
2) Object segmentation is good even on jagged and blurred object boundaries forming complex topologies.
3) Approach robust because object boudnaries often coincide with segment boundaries.
CONTRIBUTIONS:
4) Recursive definition of a category via the appear ae and spatial configuration of subcategories.
5) Some subcategories may be shared by multiple categories

Some subcategories may be shared by multiple categories
\Rightarrow Subcategory grammar \Rightarrow Providing a semantic basis for recognition.
3) Joint, completely unsupervised learning of the models and taxonomy of arbitrarily structured categories present in a given image set.

ACKNOWLEDGMENT: ONR under grant N00014-06-01-0101

