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PROBLEM STATEMENT
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Problem Statement

Given a set of images 

containing objects from an unknown category

where the images are captured

 at varying distances from the objects

discover and segment all objects of the category
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Illustrative Example

input output

Faces should be identified and segmented
as the frequently occurring category in the input images

Note that this is not a face-detection talk
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Challenges: Scale Variations 

• Geometric and photometric properties of objects change

• Details visible in the high zoom-in, disappear at coarse scales
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MOTIVATION
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Motivation: Image = Segmentation Tree

N. Ahuja 96, Tobb & Ahuja 97, Arora&Ahuja 06

segmentation tree
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multiscale segmentation
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Motivation: Image = Segmentation Tree
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Motivation: Learning Objects = Tree Matching

Objects = Similar subtrees

training

model

new image

recognition
segmentation
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Effect of Scale Changes

Width and depth of object subtrees varies
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PRIOR WORK
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• Contrast with surround

• Area

• Displacement of centroids

• Orientation of principal axes

• Perimeter

Region Properties Associated with Each Node

...
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Todorovic & Ahuja 06, Ahuja & Todorovic 07

vector of region properties: ψψ
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• Contrast with surround

• Area

• Displacement of centroids

• Orientation of principal axes

• Perimeter

Region Properties Associated with Each Node

...
Area defined relative to parent’s area

⇓
Invariance to small scale variations
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vector of region properties: ψψ
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Tree Matching = Subtree Isomorphism
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Tree Matching = Subtree Isomorphism

Match two regions 
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Tree Matching = Subtree Isomorphism

Match two regions 

•If their immediate properties are similar 
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Tree Matching = Subtree Isomorphism

Match two regions 

•If their immediate properties are similar 

•AND the same holds for their subregions
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Addressing Instability of Image Segmentation

Many-to-many matching = Augmenting trees with mergers

Todorovic & Ahuja 06, Ahuja & Todorovic 07
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Addressing Instability of Image Segmentation

Many-to-many matching = Augmenting trees with mergers

Todorovic & Ahuja 06, Ahuja & Todorovic 07
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Tree Matching = Subtree IsomorphismAddressing Instability of Image Segmentation

Torsello & Hancock 03, Pelillo et al. 99, Glantz et al. 04

Matching all descendants under a node
                              ⇓                                                  ⇒   tree flattening
Matching transitive closures of trees
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OUR APPROACH
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Our Approach

• Represent images as segmentation trees

• Down-weight fine details closer to leaf nodes  --           
Find weighted transitive closure of the trees

• Match by separating the scales of the objects and scene -- 
Normalization of region properties
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Weighted Transitive Closures
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ρ(v, u) =
area(u)
area(v)
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Bottom-Up Matching
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mapping function
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Separation of Scene Scale from Object Scale
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Example:
δarea = area(v)/area(v′) → ãrea(v′) = δarea ∗ area(v′)
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Separation of Scene Scale from Object Scale

t

t
′

v

v
′

Example:
δarea = area(v)/area(v′) → ãrea(v′) = δarea ∗ area(v′)

=   vectors of region propertiesψ(v), ψ(v′)

δi = ψi(v)! ψi(v′) → ψ̃i(v′) = δi ⊗ ψi(v′)

∆ = {δ1, . . . , δd} normalization factors⇒
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Normalization
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Use         to normalize all descendants  u’ of v’∆
ψ̃i(u′) = δi ⊗ψi(u′) i = 1, . . . , d
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Normalization

t

t
′

v

v
′

Use         to normalize all descendants  u’ of v’∆
ψ̃i(u′) = δi ⊗ψi(u′) i = 1, . . . , d

⇓
Properties of all nodes are normalized to those of root  v

 ⇓
Separation of the scale of the object from the scale of the scene
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which minimizes the cost of matching:

Tree Matching: Formulation

Find  bijection between the descendants of  v  and  v’

Given two weighted trees:                                  andt = (V, E, ψ, ρ) t′ = (V ′, E′, ψ̃′, ρ′)

For each pair of nodes: (v, v′) ∈ V × V ′

Cvv′ = min
f




∑∑∑

(u,u′)∈f

Avv′ +
∑∑∑

(w,w′,u,u′)∈f×f

Bvv′uu′





f = {(u, u′)} ⊂ V × V ′

where A and B are defined in terms of region properties and edge weights
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Relaxation of the discrete problem

Tree Matching: Formulation

s.t.

Cvv′ = min
X

[
AT X +

1
2

XT BX

]

xuu′ ∈ [0,1],
∑∑∑

u

xuu′ = 1
∑∑∑

u′

xuu′ = 1
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Results: Discovery and Segmentation 
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Results: Discovery and Segmentation 

prior work our results
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Results: Discovery and Segmentation 
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Results: Discovery and Segmentation

(a) (b) (c) (d)matching the down-sampled textures
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Summary
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Summary

• Scale-invariant object matching achieved by:
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Summary

• Scale-invariant object matching achieved by:

• Down-weighting the effect of missing fine details at coarser scales
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Summary

• Scale-invariant object matching achieved by:

• Down-weighting the effect of missing fine details at coarser scales

• Separating the scale of the object from the scale of the scene
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