Scale-invariant Region-based Hierarchical Image Matching

Sinisa Todorovic and Narendra Ahuja

ICPR 2008

PROBLEM STATEMENT

Problem Statement

Given a set of images

containing objects from an unknown category

where the images are captured

at varying distances from the objects

discover and segment all objects of the category

Illustrative Example

input

output
Faces should be identified and segmented as the frequently occurring category in the input images

Note that this is not a face-detection talk

Challenges: Scale Variations

- Geometric and photometric properties of objects change
- Details visible in the high zoom-in, disappear at coarse scales

MOTIVATION

Motivation: Image $=$ Segmentation Tree

multiscale segmentation
N. Ahuja 96, Tobb \& Ahuja 97, Arora\&Ahuja 06

Motivation: Image $=$ Segmentation Tree

N. Ahuja 96, Tobb \& Ahuja 97, Arora\&Ahuja 06

Motivation: Learning Objects = Tree Matching

training

Objects $=$ Similar subtrees

Effect of Scale Changes

Width and depth of object subtrees varies

PRIOR WORK

Region Properties Associated with Each Node

$\psi \psi \psi$ vector of region properties:

- Contrast with surround
- Area
- Displacement of centroids
- Orientation of principal axes
- Perimeter
:

Todorovic \& Ahuja 06, Ahuja \& Todorovic 07

Region Properties Associated with Each Node

$\psi \psi$ vector of region properties:

- Contrast with surround
- Area
- Displacement of centroids
- Orientation of principal axes
- Perimeter $:$

Area defined relative to parent's area

Invariance to small scale variations

Todorovic \& Ahuja 06, Ahuja \& Todorovic 07

Tree Matching = Subtree Isomorphism

Tree Matching = Subtree Isomorphism

Match two regions

Tree Matching = Subtree Isomorphism

Match two regions

- If their immediate properties are similar

Tree Matching = Subtree Isomorphism

Match two regions

- If their immediate properties are similar
- AND the same holds for their subregions

Addressing Instability of Image Segmentation

Many-to-many matching $=$ Augmenting trees with mergers

Todorovic \& Ahuja 06, Ahuja \& Todorovic 07

Addressing Instability of Image Segmentation

Many-to-many matching = Augmenting trees with mergers

Todorovic \& Ahuja 06, Ahuja \& Todorovic 07

Addressing Instability of Image Segmentation

Matching all descendants under a node \Downarrow
\Rightarrow tree flattening
Matching transitive closures of trees
Torsello \& Hancock 03, Pelillo et al. 99, Glantz et al. 04

OUR APPROACH

Our Approach

- Represent images as segmentation trees
- Down-weight fine details closer to leaf nodes -Find weighted transitive closure of the trees
- Match by separating the scales of the objects and scene -Normalization of region properties

Weighted Transitive Closures

Weights ρ associated with all edges in the tree

$$
\rho(v, u)=\frac{\operatorname{area}(u)}{\operatorname{area}(v)}
$$

Bottom-Up Matching

Bottom-Up Matching

Bottom-Up Matching

Bottom-Up Matching

Separation of Scene Scale from Object Scale

Example:

$\delta_{\text {area }}=\operatorname{area}(v) / \operatorname{area}\left(v^{\prime}\right) \rightarrow \widetilde{\operatorname{area}}\left(v^{\prime}\right)=\delta_{\text {area }} * \operatorname{area}\left(v^{\prime}\right)$

Separation of Scene Scale from Object Scale

Example:

$\delta_{\text {area }}=\operatorname{area}(v) / \operatorname{area}\left(v^{\prime}\right) \rightarrow \widetilde{\operatorname{area}}\left(v^{\prime}\right)=\delta_{\text {area }} * \operatorname{area}\left(v^{\prime}\right)$
$\boldsymbol{\psi}(v), \boldsymbol{\psi}\left(v^{\prime}\right)=$ vectors of region properties
$\delta_{i}=\psi_{i}(v) \oslash \psi_{i}\left(v^{\prime}\right) \rightarrow \widetilde{\psi}_{i}\left(v^{\prime}\right)=\delta_{i} \otimes \psi_{i}\left(v^{\prime}\right)$
$\Rightarrow \boldsymbol{\Delta}=\left\{\delta_{1}, \ldots, \delta_{d}\right\}$ normalization factors

Normalization

Use $\boldsymbol{\Delta}$ to normalize all descendants \boldsymbol{u}^{\prime} of \boldsymbol{v}^{\prime}

$$
\widetilde{\boldsymbol{\psi}}_{i}\left(u^{\prime}\right)=\delta_{i} \otimes \boldsymbol{\psi}_{i}\left(u^{\prime}\right) \quad i=1, \ldots, d
$$

Normalization

Use $\boldsymbol{\Delta}$ to normalize all descendants u^{\prime} of \boldsymbol{v}^{\prime}

$$
\widetilde{\boldsymbol{\psi}}_{i}\left(u^{\prime}\right)=\delta_{i} \otimes \boldsymbol{\psi}_{i}\left(u^{\prime}\right) \quad i=1, \ldots, d
$$

\Downarrow
Properties of all nodes are normalized to those of root v
\Downarrow
Separation of the scale of the object from the scale of the scene

Tree Matching: Formulation

Given two weighted trees: $t=(V, E, \psi, \rho)$ and $t^{\prime}=\left(V^{\prime}, E^{\prime}, \widetilde{\psi^{\prime}}, \rho^{\prime}\right)$

For each pair of nodes: $\left(v, v^{\prime}\right) \in V \times V^{\prime}$

Find bijection between the descendants of v and v^{\prime}

$$
f=\left\{\left(u, u^{\prime}\right)\right\} \subset V \times V^{\prime}
$$

which minimizes the cost of matching:

$$
C_{v v^{\prime}}=\min _{f}\left[\sum_{\left(u, u^{\prime}\right) \in f} A_{v v^{\prime}}+\sum_{\left(w, w^{\prime}, u, u^{\prime}\right) \in f \times f} B_{v v^{\prime} u u^{\prime}}\right]
$$

where A and B are defined in terms of region properties and edge weights

Tree Matching: Formulation

Relaxation of the discrete problem

$$
C_{v v^{\prime}}=\min _{X}\left[A^{T} X+\frac{1}{2} X^{T} B X\right]
$$

$$
\stackrel{\text { s.t. }}{\boldsymbol{x}_{u u^{\prime}}} \in[0,1], \quad \sum_{u} x_{u u^{\prime}}=1 \sum_{u^{\prime}} x_{u u^{\prime}}=1
$$

Results: Discovery and Segmentation

Results: Discovery and Segmentation

prior work

Results: Discovery and Segmentation

Caltech-101: Faces

Results: Discovery and Segmentation

matching the down-sampled textures

Texture

Summary

- Scale-invariant object matching achieved by:

Summary

- Scale-invariant object matching achieved by:
- Down-weighting the effect of missing fine details at coarser scales

Summary

- Scale-invariant object matching achieved by:
- Down-weighting the effect of missing fine details at coarser scales
- Separating the scale of the object from the scale of the scene

