Extracting Texels in 2.1D Textures Narendra Ahuja and Sinisa Todorovic ICCV 2007

What is image texture?

...Repeated occurrence of image texture elements (or texels)...

[Beck '82]

Texture is Often Random

- Image texels = Images of spatially recurring physical texture elements
- Texels are not identical, only statistically similar
- Texel placement is not regular

Texel is a natural primitive of texture models

Our goal here = Estimation of texel model

Prior Work

Texture research has a long history...
 as old as computer vision...
 and continuing...

- Most work in terms of texture features, for
 - Modeling
 - Classification
 - Segmentation
 - Shape from texture...

Prior Work

- Hardly any work on texel modeling and segmentation
- Closest work = Locating point(s) within each texel

Our Goal:

Modeling and Extraction of Texels in Natural 2.1D Textures

What is 2.1D Texture?

Physical texels are characterized by

- Texel thickness << Texel distance
- Overlap ⇒ Inter-texel occlusion

Implications

- Only a part of a texel may be visible
- Visible texel parts = Samples of different, unknown texel parts

Added Challenges of Natural 2.1D Textures

- Texels are not homogeneous regions -- they contain subregions
- Texels may have different sizes, orientations
- Multiple textures may be interleaved
- No identifiable background

Problem Statement

GIVEN

an image of frontally viewed 2.1D texture,

IDENTIFY

the texels, and

LEARN

the texel model

In a new image of the same texture DETECT

and

SEGMENT

all texels by using the learned model.

From Texel Parts to Texel Model

To build a texel model:

- Identify subimages representing (partial) texels
- Register the subimages ⇒ Many overlaying texel samples
- Find their union ⇒ Texel model structure
- Estimate PDF of subimage properties ⇒ Texel model PDF

2.1D texture

jointly

union + PDF

Our Approach: Step 1

Texture image ⇒ Segmentation tree

[Ahuja PAMI '97]

Multiscale segmentation

for all contrasts

Segmentation tree captures region embedding

Homogeneous regions at many contrasts, shapes, sizes

Regions are recursively embedded

Geometric and photometric region properties recorded at each node

Texels = Largest, recurring subtrees with statistically similar properties

- Geometric (area, shape)
- Photometric (contrast)
- Topological (subregion layout and containment)

Find all matching subtrees within the segmentation tree

Similarity measures S_{ij} between subtrees *i* and *j*

 $\begin{array}{c} \swarrow \\ \swarrow \\ \swarrow \\ \swarrow \\ \swarrow \\ \swarrow \\ \vdots \\ \end{array} \\ \begin{array}{c} \swarrow \\ \mathcal{S}_{12} \\ \mathcal{S}_{13} \\ \dots \\ \mathcal{S}_{1M} \\ \mathcal{S}_{1M} \\ \vdots \\ \end{array} \\ \begin{array}{c} \swarrow \\ \mathcal{S}_{1M} \\ \mathcal{S}_{2M} \\ \vdots \\ \end{array} \\ \begin{array}{c} \swarrow \\ \mathcal{S}_{2M} \\ \vdots \\ \end{array} \\ \begin{array}{c} \swarrow \\ \mathcal{S}_{2M} \\ \mathcal{S}_{2M} \\ \vdots \\ \end{array} \\ \begin{array}{c} \swarrow \\ \mathcal{S}_{2M} \\ \mathcal{S}_{2M} \\ \vdots \\ \end{array} \\ \begin{array}{c} \swarrow \\ \mathcal{S}_{2M} \\ \mathcal{S}_{2M} \\ \vdots \\ \end{array} \\ \begin{array}{c} \swarrow \\ \mathcal{S}_{2M} \\ \mathcal{S}_{2M} \\ \vdots \\ \end{array} \\ \begin{array}{c} \swarrow \\ \mathcal{S}_{2M} \\ \mathcal{S}_{2M} \\ \vdots \\ \end{array} \\ \begin{array}{c} \swarrow \\ \mathcal{S}_{2M} \\ \mathcal{S}_{2M} \\ \mathcal{S}_{2M} \\ \vdots \\ \end{array} \\ \begin{array}{c} \swarrow \\ \mathcal{S}_{2M} \\ \mathcal{S}_{2M} \\ \mathcal{S}_{2M} \\ \vdots \\ \end{array} \\ \begin{array}{c} \swarrow \\ \mathcal{S}_{2M} \\ \mathcal{S}_{2M} \\ \mathcal{S}_{2M} \\ \mathcal{S}_{2M} \\ \mathcal{S}_{2M} \\ \end{array} \\ \begin{array}{c} \swarrow \\ \mathcal{S}_{2M} \\ \mathcal{S}_{2M}$

[Todorovic&Ahuja IJCV '07]

Largest, recurring, similar subtrees across the segmentation tree = Identified (partial) texels

Step 2: Identifying Texels

Histogram of Similarity Values 0.05 mode texels valley number of subtree pairs 20.0 and 20.0 10.0 subtexels 0.2 0.8 0.6 0 0.4 similarity measure super-texels

texel_mode
$$\triangleq \arg \max_{\text{mode}} \sum_{\mathcal{S} \in \text{mode}} \mathcal{S} \cdot \mathcal{H}(\mathcal{S})$$

Register matched subtrees to obtain their union

Union T = The structure of texel model

Estimate the PDF of properties associated with each node in the union Node in the union = Many overlaying texel regions

Evaluation: A New Dataset of 2.1D Textures

80 images of

planar physical textures

under near-frontal viewing

Characterized by a large range of

- Size
- Orientation
- Subregion structure
- Shading, contrast and blur
- Shape complexity
- Topological complexity

sample

Samples from the Dataset

http://vision.ai.uiuc.edu/~sintod/datasets.html

Summary

- Formulation of a new problem:
 - Definition of 2.1D texture
 - Texel extraction from an image of 2.1D texture
- Texel model is a natural primitive for modeling texture
- Definition of a generative statistical model of texels
 - PDF of intrinsic texel properties: geometric and photometric
 - PDF of texel subregion structure: spatial layout and containment
- Simultaneous learning of
 - model structure
 - model parameters

from a single texture image with partially occluded texels

• Simultaneous texel detection and segmentation