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PROBLEM STATEMENT

 GIVEN a set of images, labeled by a visual category each image belongs to,

 DISCOVER all subcategories occurring in the training set,   

 LEARN a definition of each label category in terms of the subcategories,

 LEARN a region-based model of each subcategory that encodes:

      1) Likelihood that the image contains the subcategory

      2) Prior that the subcategory occurs

      3) Relevances of the subcategory to the recognition of each image category

 In a new image, 

 DETECT all occurrences of the subcategories using the learned models.

 CATEGORIZE the new image 

 by accounting for the relevances of subcategory detections for each category

Relevance of image parts for categorization:
1) Similar regions recurring in training images are relevant  =  subcategories [1, 2]

3) Subcategories may be shared by many categories, or may be unique for a category 

4) Evidence for categorization provided by a subcategory present in the new image:

       - If shared (e.g., wheels, faces)  ⇒  Poor 

       - If unshared  (e.g., wagon top) ⇒  Strong

5) Relevance of a subcategory:

       - Varies for different image categories

       - Proportional to the relative degree of sharing

MOTIVATION
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Categorization by identifying common parts with training images
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1) Images  =  Segmentation trees    ⇒    Similar 2D objects  =  Similar subtrees  [1, 2]

2) Similarity defined in terms of region properties:

          - Geometric (e.g., area, shape)

          - Photometric (e.g., intensity contrast with the surround)

          - Structural -- embedding of subregions within regions

3) Find similar subtrees via tree matching and cluster them  ⇒  Cluster  =  Discovered subcategory

4) Learn likelihoods and priors of occurrence of the subcategories from cluster properties

5) Images  =  Points in the feature space spanned by the posteriors of each subcategory

6) Learn the subcategory relevances by rescaling the feature space so that

    distance between in-class points  <  distance between out-of-class points

7) Categorize a new image by using a linear classifier that combines:

    likelihoods, priors, and relevances of the subcategories detected in the new image
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RELATIONSHIP TO PRIOR WORK ON IMAGE CATEGORIZATION

histograms 
of keypoints

no spatial
information

large training sets

unclear robustness to
occlusion and scale changes

good performance mostly due 
to using powerful classifiers

Scene-based (prior work): Object-based (proposed):

rich region-based 
image representation

small training sets

allows object segmentation 
in addition to categorization

good performance due to:
efficient category modeling

local discriminative learning 

robust to occlusion 
and scale changes

LEARNING SUBCATEGORY RELEVANCES

Goal: Maximize the discriminative power of 1-NN classifier over all image categories

Unknown about image categories:

1) Underlying distributions

2) Decision boundaries between them

1-NN classifier is suitable because:

1) Allows local learning of decision boundaries (efficient)

2) Discriminative power:  hypothesis margin  ≤  sample margin

3) Maximizing the hypothesis margin  ⇒  Small generalization error

4) Probability of error  ≤  2 ⋅ Bayes probability of error

⇒

Notation and Definitions:

subcategory -

image -

image label -

posterior -

region properties -

relevance weights -

distance -

simplex -

misses -

hits -

i

y ∈ Y = {1, ..., c, ..., C}

xi = P (ψ|i)P (i)

ψ

x = [x1, ..., xi, ..., xn]T ∈ X

w = [w1, ..., wi, ..., wn]T

dw(x, x′) = wT|x − x′|

W = {w : w∈Rn, ‖w‖=1, w≥0}

M(x) = {x′ : x′∈X , y′∈Y, y′ "=y}

H(x) = {x′ : x′∈X , y′∈Y, x′ "=x, y′=y}

h(x) = arg min
x′∈H(x)

dw(x, x′)

m(x) = arg min
x′∈M(x)

dw(x, x′)nearest miss -

nearest hit - w(t+1)(c) = max
w∈W

wTz(t)(c) =
[z(t)(c)]+

‖[z(t)(c)]+‖

where [a]+ = max(0, a)

Find                                        and                                     usingP (t)(x′ = m(x)) P (t)(x′ = h(x)) w(t)

⇓

w(c) = max
w∈W

wT
∑

x∈X
y=c

[|x − m(x)| − |x − h(x)|]

︸ ︷︷ ︸
z(c)

|x − m(x)| =
∑∑∑

x′∈M(x) |x − x′|P (x′ = m(x))

|x − h(x)| =
∑∑∑

x′∈H(x) |x − x′|P (x′ = h(x))

Problem: 
How to address the uncertainty about nearest hits and misses?

Approach (EM algorithm): 
Replace nearest hits and misses with their expected values

where

E-step:

M-step:

Subcategory relevances for category      are learned by maximizing the hypothesis margin of 1-NN classifierc

dw(x, x′) = wT|x − x′|

w(c) = max
w∈W

wT
∑∑∑

x∈X
y=c

[|x − m(x)| − |x − h(x)|]⇒w(c) = max
w∈W

∑∑∑

x∈X
y=c

[dw(x, m(x)) − dw(x, h(x))]

hypothesis margin

definition reflects the relevance of the corresponding feature

in a learning process. This is not the case in SVM except

when a linear kernel is used, which however can capture only

linear discriminant information. Note that the margin thus

defined requires only information about the neighborhood

of xn, while no assumption is made about the underlying

data distribution. This means that by local learning we can

transform an arbitrary complex, nonlinear problem into a set

of locally linear problems.

The local linearization of a nonlinear problem allows us

to avoid the computational difficulties of prior work. It also

facilitates the mathematical analysis of our algorithm. The

main problem with the above margin definition, however, is

that the nearest neighbors of a given sample are unknown be-

fore learning. In the presence of thousands of irrelevant fea-

tures, the nearest neighbors defined in the original space can

be completely different from those in the induced space. To

account for the uncertainty in defining local information, we

develop a probabilistic model where the nearest neighbors of

a given sample are treated as latent variables. Following the

principles of the expectation-maximization algorithm [15],

we estimate the margin through taking the expectation of

ρn(w) by averaging out the latent variables:
(2.3)
ρ̄n(w) = wT

(∑
i∈Mn

P (xi=NM(xn)|w)|xn − xi|
−

∑
i∈Hn

P (xi=NH(xn)|w)|xn − xi|
)

= wT z̄n ,

where Mn = {i : 1 ≤ i ≤ N, yi #= yn}, Hn = {i :
1 ≤ i ≤ N, yi = yn, i #= n}, P (xi=NM(xn)|w) and
P (xi=NH(xn)|w) are the probabilities that sample xi is the

nearest miss or hit of xn, respectively. These probabilities

are estimated through the standard kernel density estimation

method:

(2.4)

P (xi=NM(xn)|w) =
k(‖xn − xi‖w)∑

j∈Mn
k(‖xn − xj‖w)

,∀i∈Mn ,

and

(2.5)

P (xi=NH(xn)|w) =
k(‖xn − xi‖w)∑

j∈Hn
k(‖xn − xj‖w)

,∀i∈Hn ,

where k(·) is a kernel function. Specifically, we use the
exponential kernel k(d) = exp(−d/σ), where the kernel
width determines the resolution at which the data is locally

analyzed.

To motivate the above formulation, we consider the

well-known Fermat’s problem where the two-class samples

are distributed in a two-dimensional space, forming a spiral

shape, as illustrated in Fig. 1a. A possible decision boundary

is also plotted. If one walks from point A to B along

the decision boundary, at any given point (say, point C),

one obtains a liner problem locally. One possible linear
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Figure 1: Fermat’s spiral problem. (a) Samples belonging

to two classes are distributed in a two-dimensional space,

forming a spiral shape. A possible decision boundary is also

plotted. If one walks from point A to B along the decision

boundary, at any given point (say, point C), one obtain a liner

problem locally. (b) By projecting the transformed data z̄n

onto the direction specified byw, most samples have positive
margins.

formulation is given in Eq. (2.3). It is clear that for the

spiral problem, both features are equally important. By

projecting the transformed data z̄n onto the feature weight

vector w = [1, 1]T , we observe that most samples have
positive margins (Fig. 1b). The above arguments generally

hold for arbitrary nonlinear problems for a wide range of

values of kernel width, as long as the local linearity condition

is preserved. We will shortly see that the performance of our

algorithm is indeed robust against this parameter.

After the margins are defined, the problem of learning

feature weights can be directly solved within a margin frame-

work. Two most popular margin formulations are SVM [14]

and logistic regression [16]. Due to the nonnegative con-

straint on w, the SVM formulation represents a large-scale

 Decision boundary A-C-B is complex, but 
locally linear in a neighborhood of C

x

margin

nearest
hit

nearest 
miss

BEFORE

x

margin

AFTER

images with the
same label as x

images with different
labels from that of x
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EXPERIMENTAL RESULTS

Lemma:  

EM-based estimation of the subcategory relevances has a closed-form solution 

Theorem:

The learning algorithm for estimating the subcategory relevances converges 
to a unique, global solution regardless of the initialization point

THEORETICAL RESULTS

IMAGE CATEGORIZATION USING A LINEAR CLASSIFIER
new image   = x y = arg max

c∈Y
wT(c) · x⇒

Best published categorizations on Caltech-101 and Caltech-256 
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Ours
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Frome-ICCV07
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Ours
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82.3±1.7

49.2±1.9

Use of regions as image features  ⇒  Simultaneous categorization and segmentation 

Caltech-256 images from categories: billiards, camel, ostrich, and giraffe 
Most relevant Least relevant 


