

Problem statement

Monocular Depth Estimation Using Neural Regression Forest Anirban Roy, Sinisa Todorovic

Our Approach: Neural Regression Forest

Tree

Leaves

Advantages:

- Binary decisions

- Shallow CNNs

Augmenting Training Data

- Similar neighboring pixels Similar depths
- Similarity estimated by bilateral filtering

Graceful increase in error when the training set size decreases

Results on the Benchmark Datasets

	Make3D		NYU v2	
	rel	rms	rel	rms
Liu et. al. 2014	0.338	12.60	0.335	1.06
Eigen et. al. 2014	-	-	0.215	0.907
Liu et. al. 2014	0.307	12.89	0.230	0.824
Lam et. al. 2015	0.364	-	-	-
Zhuo et. al. 2015	-	-	0.305	1.04
Ours	0.26	12.40	0.187	0.744
Error reduction	- 0.04	-0.2	- 0.2	- 0.08

- Parallel loss updates

Image

Truth

Approach

Acknowledgment: NSF RI1302700. We appreciate Jose Roberto Alvarez and Bennett Wilburn for their feedback.

Relative error (rel): $\frac{1}{N} \sum (|d^* - \hat{d}|/d^*)$

Relative error (rel): $\frac{1}{N} \sum (|d^* - \hat{d}|/d^*)$

Root mean square error (rms):

$$\frac{1}{N}\sqrt{\sum(d^*-\hat{d})^2}$$

Image

Truth

Approach