Electrical Engineering & Computer Science

COLLEGE OF ENGINEERING

Fine-Grained Recognition as HSnet Search for Informative Image Parts

Michael Lam, Behrooz Mahasseni and Sinisa Todorovic

Oregon State University

CVPR 2017

Problem Statement: Fine-Grained Recognition

- Given an image of an object, recognize its class
- Categories are fine-grained and discriminated by subtle differences

Slaty Backed Gull

Western Gull

Slaty Backed Gull

- Different classes have similar appearance
- Subtly differentiated by parts

Western Gull

Slaty Backed Gull

- Same classes have different appearance
- Variations in gender, season, location

Slaty Backed Gull

Western Gull

Slaty Backed Gull

Variations in pose, viewpoint, background, lighting

Slaty Backed Gull

• Background clutter: remaining image context outside of informative image parts may hurt recognition

Ovenbird

- Small datasets, difficult if not impossible to obtain more data
- E.g. biological datasets, military datasets

Slaty Backed Gull

Slaty Backed Gull

Western Gull

Prior Work: Fine-Grained Recognition

Part-Based Models

- Localize parts and compare corresponding locations
- Factor out variations due to pose, viewpoint and location
- Farrell et al. 2011
- Zhang et al. 2014
- Branson et al. 2014
- ...
- Advantages: High accuracy, factors out variations
- Challenges: Slow, part annotations required

- 1. Farrell et al. Birdlets: Subordinate Categorization using Volumetric Primitives and Pose-normalized Appearance. ICCV, 2011.
- 2. Zhang et al. Part-based R-CNNs for Fine-grained Category Detection. ECCV, 2014.
- 3. Branson et al. Bird Species Categorization Using Pose Normalized Deep Convolutional Nets. BMVC, 2014.

Prior Work: Fine-Grained Recognition

General Image Classification

- Just classify, no part annotations needed
- Modern approaches use CNN
- Jaderberg et al. 2015
- Lin et al. 2015
- ...
- Advantages: Fast, does not require part annotations
- **Challenges**: Lower accuracy without parts information

- 1. Jaderberg et al. Spatial Transformer Networks. NIPS 2015.
- 2. Lin et al. Bilinear CNN Models for Fine-grained Visual Recognition. ICCV 2015.

Our Key Ideas

• **Part-based**: unlike object recognition, fine-grained recognition can benefit from removing background context and focusing on parts

• **Iterative**: instead of one shot reasoning, iteratively search for discriminative parts as bounding boxes in the image

• **Supervised and weakly supervised**: search for parts even without part annotations

- Iterative approach for parts localization and class prediction
- In each iteration, improve localization and predict class
 - Localization and classification is guided by HSnet
 - Number of parts is fixed
 - Final iteration yields best localization and class prediction

Iteration τ

HSnet proposes initial bounding boxes

HSnet

Iteration 1

(4 parts here for illustration purposes)

HSnet evaluates proposals for classification

Iteration 1

HSnet

HSnet updates proposals

Iteration 2

HSnet evaluates proposals for classification

Iteration 2

HSnet updates proposals

Iteration τ

HSnet evaluates proposals for classification

Iteration τ

Search Formulation

• **State**: history of location and sizes of bounding box proposals

- Heuristic function: evaluates bounding box proposals
- Successor function: generates bounding box proposals
- Heuristic and Successor functions are formulated as HSnet

- Heuristic \mathcal{H} evaluates current state
- LSTM updates search history
- Classifier C makes prediction \hat{y}
- Successor *S* proposes candidate bounding boxes based on history

SM: Softmax

 $x^{(i)}$: bounding box *i* features $o^{(i)}$: bounding box *i* offset

- Heuristic \mathcal{H} evaluates current state
- LSTM updates search history
- Classifier C makes prediction \hat{y}

SM: Softmax

Successor S proposes candidate bounding boxes based on history

 $x^{(i)}$: bounding box *i* features ROIP: Region of Interest Pooling $o^{(i)}$: bounding box *i* offset MLP: Multilayer Perceptron

- Heuristic \mathcal{H} evaluates current state
- LSTM updates search history
- Classifier C makes prediction \hat{y}
- Successor *S* proposes candidate bounding boxes based on history

SM: Softmax ROIP: Region of Interest Pooling MLP: Multilayer Perceptron $x^{(i)}$: bounding box *i* features $o^{(i)}$: bounding box *i* offset

- Heuristic \mathcal{H} evaluates current state
- LSTM updates search history
- Classifier C makes prediction \hat{y}
- Successor *S* proposes candidate bounding boxes based on history

SM: Softmax ROIP: Region of Interest Pooling MLP: Multilayer Perceptron R: Regression

 $x^{(i)}$: bounding box *i* features $o^{(i)}$: bounding box *i* offset $l^{(i)}$: bounding box *i* location

- Heuristic \mathcal{H} evaluates current state
- LSTM updates search history
- Classifier C makes prediction \hat{y}
- Successor *S* proposes candidate bounding boxes based on history

SM: Softmax ROIP: Region of Interest Pooling MLP: Multilayer Perceptron R: Regression

 $x^{(i)}$: bounding box *i* features $o^{(i)}$: bounding box *i* offset $l^{(i)}$: bounding box *i* location

Supervised vs. Weakly Supervised

• When part annotations are available:

 $-\log p(y)$: cross entropy loss

 $l^{(i)}$: groundtruth bounding box *i* location

- $\hat{l}_t^{(i)}$: predicted bounding box *i* location at time *t*
- λ_t : regularization parameter
- τ : time bound parameter
- k: number of parts

Supervised vs. Weakly Supervised

• When part annotations are not available:

 $-\log p(y)$: cross entropy loss

 λ_t : regularization parameter

 τ : time bound parameter

k: number of parts

 Ω : matrix of affinities between all possible bounding boxes

 Ω_k : restriction of Ω to k selected bounding boxes

Datasets

Caltech-UCSD Birds 200-2011

Stanford Cars 196

Annotations

- Caltech UCSD Birds
 - Part locations provided, but no bounding box for each part
 - 15 parts: back, belly, bill, breast, crown, left eye, right eye, forehead, left leg, right leg, nape, tail, throat, left wing, right wing
- Stanford Cars
 - No parts annotation

- B1: CNN (fine-tuned)
- B2: CNN with ground truth bounding boxes
- B3: HSnet with one ground truth bounding box
- B4: HSnet with one bounding box

- B1: CNN (fine-tuned)
- B2: CNN with ground truth bounding boxes
- B3: HSnet with one ground truth bounding box
- B4: HSnet with one bounding box

- B1: CNN (fine-tuned)
- B2: CNN with ground truth bounding boxes
- B3: HSnet with one ground truth bounding box

- B1: CNN (fine-tuned)
- B2: CNN with ground truth bounding boxes
- B3: HSnet with one ground truth bounding box
- B4: HSnet with one bounding box

"Ovenbird"

Results: Caltech UCSD 2011 Birds

Method	Annotations Used	Accuracy
Krause et al. 2015	GT+BB	82.8
Jaderberg et al. 2015	GT	84.1
Xu et al. 2015	GT+BB+parts+web	84.6
Lin et al. 2015	GT+BB	85.1
B1	GT	82.3
B2	GT+parts	83.1
B3	GT+parts	86.2
B4	GT+parts	85.7
HSnet	GT+parts	87.5

[1] Krause et al. Fine-grained recognition without part annotations. CVPR, 2015.

[2] Jaderberg et al. Spatial transformer networks. NIPS, 2015.

[3] Xu et al. Augmenting strong supervision using web data for fine-grained categorization. CVPR, 2015.

[4] Lin et al. Bilinear cnn models for fine-grained visual recognition. ICCV, 2015.

Results: Cars 196

Method	Annotations Used	Accuracy
Deng et al. 2013	GT+BB	63.6
Krause et al. 2013	GT+BB	67.6
Krause et al. 2014	GT+BB	73.9
Lin et al. 2015	GT	91.3
Krause et al. 2015	GT+BB	92.6
B1	GT	88.5
B4	GT	92.2
HSnet	GT	93.9

[1] Deng et al. Fine-grained crowdsourcing for fine-grained recognition. CVPR, 2013.

[2] Krause et al. 3d object representations for fine-grained categorization. ICCV Workshop, 2013.

[3] Krause et al. Learning features and parts for fine-grained recognition. ICPR, 2014.

[4] Lin et al. Bilinear cnn models for fine-grained visual recognition. ICCV, 2015.

[5] Krause et al. Fine-grained recognition without part annotations. CVPR, 2015.

Insights

Why is LSTM needed?

• Baselines demonstrate that sequential reasoning (B3-B4) improves over one shot reasoning (B1-B2)

Why DPP?

- Regularization when no groundtruth part locations are provided
- Encourages learning diverse proposals rather than learning to single into one part

Qualitative Results

Qualitative Results

Average Image of Cars

Clusters of Parts

Summary

• Sequential search for informative image parts improves recognition

• DPP regularization works well when no parts annotations are provided

• Unlike most object recognition, fine-grained recognition benefits from focusing on parts

Questions?

Fine-Grained Recognition as HSnet Search for Informative Image Parts Michael Lam, Behrooz Mahasseni and Sinisa Todorovic Oregon State University CVPR 2017