

FAPIS: A Few-shot Anchor-free Part-based Instance Segmenter Khoi Nguyen and Sinisa Todorovic

Problem Statement

- Training: Sufficiently many images with ground-truth segmentation of base classes.
- Testing: **Few support images** with ground-truth segmentation of a target class, and a **query image**. The training and test sets **do no share the same object classes**.
- Goal: Segment the target class in a query image.

A Typical Approach

Motivation

The box head of Mask-RCNN is anchor-based
 → overfitting to particular sizes and aspect
 ratios of training classes

The mask head of Mask-RCNN learns feature prototypes capturing global outlines of objects

overfitting to the **shapes** of training classes

Contribution 2:
Part-based instance
segmenter

Our Approach

Table 1. Performance with different numbers of parts on COCO-20^o

# parts	1	2	4	8	16	32	64
mAP50	16.3	17.2	17.9	18.4	18.8	18.5	18.0

Table 2. mAP50 with std of one and five-shot instance segmentation on COCO-20ⁱ

# shots	Method	$COCO-20^{0}$	$\mathbf{COCO} - 20^1$	\mathbf{COCO} - 20^2	COCO- 20^{3}	mean
K=1	Meta-RCNN (Yan et al., ICCV 19)	16.0 ± 0.6	16.1 ± 0.5	15.8 ± 0.3	18.6 ± 0.4	16.6
	Siamese M-RCNN (Michaelis et al., Arxiv 18)	16.6 ± 0.8	16.6 ± 0.6	16.3 ± 0.7	19.3 ± 0.6	17.2
	YOLACT (Bolya et al., ICCV 19)	16.8 ± 0.6	16.5 ± 0.5	16.1 ± 0.4	19.0 ± 0.6	17.1
	FAPIS	$\textbf{18.8} \pm \textbf{0.3}$	$\textbf{17.7} \pm \textbf{0.1}$	$\textbf{18.2} \pm \textbf{0.7}$	$\textbf{21.4} \pm \textbf{0.4}$	19.0
K=5	Meta-RCNN (Yan et al., ICCV 19)	17.4 ± 0.3	17.8 ± 0.2	17.7 ± 0.7	21.3 ± 0.2	18.6
	Siamese M-RCNN (Michaelis et al., Arxiv 18)	17.5 ± 0.4	18.5 ± 0.1	18.2 ± 1.0	22.4 ± 0.2	19.2
	YOLACT (Bolya et al., ICCV 19)	17.6 ± 0.2	18.4 ± 0.2	17.9 ± 0.6	21.8 ± 0.3	18.9
	FAPIS	$\textbf{20.2} \pm \textbf{0.2}$	$\textbf{20.0} \pm \textbf{0.1}$	$\textbf{20.4} \pm \textbf{0.7}$	$\textbf{24.3} \pm \textbf{0.2}$	21.2

Acknowledgement: DARPA XAI Award N66001-17-2-4029 and DARPA MCS Award N66001-19-2-4035.

Visualization of Learned Latent Parts

- (a) Input image
- (b) GT segmentation
- importance (color coded)

(d) 10 most relevant parts with

(c) Predicted segmentation blue (lowest) to green (highest))

Qualitative Results

