FAPIS: A Few-shot Anchor-free Part-based Instance Segmenter Khoi Nguyen and Sinisa Todorovic #### **Problem Statement** - Training: Sufficiently many images with ground-truth segmentation of base classes. - Testing: **Few support images** with ground-truth segmentation of a target class, and a **query image**. The training and test sets **do no share the same object classes**. - Goal: Segment the target class in a query image. ## A Typical Approach ## Motivation The box head of Mask-RCNN is anchor-based → overfitting to particular sizes and aspect ratios of training classes The mask head of Mask-RCNN learns feature prototypes capturing global outlines of objects overfitting to the **shapes** of training classes Contribution 2: Part-based instance segmenter ## **Our Approach** Table 1. Performance with different numbers of parts on COCO-20^o | # parts | 1 | 2 | 4 | 8 | 16 | 32 | 64 | |---------|------|------|------|------|------|------|------| | mAP50 | 16.3 | 17.2 | 17.9 | 18.4 | 18.8 | 18.5 | 18.0 | Table 2. mAP50 with std of one and five-shot instance segmentation on COCO-20ⁱ | # shots | Method | $COCO-20^{0}$ | $\mathbf{COCO} - 20^1$ | \mathbf{COCO} - 20^2 | COCO- 20^{3} | mean | |---------|---|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------| | K=1 | Meta-RCNN (Yan et al., ICCV 19) | 16.0 ± 0.6 | 16.1 ± 0.5 | 15.8 ± 0.3 | 18.6 ± 0.4 | 16.6 | | | Siamese M-RCNN (Michaelis et al., Arxiv 18) | 16.6 ± 0.8 | 16.6 ± 0.6 | 16.3 ± 0.7 | 19.3 ± 0.6 | 17.2 | | | YOLACT (Bolya et al., ICCV 19) | 16.8 ± 0.6 | 16.5 ± 0.5 | 16.1 ± 0.4 | 19.0 ± 0.6 | 17.1 | | | FAPIS | $\textbf{18.8} \pm \textbf{0.3}$ | $\textbf{17.7} \pm \textbf{0.1}$ | $\textbf{18.2} \pm \textbf{0.7}$ | $\textbf{21.4} \pm \textbf{0.4}$ | 19.0 | | K=5 | Meta-RCNN (Yan et al., ICCV 19) | 17.4 ± 0.3 | 17.8 ± 0.2 | 17.7 ± 0.7 | 21.3 ± 0.2 | 18.6 | | | Siamese M-RCNN (Michaelis et al., Arxiv 18) | 17.5 ± 0.4 | 18.5 ± 0.1 | 18.2 ± 1.0 | 22.4 ± 0.2 | 19.2 | | | YOLACT (Bolya et al., ICCV 19) | 17.6 ± 0.2 | 18.4 ± 0.2 | 17.9 ± 0.6 | 21.8 ± 0.3 | 18.9 | | | FAPIS | $\textbf{20.2} \pm \textbf{0.2}$ | $\textbf{20.0} \pm \textbf{0.1}$ | $\textbf{20.4} \pm \textbf{0.7}$ | $\textbf{24.3} \pm \textbf{0.2}$ | 21.2 | Acknowledgement: DARPA XAI Award N66001-17-2-4029 and DARPA MCS Award N66001-19-2-4035. #### **Visualization of Learned Latent Parts** - (a) Input image - (b) GT segmentation - importance (color coded) (d) 10 most relevant parts with (c) Predicted segmentation blue (lowest) to green (highest)) #### **Qualitative Results**