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Activity recognition should be:
a) Robust: dynamic backgrounds, occlusion, clutter
b) Efficient: fast processing
c) Scalable: large number of classes, large datasets

PROBLEM STATEMENT

_____________________________________

N -

-
£

short sequence

3l - pe
-~ A ST 2B —_— =
IR Y7, RN D
 cems. o = NI 4 T e W WS
:,!'I - g U L .‘ - ‘.‘_ '_.l.'—‘ g Y - -
8 - - L l ,“ y W -~ k) > b b | - - < o
. e @I d B l 8 ] o B B
o 4% L up A W 4 m
a2t g AR, - - g [
' . g 0 .-.'«'.J R 2 k
N 4 i iy ST »
o SNAL.' TERC - e 3 -
- o . < S DA
aT e %1 (<
. l »
- : | he

......
"‘Cf-', ....

-
l 1
K |
|
|
\l U

.

.':"., "A ’

L 0

examples of learned codewords on UCF Youtube [4]

Given a set of videos with class labels 0;1,, 0;m - vectors of distances of all segment of video i to the nearest hit and miss
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