

Existing Transformer-based methods use GRL Pr (gradient reverse layer) to reduce the domain gap consi	revious
in the image/object features.	ider di
The resulting domain aligned image/object features contain both domain-invariant and domain-specific features. Contribution 1: We explicitly design a token-wise domain specific embedding, at the image level in the encoder, and at the object level in the doment object level in the decoder.	ferent i differe nay exl main c ney ne indi
 Token-wise Entangled feature Aligned domain- invariant feature Diverged domain- specific feature 	Feature
source Encoder Layer Decoder Lay Decoder Lay Decoder Lay Decoder Lay Decoder Lay Decoder Lay	yer
target Encoder Layer Decoder Lay CNN Image Tokens Objects Query Encoder Decoder	yer

An overview of BiADT

Bidirectional Alignment for Domain Adaptive Detection with Transformers

ivation 2:

revious Transformer-based methods do not explicitly sider differences between source and target domains for image patches and object tokens.

fferent image patches different object tokens may exhibit different main characteristics. hey need to be aligned individually!

 $|\mathcal{P}|$

 $\mathcal{P}_{\mathcal{D}} \mathcal{C}_{\mathcal{D}}$

Contribution 2: We design two attention modules to align the two domains bidirectionally. \rightarrow This is seamlessly integrated in existing attention modules.

Domain

Head

Head

target

target

 $\mathcal{L}_{\mathrm{MI}}$ Mutual info minimize

Domain-invariant features I

Domain-specific features ${\cal D}$

source

Decrease gap

source

Increase gap

L_

 $\rightarrow \mathcal{L}_+$

An example of the predicted domain masks by BiADT encoder.

Me
M
PT
TD
AT
AT
PD
IC
SF
M
SIC
AQ
AC
Bi
Bi
D '

Liqiang He¹, Wei Wang², Albert Chen², Min Sun², Cheng-Hao Kuo², and Sinisa Todorovic¹

Target image

Source image

Target domain mask

The t-SNE visualization of object features of the test images in the Cityscapes \rightarrow FoggyCityscapes setting.

hod	Backbone	Detector	Pseudo-Label	person	rider	car	truck	bus	train	motor	bike	mAP
Trans [37] _{ECCV' 22}	R50	Deform-Detr	Yes	47.7	49.9	65.2	25.8	45.9	33.8	32.6	46.5	43.4
[7] ICML' 22	V16	Faster R-CNN	Yes	43.2	52.4	63.4	33.4	56.6	37.8	41.3	48.7	47.1
D [26] CVPR' 22	R50	Faster R-CNN	Yes	50.7	53.7	68.2	35.1	53.0	45.1	38.9	49.1	49.2
[44] CVPR' 22	V16	Faster R-CNN	Yes	45.5	55.1	64.2	35.0	56.3	54.3	38.5	51.9	50.9
⁴⁴ [44] CVPR' 22	V16	Faster R-CNN	Yes	44.1	54.2	62.7	33.6	54.4	51.9	39.2	49.2	49.5
N [86] TPAMI' 21	R101	Faster R-CNN	No	32.8	44.4	49.6	33.0	46.1	38.0	29.9	35.3	38.6
R-VDD [87] ICCV'21	R50	Faster R-CNN	No	33.4	44.0	51.7	33.9	52.0	34.7	34.2	36.8	40.0
[82] ACM MM' 21	R50	Deform-Detr	No	46.5	48.6.	62.6	25.1	46.2	29.4	28.3	44.0	41.3
ADA [104] _{CVPR'22}	R101	FCOS	No	43.1	47.3	61.5	30.2	53.2	50.3	27.9	36.9	43.8
MA [43] CVPR' 22	R50	FCOS	No	44.0	43.9	60.3	31.6	50.4	51.5	31.7	40.6	44.2
Γ [35] _{IJCAI' 22}	R50	Deform-Detr	No	49.3	52.3	64.4	27.7	53.7	46.5	36.0	46.4	47.1
Γ* [35] IJCAI' 22	R50	DAB-Deform-Detr	No	49.8	54.2	65.8	29.0	56.2	37.5	38.9	48.2	47.4
DT	R50	DAB-Deform-Detr	No	50.3	56.4	66.5	32.5	52.3	47.8	40.1	48.3	49.3
DT+AQT	R50	DAB-Deform-Detr	No	50.1	55.4	67.9	31.5	56.1	46.8	38.6	49.3	49.6
DT+TS	R50	DAB-Deform-Detr	Yes	52.2	58.9	69.2	31.7	55.0	45.1	42.6	51.3	50.8

Comparison with SOTA on the Cityscapes \rightarrow FoggyCityscapes domain shift.

Acknowledgement: USDA NIFA award No.2021-67021-35344 (AgAID AI Institute), Amazon Lab126

(c) Object domain-specific feature