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Predominant models for predicting rates of sediment transport face acute shortcomings when applied 
to coastal boundary layers [58]. This is due to a neglect of the web of stochastic variables governing 
the rate of sediment dislodgement. While stochastic models do exist, the parametric extent of their 
validity tends to be limited, and none have taken into account an understanding of phase dependence 
in application to oscillatory flow, likely because the existing knowledge of the evolution of flow prop
erties throughout a cycle of wave motion is insubstantial. A detailed understanding of the statistical 
properties of sediment forces and motion is a precondition to the development of specific models for 
oscillatory flows. Experiments on such flows tend to be limited by the small length and time scales 
of the particles. Numerical simulations offer flexibility in measuring many properties simultaneously 
in hard-to-reach places without disturbing the delicate dynamics of particle ejection. Fully resolved 
simulations of purely oscillatory flow over an idealized sediment geometry were performed at moder
ate parameter ranges near the transition to turbulence. Due to the computational challenges posed 
by this flow type, a new structured, fully parallelized, incompressible-flow, finite-volume solver along 
with effective and generalized immersed-boundary tools was developed and validated against bench
mark simulations. 

Turbulence statistics and their correlation with the statistics of forces on the sediment bed are 
analyzed. Large divergences from Gaussian behavior are found in the bed velocity during accelerating 
phases of the cycle, and the probability distribution functions of fluctuations in the bed-flow velocity, 
u , and lift appear to follow this trend. The results suggest that coherent structures thought to be b 

linked to sediment ejection in laminar flow regimes have a diminished effect on particle forces in 
transitional and early turbulent regimes. The implications of these findings on model development 
will be discussed. 
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Chapter 1 Introduction 

Near-shore sediment transport on a large scale, considered the domain of coastal morphodynam
ics and coastal engineering, is responsible for shoreline erosion, and, on an even longer scale, the 
geomorphological evolution of coasts. Modeling these phenomena implies the challenge of resolving 
disparate scales. Solutions of interest exist on the order of years and decades (or even much longer) 
yet are ultimately governed by hydrodynamic mechanisms of particle motion, often enduring for 
only a fraction of a second. The importance of an accurate understanding of these mechanisms to 
large-scale models has been recognized [45], and, as a result, the issue has been garnering attention 
in fields related to hydrodynamics. 

Many hydrodynamic investigations of oscillatory flows over sediment have focused on general 
characterization of the flows rather than developing specific insight for transport models. Experi
mental studies of an oscillating rough bed in stationary flow were conducted by Keiller and Sleath 
(1975) [30] at laminar parameter ranges. They compared flows over sediment particles to idealized 
Stokes flows over flat plates and found velocity profiles featured multiple local maxima per cycle 
above the spheres. Sleath (1986) [51] investigated turbulent parameter ranges more likely to cause 
sediment motion. Recent simulations have provided more details on these flows. Fornarelli and 
Vittori (2009) [22] observed large horseshoe-shaped vortices in laminar parameter ranges which were 
ejected from behind the sediment particles at every half cycle, explaining the additional velocity 
peaks in Keiller and Sleath (1975) [30]. Ding and Zhang [16] simulated oscillatory flows over multi
ple sediment packing configurations in order to verify basic flow properties. 

At the same time the study of small-scale fluid-sediment interaction as applied to steady flows 
has been underway for decades. From this perspective, sediment motion is broken up into incipient 
motion, transport, and deposition. These events describe motion in both the bed load and suspended 
load. Bed load is comprised of sediment which is in motion but supported by the sediment bed; its 
motions are due to sliding and rolling. The suspended load is comprised of sediment particles which 
are typically smaller than those in the bed load and are supported by the fluid. 

Rates of incipient motion have historically been modeled using single-parameter techniques. 
Shields (1936) was the first to do this, proposing the relative strength of the bed shear stress to the 

τwgravitational force on the particles as a useful parameterization, θ = [46]. The rates of (ρsed −ρfl)gD 

pickup and, therefore, the supported bed load and sediment flux are commonly modeled as a linear 
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function of the Shields parameter θ − θc, where θc is the critical Shields parameter, an empirically 
determined value indicating the onset of motion. More recently, Sleath has proposed an analogous 
single-parameter model for rates of sediment motion in oscillatory flow by replacing the bed shear 

ρflU∞ωstress with the oscillating pressure gradient, S = , termed the Sleath parameter [53]. At (ρsed−ρfl)g 

smaller values of S (� 0.1) the Shields parameter is still sufficient to characterize the flows, even if 
oscillatory, while for larger values, both parameters need to be considered [40]. 

More accurate, stochastic techniques have also been in development for steady flows for some 
time [18]; typically, a probability distribution function of turbulent fluctuations is assumed in a spe
cific flow variable (such as a Gaussian velocity distribution), which is then related analytically to the 
forces experienced by the particles [11, 15, 26, 41, 58], while more recently, log-normal distributions 
have been assumed in the turbulent intensities [7, 10, 12, 57]. Despite having substantial predictive 
potentials, these methods have not been incorporated in a generalized stochastic model of oscillatory 
flows. A promising approach to shedding light on the small-scale hydrodynamics involved in coastal 
processes is the characterization of the effects of punctuated turbulent events on sediment pickup 
and transport while simultaneously developing stochastic models for the oscillatory case. 

The simulation of highly resolved moving sediment in oscillatory flows could be of particular ben
efit to advancing the understanding of transport mechanisms and models. Fully resolved particle-
laden flows, such as those of Chan-Braun et al. (2011) [8] have directly provided details of particle 
densities and rates of suspension and transport in steady flows, yet such simulations have not been 
performed for oscillatory flows. 

These simulations are particularly challenging from a computational perspective. Statistics re
garding particle positions and motions require large numbers of particles, which simultaneously need 
to be fully-resolved to accurately reflect the small-scale hydrodynamics affecting their behavior. In 
addition, the oscillatory spatial displacement of fluid is vast (meters) compared to typical sediment 
particle sizes (sub-millimeter), resulting in the need for large fluid domains to attempt to resolve 
both of these scales completely. Solvers which treat both fluid and particle motion in a highly effi
cient manner are needed to simulate such flows effectively. 

It is the intention of this project to develop a solver suitable for use with the challenging simula
tions of fully-resolved particle-laden oscillatory flows and to use this solver to understand stochastic 
flow and particle properties and their potential use in coastal sediment transport models. 
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Chapter 2 Background
 

2.1 Models of Sediment Motion 
Analytical models of sediment transport date back to Shields (1936) [46], which defined a non-

dimensional parameter relating gravitational forces to the dynamic pressure written in terms of the 
τwwall shear stress, τw. This has become known as Shields parameter and is defined as θ ≡ ,(ρsed−ρfl)gD 

where ρsed and ρfl are the particle and fluid densities respectively, g is the acceleration of gravity on 
earth, and D is the average particle diameter. Critical values of the Shields parameter, θc, at which 
the onset of sediment motion occurs, are found empirically and used to predict rates of sediment-
load movement with a simple linear relationship (∝ θ − θc). According to Nichols and Foster (2009), 
typical critical Shields parameters for steady flow are θc ≈ 0.05, with different transport regimes 
occurring as the Shields parameter increases [40]. Various adaptations on this model exist, incorpo
rating additional parameters like sediment shape and exposure or devising a non-linear dependence 
on θ − θc [23] [58], and have been widely used in the decades since to describe sediment pick-up 
probabilities in steady flows. 

Many of these deterministic models face limitations at extreme parameter ranges, both at high 
relative shear stress and long time scales with bed shear stress below the critical value, where the 
linear models and adaptations unphysically experience a discontinuity in the first derivative when 
going to zero. More accurate descriptions can be developed by solving for the probability of particle 
entrainment based on stochastic flow properties. Such a probability can be determined by integrating 
the probability distribution functions (PDFs) of lift, drag, or shear stress acting on particles over 
the range of forces which would result in sediment dislodgment, that is F > Fc,1 or F < Fc,2 where 
F is the force in question (e.g. lift) and Fc,1 and Fc,2 are critical values of forces at which motion 
occurs [41] [7]:  Fc,2 

P = 1 − PDF(F )dF , (2.1) 
−Fc,1 

where P is the probability of dislodgement. Sediment loads can then be solved for by balancing 
this rate of pickup with the rate of deposition, which is also a function of the sediment load. Such 
models are more readily customized to incorporate multiple probabilistic parameters by combining 
or transforming PDFs. 
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Stochastic models began with the early work of Einstein (1950) [18], which was novel for pre
senting a separate probabilistic treatment of bed-load transport for sediment grain dragging and 
rolling on the alluvial bed, distinct from the strictly suspended sediment load. This formulation 
was based on the assumption of the PDF of the bed-pressure fluctuations being Gaussian. While 
this bed-load function was still a considerable simplification of the physical phenomena involved, it 
avoided unphysical cutoffs of the transport function by not requiring the forces acting on the particle 
to lift it off of the bed. 

More recently, theoretical derivations have been used to produce the PDFs of lift and drag from 
flow parameters. These derivations often start with an assumption about the statistics of the flow 
parameters. Most commonly, a Gaussian distribution is assumed for the PDF of the bed velocity, 
ub, which is the velocity immediately above the bed surface in the log layer. Given that pressure 
forces play a dominant role in initiating particle motion, which is true of parameter ranges of interest 
for sediment transport in open-channel steady flows [15] and from oscillatory flows [22], forces on 
sediment are commonly related to the dynamic pressure via 

1 2FL = CLρflub A (2.2)
2 
1 2FD = CDρflub A , (2.3)
2 

where FL and FD are the lift and drag experienced by the sediment particle, CL and CD are the 
lift and drag coefficients, ρfl is the fluid density, and A is the cross-sectional area of the particle. 
The pressure dominance is expected to vary in the case of the drag component depending flow 
parameters and geometry; for instance Ma and Williams (2009) noted that viscous forces have a 
sizable impact on the streamwise moment of rotation in steady flow over a hexagonal sphere packing 

uτ Dat Reτ = = 533, where uτ is the wall velocity, D is the particle diameter, and ν is the ν 

kinematic viscosity [34]. Most statistical derivations of forces on the particles do not attempt to 
explicitly justify the use of these relations. Papanicolaou et al. (2002) used a Gaussian assumption of 

2the bed velocity to derive a χ2-distribution for u , which is used to derive distributions for sediment b 

drag and lift on embedded particles (see figure 2.1 for PDF comparison). Exposed spheres were then 
2modeled with the vertical component of velocity intensity w , an unusual approach. b 

Regarding the assumption of Gaussian velocity profiles, note that exactly Gaussian velocity fluc
tuation profiles are rather unusual outside of isotropic flow. Turbulent shear flows, being anisotropic, 
are characterized by nonuniform regions of turbulent kinetic energy production. The turbulent en
ergy cascade then favors the transport of energy from regions of high TKE production to randomly 
distributed patches of high dissipation, resulting in distributions of turbulent flow properties which 
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Figure 2.1: Gaussian, log-normal, and χ2 distributions centered 2.5 standard deviations positive of 
zero for some variable Φ, where µ is the mean and σ is the standard deviations. The probability 
is consistent with Φ being normalized by σ. Note that the Gaussian predicts a much more rapid 
decline of the positive-tail values. 

are skewed and peaked (high kurtosis) [55]. Applying this reasoning to the case of oscillatory flow, 
one might hypothesize that TKE is being generated primarily due to the instabilities in the regions 
of high velocity gradients around the fluid-particle interface near the peak velocities of the cycle, so 
the assumption of a Gaussian profile is expected to apply poorly. It may also be hypothesized that 
TKE dissipation should be non-local and that phases characterized by large TKE dissipation may 
feature symmetric velocity distributions. 

Hofland et al. (2006) repeats the χ2 derivation for the special case of D ∝ ub |ub|, which allows 
for the drag to be negative when velocity reverses direction [26]. This only becomes relevant at high 
relative turbulence intensities, ru = 

σ

ū
u

b

b , where σub is the standard deviation of ub and ūb is, for the 
case of steady flows, the time averaged bed velocity. The resulting PDFs are written as a function of 
the relative turbulence intensity. The model fit data very well from open-channel flows but did not 
reproduce the statistics in the wake of a backward facing step. Based on the results of this study, 
as well as those from Hofland’s PhD thesis [25], these models appear to work poorly, either getting 
the central profile correct while failing at the tails of the distribution, or vice versa. Detert et al. 
(2010), for instance, tested the modified χ2-functions of Hofland et al. (2006) against experimental 
data revealing shortcomings in their fit of lift and drag PDFs in open channel flows, particularly at 
the tails of the distributions [15]. Prooijen and Winterwerp (2010) attempted to use this model to 
fit empirical data; however, in achieving this fit, they manipulate the distribution without offering 
any physical motivation for this change other than its convenience. 
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2 An increasingly common assumption for derivations of PDFs of the sediment forces is that u orb 

τw are described by log-normal distributions (see figure 2.1 for PDF comparison). One of the earlier 
publications of note on this topic is Cheng and Law (2003) [12], which has been frequently referred to 
by subsequent studies. Like the use of the Gaussian distribution, the log-normal was given no physi
cal justification by it’s users other than that it has the desirable properties of being positively skewed 
and is always positive. However, the report of Mouri et al. (2009) [39] has recently addressed this 
assumption with refreshing physical clarity. This article featured rigorous experiments on isotropic 
turbulence, jet flows, and boundary-layer flows to determine the universality of the fluctuations of 
turbulent properties. A log-normal distribution was found to describe the distributions of turbulent 
dissipation and intensities with consistent standard deviations between all three flow types at a 
given Reynolds number. The log-normal distribution is interpreted as the result of the central limit 
theorem applied to the logarithm of the product of a large number of slightly correlated random 
variables. The correlation between these variables, observed as the temporal synchronization of tur
bulence at different scales, is manifested through a multiplicative process. The natural logarithm of 
such a product can be decomposed into a summation of the logarithms of the constituent variables 
representing a massive number of interactions across different scales of turbulence. The statistics of 
the logarithms themselves behave as independent random variables. Given this, the PDF of their 
sum will be a Gaussian by a generalized central limit theorem. Such a Gaussian, their reasoning 
goes, is the logarithm of the PDF of the intensity and dissipation. It should be noted that this does 
not preclude the possibility of normally distributed constituent variables and so, if correct, would 
not invalidate Gaussian velocity assumptions, but speculation as to the specific statistical mechanics 
which result in such a system of variables is not offered. Flows conditions suitable for log-normal 

rmodeling are described as being 1 < < 100, where r is the length scale of turbulence in question Lu 

and Lc is the correlation length. At smaller scales, the turbulence is expected to become completely 
uncorrelated, and the interactions of turbulent intensities and dissipation become additive thereby 
producing a Gaussian distribution of intensity and dissipation by the central limit theorem. 

The work of Cheng (2006) is worth noting because of its inclusion of a Gaussian PDF for par
1ticle size distributions, which was transformed by means of the inverse relationship, τb ∝ , into a D 

contribution to the PDF of bed shear stress, τb [10]. This was artfully approximated as a log-normal 
relationship, allowing for the combination of these separate effects into a single expression for the 
PDF and highlighting the inherent advantage of the log-normal distribution in that multiplicative 
processes of a compatible form combine easily. 

Celik et al. (2010) used the log-normal distribution to describe their models of impulse on a 
free, exposed sphere atop a regular sediment packing in steady channel flows [7]. Valyrakis et al. 
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(2011) acknowledge the merits of the log-normal distribution proposed by that experiment, which 
was motivated in part by [39], yet points out that unlikely, extreme force fluctuations are not accu
rately predicted by this distribution [57] . It has been noted that the log-normal distribution may 
not apply to very unlikely values [39]; however, it is possible that the experiments of [7] were not 
characterized by the correct length scales for the log-normal fluctuations to apply. 

It has been observed that sediment grains act as low-pass filters, removing the force of high
wavenumber fluctuations through surface averaging [26], so it is possible that particles will respond 
to a sufficiently specific spatial range of turbulent fluctuations to experience a behavioral regime 
featuring dominance of log-normal fluctuations. Based on the physical explanation of Mouri et al. 
(2009), it can be expected that sediment realistically and frequently experience Gaussian fluctua
tions of forces in the case of larger length scales. 

In the case of embedded particle motion, ejection is primarily caused by lift forces as opposed to 
drag forces due to horizontal constraints on motion by neighboring particles, so an awareness of the 
mechanisms responsible for generating lift on these particles in specific flow types is necessary for 
understanding the onset of particle motion. As mentioned previously, at Shields parameters nearing 
θc, only the most unlikely and energetic fluctuations in lift will be capable of particle dislodgment. 
A detailed knowledge of the probability distribution function (PDF) of the lift in terms of the gen
eral flow parameters would give a complete description of the occurrence of initial motion and good 
indication of the likelihood of complete ejection. Other factors influencing ejection are the change 
in lift forces as a particle is displaced as well as the temporal autocorrelation of the lift; sufficient 
energy is required to overcome the potential well of the particle’s resting position which must be 
provided by lift forces of sufficient magnitude persisting over a period of time [17]. In the case of 
exposed particles, the introduction of a gap beneath a particle can introduce fast moving fluid which 
contributes to restoring the particle via pressure forces [20], but the effect of a gap is expected be 
different in the case of an embedded particle. 

2.2 Oscillatory Flows 
While oscillatory flow over a sediment bed has several degrees of freedom, oscillatory flow over r 

U∞ δ 2νa flat wall has only one, which is typically represented by Reδ = , where δ = is the ν ω 

Stoke’s-layer thickness, U∞ is the maximum velocity achieved by the fluid far from the wall every 
cycle, ω is the frequency of oscillations in radians, and ν is the kinematic viscosity [60]. The choice 
of this parameter follows from its prominence in the analytical solution to this flow (at sufficiently 
low Reynolds numbers) [54] 



�

8 

� � � ��√ ωz u(z, t) = U∞ Cos (ωt) − e 2
ω
ν Cos ωt − z , (2.4)

2ν 

where U∞ is the maximum velocity far from the wall: 

u∞(φ) = u(z → ∞) = U∞Sin (ωt) , (2.5) 

where φ = ωt is the phase of the cycle in radians. For the sake of clarity, the time-dependent variable 
u∞(φ) will, like all temporally or spatially varying quantities in this thesis, be lower case and will 
always reference (φ), while the general flow parameter U∞ will always be capitalized. 

A second degree of freedom in the sediment case is introduced by the relative length scales of the 
turbulence and sediment elements and, in this report, is given the straightforward representation of 
D , where D is the sphere diameter. δ 

U∞δ D
Flow Parameters: Reδ = ; (2.6)

ν δ 

aU∞Alternative sets of parameters are formed out of combinations of Rea = = 2Re2, where a isν δ 
DU∞the amplitude of spatial oscillations far from the wall [22] [16] [51], ReD = (common in oscillaν 

TU 2πtory flow over a single sphere [20]), and the Keulegan-Carpenter number, τ = , where T = isD ω 

the period of oscillation [20], which is the relative magnitude of the period with respect to the time 
δit takes flow to move past a particle. Keiller and Sleath (1975) use U∞ = Reδ ∗ [30]. For the purωD 2D 

Dposes of this thesis, {Reδ, } will be used to ease comparison with oscillatory flows over flat surfaces. δ 

Another degree of freedom is introduced by the weight of the particles when they are free to 
move. Analogous to the Shields parameter, Sleath proposed the relative force of oscillatory pressure 

ρfl U∞ωgradient driving the wave motion to that of gravity, S = , now called the Sleath parameter, (ρsed−ρfl)g 

for parameterization of sediment motion in oscillatory coastal environments [53]. It was originally 
determined that the Shields parameterization would be sufficient for accurate flow modeling at 
Sleath parameters S 0.3, while the Sleath parameter was accurate for S 2 0.3; however, Nichols 
and Foster (2009) found that both parameters were important at ranges down to S = 0.1 [40]. To
gether, the Shields and Sleath parameters can be thought of as comprising a single degree of freedom. 

As seen in equation 2.4, in oscillatory flow over a flat wall, wall disturbances induced on the far-
field flow decay exponentially with increasing height with a decay constant δ. These disturbances, 
manifested as both amplitude damping and phase lag, are characterized by staggered regions of op
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positely vorticity which gradually decay with height [13]. Vittori and Verzicco (1998) found via fully 
resolved simulations that, given small surface imperfections, flows of Reδ < 100 are laminar, those 
of 100 < Reδ 550 are in a disturbed laminar regime, and those of Reδ 2 550 are fully turbulent 
[60], while Jensen et al (1988) described a hazier transition region ranging from 200 Reδ 900 

based on their experiments over a smooth surface [28]. 

Flow over a plate oscillating in a plane in steady fluid is of historical significance. This has an 
analytical solution of 

√ 
ω z2νu ∗ (z, t) = U∞e Cos ωt − 

ω
z (2.7)

2ν 

[54] and is distinct from equation 2.4 only through the imposition of a temporally sinusoidal pressure 
gradient, the oscillatory solution of which can be added linearly to the moving-fluid version. This 
is of relevance because the most prominent experimental studies of oscillatory flow over sediment 
have been conducted in this altered frame of reference in which the bed is oscillating and the fluid 
is stationary; this will be referred to as the fluid-frame for the duration of this paper, and when 
appropriate, the oscillating-fluid case will be distinguished as the sediment frame through the use of 
∗, as in u ∗. These two frames can be considered physically interchangeable for flat plates and inter
changeable to an approximation for three-dimensional flows; however, Krstic and Fernando (2001) 
have raised concerns that the boundary conditions appropriate for making this comparison would 
not have been possible to enforce in common experimental setups, such as that of Keiller and Sleath 
(1975) [30], calling into question the results of this study [32]. These will nonetheless be used for 
comparison for the early stages of the present study as they are a frequent object of comparison for 
simulations of these flows; substantial error should have already been recognized, and if inaccuracies 
do exist in these experiments, it would be of benefit to find them. 

Laminar oscillatory flow cases which include a sediment bed feature a phase lag and amplitude 
damping similar to that of a smooth bed in the near wall region. The porosity of the sediment 
results in an effective bed location which is somewhere between the sediment crests and the base 
wall. This can be approximated by extrapolating phase-lag trends in the plane-averaged velocity 
field of the fluid frame back to a hypothetical value of 0, as done by Keiller and Sleath (1975), 
who observed effective bed locations of approximately 0.3δ below the particle crests [30]. They also 
noted a significant departure from the flat-wall behavior in the form of consistent secondary peaks in 
velocity (compared with those resulting from the plate oscillation) occurring above the sediment bed 
in the fluid frame. Based on recent simulations in this parameter range, this departure is seen to be 
the result of vortex structures which form behind sediment elements and subsequently separate from 
the bed at every cycle [22] [16]. The ejection of vortex structures is consistent with the jet-regime 
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behavior described by Giménez-Curto et al. (1996) in which oscillatory flow over sediment separates 
periodically, causing fluid exchange across the effective bed location and inducing dominance of the 

3 

form stress for flows a < 0.14 Re 4 
a and a 

D < 500, which easily applies to the sediment cases dis-D

cussed here [24]. 

A minimum energy level is required for particle entrainment to have an observable impact on 
erosion. Flows within this range of interest are prohibitively expensive to resolve accurately with 
direct numerical simulations. At commonly found wave periods of 5 to 10 seconds, sand particle 
sizes of 0.1 to 1.0 mm, and peak fluid velocities of 0.1 to 1.0 meters per second, the computational 
expense of simulating such a flow can be estimated to be approximately 104 to 105 times larger 
than typical small-scale CFD-simulations [20]. Coastal sediment transport being the primary moti
vation for these simulations, extrapolating results from this study to realistic parameters will be of 
high importance. The crux of the difficulty of simulating these parameter ranges lies primarily in 
resolving the disparate scales of wave oscillation amplitude, particle diameter, and the Kolmogorov 
scales. The difficulty of modeling large-scale oscillations comes with the potential advantage that 
turbulent time scales may be small enough that the flow can benefit from instantaneous parame
terizations of turbulence or open-channel flow models. In light of this, one of the strategies of the 
early stages of this ongoing investigation will be to compare turbulence and entrainment models of 
steady, open-channel flows to the simulated oscillatory flow with the hope that similarities found 
at the low energies of the present simulations will remain valid through extrapolation to relevant 
parameter regimes. 

2.3 Investigation Plan 
While the aforementioned work relating statistical assumptions about flow parameters and their 

relation to particle entrainment in section 2.1 has primarily been applied to open-channel flows, 
a strong case was made by Mouri et al. (2009) [39] that the probability distribution functions of 
turbulent properties are consistent between flows with similar relative length scales of consequential 
fluctuations in relation to the two-point correlation lengths of the velocities, Lu. This will require a 
novel approach of basing the type of probability distribution function on the scale of the particles 
relative to the larger scales of turbulence, D 

u 
. Hofland et al. (2006) [26] and Cheng (2006) [10] L

also suggest that the relative turbulence intensity of the turbulent properties being used to support 
σthe model, rΦ = , where Φ is a general flow property, σΦ is its standard deviation, and Φ̄ is its Φ 

Φ̄

mean, should be considered; however, it is possible that these parameters represent the same degree 
of freedom in determining probability distribution functions of the flow turbulence and this will 
have similar capabilities. It should be the long-term aim of this overall project to develop analogous 
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stochastic models for sediment transport in oscillatory flows. 

In addition to these purely statistical treatments of the problem, the coherent structures of tur
bulence will need to be understood with respect to the general flow parameters as they may play a 
critical role in particle dislodgment; this has already been suggested in research at low and moderate 
Reynolds numbers [30] [22], and it has yet to be seen how consistently particle motion at higher 
Reynolds numbers is affected by regular flow events. Furthermore, the action of regularly occurring 
coherent structures on moving sediment has yet to be observed due to the lack of simulations al
lowing particle motion in oscillatory flows. Eventually, a simulation along the lines of [8] could be 
used to observe the effects of such regular structures as well as the specific suspended and bed loads 
supported by oscillatory flows. 

These are far-reaching goals, many of which will not be directly addressed in the present study. 
Rather, smaller, preliminary goals are addressed which contribute to the ultimate plans of the 
project. 

The objectives of this paper will be to develop an incompressible-flow solver suitable for simu
lating oscillatory flows and, eventually, many freely moving, fully resolved particles in suspension. 
Using this solver, the stochastic properties and vortex structures of oscillatory flow over a fixed 
hexagonal sediment bed at D = 6.95 and Reδ = 95, 150, and 200 will be studied. It is hypothesized δ 

that non-Gaussian bed-velocity distributions will be observed during periods of increasing turbulent 
kinetic energy and that changes in the probability distribution functions of the bed velocity intensity 
will be correlated to those of the lift on the particles as a function of phase. 
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Chapter 3 Development of Numerical Tools 

Two major decisions in the development of the solver for this problem were whether it should be 
structured or unstructured and how rigid sediment particles should be treated. This chapter covers 
both of these topics in turn, addressing the motivation of the selected method followed by details of 
its implementation and validation. 

3.1 Structured Solver Development 

3.1.1 Advantages of a Structured Solver 
Unstructured solvers are comprised of polyhedral cells which can be packed arbitrarily closely 

at regions of interest in the fluid domain. They also easily conform to curved and irregular domain 
boundaries. This stands in contrast to structured solvers, which feature a Cartesian mesh and there
fore have limitations on the variation of cell-packing density. While the advantages of unstructured 
solvers are substantial, the disadvantages are numerous and turn out to be particularly detrimental 
in simulating the proposed flows. 

Unstructured solvers cannot be simply stored on a Cartesian mesh. The structures of the mesh 
(comprised of various types of cells, nodes, faces, and boundaries) are typically 1-dimensional and 
completely independent of location in the fluid domain, so every cell needs to store the indices of 
connected cells, faces, and nodes separately. Because of this, unstructured solvers require much more 
memory than structured ones. It has been estimated that 108 to 109 cells will be needed to generate 
accurate statistics of particle properties as a function of phase in particle-laden oscillatory flows at 
the parameter ranges of the present study. Because this cannot be easily achieved on a modest num
ber of processors, the memory requirements and resulting size limitations of unstructured solvers 
pose a significant disadvantage for this investigation. 

The 1-dimensional data structures of an unstructured solver are difficult to learn and generally 
require more time to develop new numerical tools with. This is particularly burdensome for research 
projects which involve many individuals working with the solver for short periods of time (as in an 
academic lab). 
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Data processing may also prove challenging with unstructured solvers, especially in the case of 
large-scale, parallelized applications. Because the fluid properties are not spatially ordered, spa
tially dependent numerical operations cannot be performed without first reordering the data. For 
instance, a spatial wavenumber decomposition by means of a Fast Fourier Transform (FFT) cannot 
be accomplished unless data is loaded into arrays with its indices corresponding to its position on 
an orthogonal set of axes. If an unstructured mesh is comprised of irregular polyhedrons, the fluid 
properties must first be interpolated to regular positions and then sorted before the FFT can be 
performed, a task that is memory and time intensive and, therefore, difficult to accomplish at run
time. It is expected that complex data processing will be very important for the proposed project. 
As an example, spatial correlation functions will be needed to characterize the turbulence properties 
in the vicinity of the sediment bed to determine if a log-normal probability distribution function is 
appropriate for a given sediment diameter. For these reasons, a structured solver was implemented. 

3.1.2 Cartesian Flow Solver Design 
Despite being fundamentally unchanged from its earliest versions in the 1970’s, Fortran dis

tinguishes itself as being both efficient with computation of large arrays of data and easy to work 
with, and remains a natural choice of language for the new solver. It will be outfitted to run with 
Message Passing Interface protocol so as to scale to tasks of arbitrary size. Being given the oppor
tunity to design a flow-solver from scratch affords the possibility of tailoring different versions of the 
code for different purposes. Parallel, serial, and long-hand versions of the solver were developed. 
The long-hand version features momentum and pressure equations which are written out directly 
in terms of the flow and grid parameters. The serial and long-hand versions are intended to be uti
lized by new researchers as a learning tool until comfort with the basic elements of the scheme and 
language are achieved. The serial version will also be useful as a first step in implementing new tools. 

A spatially and temporally second-order finite-volume solver was developed for this project, 
though the spatial accuracy may be improved in the future due to the new solver’s spatially con
sistent storage of flow properties in memory. Flow properties are stored at cell-centers, although 
face-normal velocities are also stored. 

The Navier Stokes and continuity equations describe incompressible flows: 

∂u 1 
+ (u · \) u = − \p + ν\ · (\u) (3.1)

∂t ρ 

\ · u = 0 (3.2) 
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The Navier-Stokes equations are discretized using Adams-Bashforth for the convective terms and 
Crank-Nicholson for the viscous and pressure terms. The pressure is stored halfway between the 
timesteps, making this a fractional-timestep method. To simplify the indices, u = {ux, uy, uz } = 

{u, v, w} is used. Equation (3.3) is gives the u-component of the momentum balance, (3.1), written 
in 2-dimensions on a uniform mesh for clarity: 

        n+1 n n+1 n n+1 n n+1 n n+1 n n+1 nu + u u + un+1 n 1 1 u + u − u − u i− 1 u + u − u − uu − ui i+ i+
2 i+1 i+1 i i i− 1 2 i i i−1 i−1

i 2 2+ − . . . 
Δt 4 Δx 4 Δx         n+1 n n+1 n n+1 n n+1 n n+1 n n+1 nv + v v + v1 j+1 u + u − u − u j− 1 j− 1 u + u − u − uj+ j+1 j+1 j j j j j−1 j−1

2 2 2 2
+ − = . . . 

4 Δy 4 Δy  
1 1      1 n+ n+ ν  n n n n+1 n+1 n+12 2− p − p + u − 2u + u + u − 2u + u . . . i+1 i−1 i+1 i i−1 i+1 i i−1ρ(xi+1 − xi−1) 2(Δx)2       ν n n n n+1 n+1 n+1 

+ u − 2u + u + u − 2u + uj+1 j j−1 j+1 j j−12(Δy)2

(3.3) 

For reference, the integrated 3-dimensional finite-volume discretization is written out in terms of 
sums over faces. Using the notation of fcc1 for the inside cell-center index with respect to its control 
volume and fcc2 for the outside cell-center index, moving around ρ and introducing µ = νρ, this 
looks like: 

Nf aces         n+1 − un fu ρ n n+1 n n+1 n n+1ρΔV + (Af · n̂) uf + u ∗ u + u + u + u = . . . f fcc1 fcc1 fcc2 fcc2Δt 8
f 

Nf aces  f      
1 1  ΔV n+ 2 n+ 2 

1 n n n+1 n+1− p − p + µAf u − u + u − u (3.4)i+1 i−1 fcc2 fcc1 fcc2 fcc1xi+1 − xi−1
f 

2 

This is then solved implicitly for un+1 using a red-black Gauss Seidel method. The pressure contri
bution is removed (3.5), which gives rise to the Poisson equation under the imposition of continuity 
(3.7). This is then solved for the correct pressure field using a pressure solver specified by the user 
at runtime. The pressure field is then used to correct for both the face-based and cell-centered 
velocities (3.8)(3.9). Because the two velocity fields (face and cell-centered) are updated directly 
from the pressure field as opposed to each other, the effects of odd-even decoupling observed in some 
cell-centered solvers are avoided. 
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1 1 
2n+ n+− p2Δt p i−1i+1∗ n+1 u = u + (3.5)

ρ (xi+1 − xi−1) 
∗ ∗ + uu 1 1i−i+∗ (3.6)2 2 u = f,i 2 

\2 p = 
ρ 

(\ · u ∗ ) (3.7)
Δt 

1 1n+ n+2 2− pΔt p 1 1i−i+n+1 ∗ (3.8)2 2 
f,i −u = uf,i 

− xi−ρ xi+ 1 1 
2 2 

1 1 
2n+ n+− p2Δt p i−1i+1 n+1 ∗ u = ui i − (3.9)

ρ (xi+1 − xi−1) 

The momentum solver and pressure solver may require multiple successive iterations per timestep; 
this, however, is not necessary for the simulations discussed here. All simulations are found in prac
tice to have a sufficiently accurate flowfield after a single iteration to proceed to the next timestep. 

A caveat to the merits of the structured flow parameters in this solver is that boundary conditions 
are less efficiently imposed and modified in Cartesian coordinates than generalized 1-dimensional 
coordinates. It also turns out that the implicit coefficients of the momentum solver are identical for 
all three momentum equations except at boundaries cells. These points constitute sufficient incentive 
to develop generalized 1-dimensional data structures for boundary cells and faces. These are used 
simply as pointers to the underlying structured array and so do not inhibit the advantageous use 
of spatial ordering. Boundary conditions are enforced more easily by means of this surface structure. 

3.1.3 Cartesian Flow Solver Validation 

3.1.3.1 Taylor-Green Vortex 
The Taylor-Green vortex is a common first trial of a new solver due to its 2-dimensionality, 

symmetry, existence of a simple analytical solution, and periodic boundary conditions which, because 
they not have flow across them, can be substituted with slip wall conditions as a test. The flow is 
described by the following equations: 
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2πx 2πy 2πx 2πy 2 2 −2( 2π 
L −2( 2e L

π) )νt νtî − ĵu = U0e (3.10)Sin Cos Cos Sin 
L L L L 

U2 
0 ρ )

2 
νt 4πx 4πy 

Cos + Cos −4( 2
4 L L 

L
π

(3.11)p = e , 

where U0 is the maximum velocity, and L is the length of an edge of the domain, which must be 
consistent between dimensions, The flowfield is a lattice of vortices with staggered directions of 
rotation. The solution is separable in time and space, which is another advantage of this case as 
many implementation errors will cause changes in the direction of flow field in time which are easily 
observed. The exponential decay of the velocity field can be easily observed on a log-linear plot. 
This case was run at Re = 100 on a 128 × 128 uniform grid with slip boundaries and ν = 0.01, 
L = 2.0, and Δt = 5 × 10−3. Table 3.1 lists the point-by-point error of the x component of velocity 
on the horizontal line y = 0.75. The error is in the range of 10−4 to 10−5 when normalized by the 
largest value found in the correct solution on the line. The Taylor-Green vortex was also run on this 
solver for a grid refinement study, see section 3.1.3.4. 

Figure 3.1: A validation study of the new solver running a Taylor-Green vortex of Re = 100. 

(a) The pressure field of the Taylor-Green 
vortex solution. 

(b) A log-linear plot of exponential kinetic 
energy decay of the Taylor-Green vortex. 
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x correct ux present ux Δux 

0.0 0.0000000 -0.0000002 0.0000002 
0.1 -0.0042164 -0.0042170 0.0000010 
0.2 -0.0080201 -0.0080206 0.0000004 
0.3 -0.0110387 -0.0110402 0.0000015 
0.4 -0.0129767 -0.0129774 0.0000007 
0.5 -0.0136445 -0.0136466 0.0000021 
0.6 -0.0129767 -0.0129773 0.0000006 
0.7 -0.0110387 -0.0110405 0.0000018 
0.8 -0.0080201 -0.0080203 0.0000003 
0.9 -0.0042164 -0.0042172 0.0000008 
1.0 0.0000000 0.0000001 0.0000001 

Table 3.1: Comparison of ux along the horizontal line defined by y = 0.75 on a 2D Taylor-Green 
vortex with ν = 0.1, t = 20.0,Lx = Ly = 2.0 , Nx = Ny = 250 and Δt = 0.001. 

3.1.3.2 Lid-Driven Cavity 
A 2-dimensional lid-driven cavity provided a first test of stationary and moving wall conditions 

as well as a non-uniform mesh treatment. The Re = 1000 case of Botella and Peyret (1998) was 
chosen as a benchmark for the problem. The geometry of this was a 1 × 1 square with four wall 
boundaries. The fluid is initially at rest, and the top wall is kept moving at a constant speed of 1. 
The solver was run at a constant timestep of Δt = 5 × 10−3; a plot of kinetic energy indicated the 
solution was sufficiently converged after 10000 timesteps. Initially, a uniform 128 × 128 mesh was 
used for this case but converged on a slightly different flow compared with the published solution. 
Botella and Peyret used a spectral solver, which may have an inherent advantage in resolving the 
difficult gradients at the corners of the moving wall. A non-uniform 128 × 128 mesh was required in 
the new solver to produce a flow-field nearly identical to that of the benchmark case (see figure 3.2b) 
compared with figure 2 in [4]. A slight error still exists, and judging by the trends seen between 
the uniform and non-uniform meshes, the sharp gradients at the z = 1.0 corners are still not being 
resolved quite as well as in the benchmark. Table 3.2 lists values of the vertical velocity component 
along the horizontal centerline of the flow. They prove to be in good agreement with the published 
solution; the peak error among these points does not exceed 0.6% of the benchmark value. 

3.1.3.3 Turbulent Channel 
The turbulent-channel case used by Kim et al. (1987) [31] was run to validate the accuracy 

uτ δof turbulent flows on the new solver. The Reynolds number of this case, defined as Reτ = ,ν 
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(a) A non-uniform mesh was required to achieve (b) Vorticity contour lines at 5, 4, 3, 2, 1, 0.5, 
vorticity contours comparable to the 128 × 128 0.0, -0.5, -1, -2, -3 for comparison with [4]. 
benchmark [4]. 

Figure 3.2: A lid-driven cavity validation case at Re = 1000 for comparison with Botella and Peyret 
(1998) [4]. 

Figure 3.3: Instantaneous ux velocity field of the turbulent channel case, Reuτ = 180 

uwas 180. The flow was initialized to uniform flow of = 20 across the channel with substantial um 

perturbations imposed. The timestep was run at constant values with the CFL below 1.0. The flow 
was maintained by means of volumetric forcing; spanwise and streamwise boundary conditions are 
therefore periodic. All fluid properties are normalized by the mean wall shear stress, τw, and wall r 

τwvelocity, uτ = , and as a result, the volumetric forcing only depends on the flow geometry and ρ 

ν = Re−1 . The original study used a grid spacing with a sinusoidal dependence: y = Cos [2πη]τ 
ywhere η = Ly 
. The present study utilizes hyperbolic functions to define the mesh spacing in order 

to lessen the extremity of the aspect ratio near the walls: y = (LyCoth [2] Tanh [4η − 2] + 1) /2. An 
instantaneous plane of the streamwise-velocity field is depicted in figure 3.3. 
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x uz [4] uz Δuz 

1.0000 0.00000 -0.00000 0.00000 
0.9688 -0.22792 -0.22752 0.00040 
0.9609 -0.29368 -0.29326 0.00043 
0.9531 -0.35532 -0.35500 0.00032 
0.9453 -0.41038 -0.41007 0.00031 
0.9063 -0.52644 -0.52518 0.00126 
0.8594 -0.42645 -0.42505 0.00140 
0.8047 -0.32021 -0.31885 0.00186 
0.5000 0.02579 0.02583 0.00004 
0.2344 0.32536 0.32457 -0.00082 
0.2266 0.33399 0.33313 -0.00089 
0.1563 0.37692 0.37493 -0.00199 
0.0938 0.33304 0.33125 -0.00179 
0.0781 0.30991 0.30831 -0.00160 
0.0703 0.29012 0.29481 0.00146 
0.0625 0.27485 0.27930 0.00141 
0.0000 0.00000 0.00000 0.00000 

Table 3.2: Comparison of uz along the horizontal centerline of the lid-driven cavity at Re = 1000 
compared with values from Botella and Peyret (1998) [4]. 

present study Kim et al. (1987) [31] 
Um 
uτ 

15.89 15.63 
Uc 
uτ 

18.62 18.20 
Uc 
um 

1.17 1.16 
Cf 7.92 × 10−3 8.18 × 10−3 

Cf0 5.77 × 10−3 6.04 × 10−3 

uτ δTable 3.3: Comparison of mean flow properties of a turbulent channel of at Reτ = = 180 withν 
simulation parameters chosen to replicate Kim et al (1987) [31] with the exception of the mesh 
stretching, which is defined by hyperbolic functions as opposed to sinusoidal functions. Cf is the 
friction factor defined with respect to the mean velocity, while Cf0 is defined with respect to the 
centerline velocity. 

The mean flow properties, shown in table 3.3, deviate slightly from the benchmark case of [31]. 
The non-dimensional mean velocity, for instance, is 15.89 as opposed to 15.63 in Kim et al., 1.7% 

larger. Profiles of plane-averaged values of urms, vrms, and wrms are shown in figure 3.4 which can 
be compared with figure 6a in [31]. While the profiles of the u and v components appear to be in 
agreement with the benchmark up to a small correction factor, the present-case w component ap
proaches zero less rapidly near the wall. Possible explanations of this are the use of a different mesh 
as well as the use of a finite-volume method in the present case as opposed to a spectral method of 
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Figure 3.4: Profiles of plane-averaged values of urms, vrms, and wrms versus the y coordinate 
(between the walls) of the turbulent channel case, Reuτ = 180 

Kim et al. (1987), which would be better suited to handle the grid stretching near the wall. Aspect 
ratios of approximately 50 to 1 are found in the present case at the cells bordering the walls. This 
difference may be responsible for the observed disparities in mean velocities between the present 
case and the benchmark. 

Outside of the error in the solution, trends of the flow properties and turbulent fluctuation profiles 
are in general agreement with Kim et al. 1987 [31]. While more testing is needed on turbulent cases, 
this simulation suggests turbulence is accurately simulated in the present solver. 

3.1.3.4 Grid-Refinement Study with a Taylor-Green Vortex 
The Taylor-Green vortex was revisited to perform a grid-refinement study due to its ease of 

execution. Uniform meshes of 50 × 50, 100 × 100, 250 × 250, and 500 × 500 cells were compared 
against a validation case of 1000 × 1000 cells. All simulations used the same timestep of 10−3 and 
were run for 2000 iterations. Other parameters were ν = 0.001, Lx = Ly = 2.0, and U0 = 0. 
Care was taken to select a timestep which would keep the CFL parameter of the validation case 
below 1. The pressure of the validation case was interpolated to the meshes of the smaller cases 
where the absolute value of error was computed. The integrated percent error is plotted in figures 
3.5a and 3.5b. This is equivalent to the first norm of the normalized pressure field, making the so
lution independent of the scale of the pressure. The solutions can be seen to be at least second-order. 



21 

(a) The absolute normalized error in pressure. (b) Spacial accuracy on a log-log plot of error. 

Figure 3.5: A refinement study of the new structured solver conducted on a Taylor-Green vortex at 
Re = 100. 

3.2 The Immersed-Boundary Solver 

3.2.1 Body-Fitted and Immersed-Boundary Methods 
Two common methods of simulating flow around rigid bodies exist, both are arguably straight

forward. One is to define a mesh which conforms to the body in question and impose wall conditions 
on the boundary. This then requires that the cell pattern be changed to accommodating moving 
bodies. The alternative is much more conducive to moving bodies: that rigidity be imposed upon 
the fluid domain by requiring the fluid velocity to go to zero within the body. Such techniques 
are known as immersed-boundary methods, or IBMs, and utilize a variety of different approaches 
to accomplishing rigidity [47] [56] [37]. In these methods, rigid-body translation and rotation are 
determined by applying basic Newtonian mechanics. 

3.2.2 The Fictitious Domain Method 
The fictitious-domain method (FDM) was chosen as a first immersed-boundary implementation 

for the new solver. FDM features a superlattice of Lagrangian material points subdividing each cell 
volume. To impose rigidity, fluid properties are first interpolated to the material points, where the 
force necessary to cancel the local velocity over that timestep is computed. For interpolation, the 
three-point delta function proposed by Roma et al. (1999) is used [43]: 
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 1 
= 1 + −3r2 + 1 |r| < 0.5 (3.12)

3 r 
1 2

φ(r) = 5 − 3 |r| − −3 (1 − |r|) + 1 0.5 ≤ |r| ≤ 1.5 
6 

= 0 1.5 < |r| , 

which conserves the magnitude and location of the interpolated property, attempts to minimize the 
relative location of the grid’s impact on the flow, and has continuous first derivatives. This force is 
then interpolated back to the fluid domain, where it is added as a source term in the momentum 
equations. As with the momentum-pressure solver combination, this can be iterated within each 
timestep for maximal convergence, but in practice, a single iteration produces accurate convergent 
properties. While the rigid body is represented with a sharp stair-step pattern on the Lagrangian 
superlattice, it becomes diffuse when interpolated onto the fluid domain (see figure 3.6). The blur
riness is diffused over three fluid-cell discretizations as a result of the delta-function interpolation. 
Apte and Finn (2012) make a detailed comparison between FDM and grid-fitted techniques and find 
that FDM requires fewer cells to attain a fixed level of error in the flow field [1]. 

3.2.3 Immersed-Boundary Solver Validation 
Like the general fluid solver, the interpolation function of the immersed-boundary solver is 

second-order accurate in space. The treatment of the fluid interface is less clear, specifically whether 
or not the discrete material-point assignment is a second-order approximation of the analytical def
inition of the cylinder. Significant local error may exist depending on the relative position of the 
surface definition and the superlattice; however, convergence is still expected to be second-order. 

3.2.3.1 Grid-Refinement with a Confined-Cylinder Case 
The local spatial accuracy of this implementation of FDM was tested by means of a grid re

finement study on a confined flow over a cylinder, the same technique used by Mittal et al (2008) 
[38]. The domain for this simulation is 2 by 2 units in two dimenstions with a centered cylinder 
of unit diameter subjected to a uniform channel-flow at the inlet on one of its sides, and an outlet 
on the opposite side. It is unclear what the other two boundaries are intended to be in [38]; the 
streamwise velocity contours in their figure 8a suggest a wall moving at the velocity of the inlet fluid; 
however, it is unlikely they would have selected these conditions without explaining them, so it may 



23 

(a) The material point superlattice is defined for 
a rigid body based on an analytical definition of 
the surface. The object is represented as a clearly 
defined stair-step pattern on the superlattice. 

(b) Once interpolated to the fluid domain via 
a forcing function, the rigid-body interface be
comes wavy and diffuse. The use of a finer 
discretization of the superlattice than the fluid 
mesh can eliminate much of the waviness, but 
the blurred boundary is tied to the 3-point inter
polation function. 

Figure 3.6: The use of material points in the Fictitious-Domain Method. 

be a mistake. Periodic conditions were used for this study. Resolutions of 400 × 400, 200 × 200, 
100×100, and 50×50 were compared with a master case of 800×800. Error in the domain should be 
dominated by the local variations in the flow field around the surface (see figure 3.7b, analogous to 
figure 8 in [38]). The L1, L2, and L∞ norms of the error in ux are plotted against the grid resolution 
on a log-log plot, shown in figure 3.7a (analogous to figure 9 in [38]). 

The error in ux depicted in 3.7b is consistent with that depicted in figure 4c of Apte and Finn 
(2012) [1] and has similar qualities near the object surface, particularly around peak error, to figure 
8b of Mittal et al. (2008) [38]. The overall magnitude of error is greater in our case, which may be 
due to the blurred representation of the interface created by the fictitious domain method; however, 
this distinction is obscured by the apparent use of a different boundary condition in Mittal et al. 
This plot verifies that the global error is dominated by local error near the particle interface, which 
supports the assertion that these simulations indicate the spatial accuracy of the fictitious-domain 
implementation of the present solver. The convergence of the norms of the error are shown in figure 
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(a) The norms of error of the streamwise ve
locity around a confined cylinder as a function 
of grid resolution. The spatial accuracy of 
the solver can be seen to converge to second-
order. 

(b) The error in the streamwise velocity 
around the cylinder interface on a 200 × 200 
grid computed with an 800×800 grid solution. 

Figure 3.7: A grid refinement study of the spatial accuracy of the new rigid-body solver conducted on 
the confined flow over a sphere. The local error at the rigid-body interface can be seen to be dominant 
which indicates the second-order trend is a reflection of the fictitious-domain implementation. 

3.7a which confirm the immersed-boundary treatment is spatially second-order accurate. 

3.2.3.2 Unconfined Flow over a Cylinder 
In addition to a convergence study, flow over a unit cylinder in an open flow of relative size 

UinDcyl D40 × 40 at Re = = 40, 100, 300, and 1000 were run with Δt = 0.005, and = 60 on a ν Δx 

500 × 500 mesh. At the highest three Reynolds numbers, a Kármán vortex street forms in the wake 
of the sphere. 

100 300 1000 
present study 0.167 0.212 0.239 

Apte et al. (2009) [2] 0.165 0.212 0.238 
Mittal et al. (2008) [38] 0.165 0.21 0.231 

Table 3.4: Strouhal numbers for flow over an unconfined cylinder at Re = 100, 300, and 1000 
measured by oscillations in the lift coefficient. 

The fully developed unsteady drag coefficient is compared against values in literature in table 
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40 100 300 1000 
present study 1.55 1.36 1.41 1.55 

Apte et al. (2009) [2] 1.54 1.36 1.41 1.50 
Mittal et al. (2008) [38] 1.53 1.35 1.36 1.45 

Table 3.5: Drag coefficients for flow over an unconfined cylinder at Re = 100, 300, and 1000. 

3.5. Strouhol numbers are also compared in table 3.4. The drag on the cylinder at Re = 1000 and 
the Strouhal number at Re = 100 considerably deviate from both of the other values shown. One 
possible explanation of this is that the flow was not fully developed and needed to run longer for 
accurate comparison. The small disparity between the present drag coefficent at Re = 40 and that of 
Apte et al. (2009) [2] is of interest because the flow was clearly fully developed in the present study 
and the solver used by [2] is almost identical to the present one. The difference may be ascribed 
to different resolutions of material point density, which in one-dimension are 3 to 1 in the present 
case as opposed to 4 to 1 in [2]. Outside of these differences, the values of the present solver are in 
acceptable agreement with the published values. 

The drag evolution and vorticity contours of the Re = 1000 case, shown in figure 3.8 are in 
general agreement with figures 7c and 8d of Apte et al. (2009) [2]. 
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(a) vorticity contours 

(b) developing drag and lift coefficients 

Figure 3.8: An unconfined-cylinder case with ReD = 1000 on a stretched 500 × 500 mesh run on the 
Dnew structured rigid-body solver. Here, D = 1, Lx = Ly = 40, = 60, ν = 0.001, and Δt = 0.005.Δx 

3.3 Future Solver Development and Use 
Although the core fluid solver has be shown to run accurately, many tools will need to be im

plemented for the study of sediment transport in oscillatory flows. First among these is an efficient 
pressure solver. The fluid solver as a whole may be capable of performing very large simulations in 
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Figure 3.9: A small sediment case run on the new solver at Reδ = 95. The new solver is expected 
to be used to execute large simulations of this geometry in the near future. 

space and memory, but it currently executes them too slowly to be a desirable choice. Initially, a 
BCG-STAB pressure solver will be implemented. Eventually the code will be linked to an external, 
open-source multigrid package. These options will hopefully improve runtimes by a factor of O(101). 

A second important implementation will be an improved immersed-boundary treatment of rigid 
bodies which features more accurate flow reconstruction at the fluid-body interface and unambigu
ous second-order spatial accuracy. This is likely to be similar to the Sharp Interface Method of 
Mittal et al. (2008) [38]. This will require some modifications to interprocessor communications as 
more fluid cells will need to be made available to such an immersed-boundary method. Once this is 
accomplished, a four-point interpolation stencil will also be introduced for discrete interpolations in 
an effort to mitigate anticipated unphysical force perturbations resulting from smaller stencils when 
applied to rigid bodies moving across Cartesian grids. 

The future of this project is likely to include simulations of large numbers of suspended interact
ing sediment particles, so the new rigid-body solver will be implemented to allow for moving bodies. 
State-of-the-art treatment of particle collisions will need to be used to ensure the accuracy of simu
lations of particle-laden flow, such as the methods proposed by Simeonov and Calantoni (2012) [48]. 
Additionally, if particles are expected to be moving and the number of particles per processor is 
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small ( 10) then individual processors instantaneously burdened with larger particle numbers will 
perform rigid-body operations more slowly than others. This effect will be compensated for by incor
porating dynamic processor redistribution of the domain such that the particle load is shared evenly. 

Although not directly built into the solver, post-processing tools will need to be written to act on 
binary representations of flow data directly in Fortran. The lack of such tools in the current solver 
has been in part due to its spatially inconsistent ordering of data in memory and has resulted in 
limited and less efficient processing options on the data sets involved in this study. 

Finally, an assortment of other tools can be implemented either in post processing routines or 
the main solver when the need arises. These include forward and backward flow mapping [19], which 
would be paired with the task of extending this technique to periodic boundary conditions, spatial 
Fast Fourier Transforms (FFTs), correlations functions, vortex detection, and generalized spatial 
differentiation of flow parameters. 



� �

29 

Chapter 4 Computational Setup of Problem 

The simulations run for this thesis all feature 8 spherical particles of D = 6.95. The packing δ 

configuration is a uniform hexagonal pattern of spheres, which are in contact with one another. Sedi
ment elements have neighbors in the spanwise direction as well as thirty degrees above and below the 
streamwise direction (see figure 4.1). Simulations were performed for Reδ = 95, 150, and 200. The 

Dmotivation for exploring the Reδ = 95, = 6.95 flow is for comparison with [16, 22, 30], which also δ 

explore this choice of parameters. The higher Reynolds numbers were intended to probe developing 
and fully turbulent parameter regimes, as predicted by [52] (see figure 5.1). D was kept constant δ 

to isolate the effects of the changing Reynolds number. All units used are non-dimensional unless 
otherwise specified, being scaled by δ for length and T for time. Table 4.1 provides the domain and 
mesh sizes for each of these cases. Table 4.2 lists a hypothetical set of parameters in SI units for a 
realistic period of 5 seconds. 

Boundary conditions are periodic in the streamwise and spanwise directions. The sediment el
ements are resting on a flat wall and a slip condition is imposed at the top of the domain. Wave 
motion is imposed on the fluid with a pressure gradient of ρωU∞Cos(ωt), which is treated as an 
explicit forcing term in the momentum balance and does not affect cells located within rigid bodies. 
Note the choice of imposing oscillatory motion with a cosine function results in u∞(φ) ∝ Sin(φ), 
while frequently cited papers on this topic typically do the opposite. This choice was made so that 
the fluid can be initialized as stationary at t = 0. As a result of this, the data presented herein 
will be at a 90◦ phase lead compared to most of the plots in the related literature [16, 22, 30]. The 
simulations were run at a constant CFL of .7 to .9 until fully developed, at which point they were 
run at a constant timestep, with CFL peaking near 1.0 for data collection. 

Because the flow is both oscillatory and spatially regular, a system of phase-space averaging is 
introduced: ⎛ ⎞ 

Nspheres Ncycles −1f f 
Φ(¯ φ, r) = 

1 ⎝ 1 
(Φ(φ + 2πc, r))⎠ , (4.1)

Nspheres Ncycles 
 r c=0 

where Φ is the flow parameter being phase-space averaged and is associated with the nearest sphere 
for the spatial summation. Based on this average, instantaneous properties are decomposed into a 
phase-space-averaged component and an instantaneous fluctuating component: Φ(φ) = Φ̄(φ)+Φ ' (φ). 
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This greatly increases the difficulty of gathering statistically meaningful sample sizes and the com
plexity of analyzing otherwise simple flow properties. It also requires vast amounts of memory to 
average the phases in high-resolution at runtime, which was done for these simulations. Phase-space 
averaging was begun after 5 iterations when the flow was deemed fully developed based on a con
verged periodic drag and fluid profile. The Shields parameter is not relevant as the sediment bed 
will be held fixed for this set of simulations. Because particle motion is disabled, the bed-slope is 
also irrelevant. Only purely oscillatory flow is investigated. 

Reδ 
D 
δ Nx 

Δx 
Δy Ny Nz Lx Ly Lz Ncells 

Ny 

D Turb 
95 6.95 208 1 120 172 24.1δ 13.9δ 30δ 4.3 × 106 60 no 
150 6.95 172 2 200 288 24.1δ 13.9δ 30δ 10.0 × 106 100 yes 
200 6.95 208 2 240 344 24.1δ 13.9δ 30δ 17.2 × 106 120 yes 

Table 4.1: Simulation parameters for the 3 cases explored in this study. 

Reδ U∞ δ D 
95 7.5 cm/sec 1.26 mm 8.76 mm 
150 11.9 cm/sec 1.26 mm 8.76 mm 
200 15.8 cm/sec 1.26 mm 8.76 mm 

Table 4.2: Hypothetical conditions for a flow in water with T = 5 seconds corresponding to the 
three cases simulated in this study 

Convergence studies were tested at Reδ = 95 on a quarter domain, i.e. 2 × 1 spheres, with 
yresolutions of N

uniform Cartesian meshes, and meshes stretched to twice as long in the streamwise direction, that is, 
to half as many points within Lx. In all cases, the spanwise discretization was held constant at the 
listed values. It was found that the stretched grid gave comparable performance to the uniform grid; 
the stretched grid was used primarily due to the benefits of having a less restrictive CFL condition 
(as opposed to the benefit of reducing the cell count by a factor of two). This permitted the simula
tions to run almost twice as fast as they would on the uniform mesh. Results from the convergence 
study may be found in figure 4.2a, which verifies the existing solver is second-order accurate in this 
particular case. In addition to this relative stretched-mesh analysis, the convergence study provided 
good estimates on the absolute error of different flow parameters (figure 4.2b). Global error in 
second-order flow parameters was kept below 1%, while global error in the vorticity was kept below 

= 20, 30, 40, 60, and 80 and a ND 
y = 120 validation case. This was done for both D 

5%. This occurred at ND 
y = 60 in the Reδ = 95 case. It was originally the intention to replicate the 

turbulence conditions reported in Fornarelli and Vittori (2009) [22] and use the relation η ∝ Re 
− 3 

δ 

assuming the mixing length is constant; however, the flow ended up being laminar (see discussion 

4 
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in section 5.1), so a safety margin of 2 was assumed and the turbulent relation was used anyway, 
perhaps unjustifiably, but still resulting more finely resolved flow at that Reynolds number than in 
the limited literature on this particular case. 

Figure 4.1: An image of the flow geometry from all cases: Reδ = 95, 150, and 200. 

(a) Order of spatial accuracy. (b) Absolute normalized spatial error. 

Figure 4.2: A grid refinement study of the old solver performed directly on a small Reδ = 95 
oscillatory-flow case with 2 spheres. The old solver was used to run the simulations presented in this 
paper. 
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Chapter 5 Results and Discussion 

5.1 Comparison with Existing Published Work 
As mentioned in section 4, the Reδ = 95 case was chosen primarily to allow for comparison 

with the experimental work of Keiller and Sleath (1975), hereafter K&S [30], as well as the fully 
resolved simulations of Fornarelli and Vittori (2009), hereafter F&V [22], and Ding and Zhang (2010), 
hereafter D&Z [16]. This case is modeled specifically after experiment #41 in K&S. It is worth noting 
that the flow is described as laminar in the original study and that the sediment elements are in 
contact with one another just as they are in the present work, while F&V and D&Z have small 
gaps of 1.05δ and 1.135δ respectively between their spheres. The other difference in geometry is 
that K&S originally used spheres glued on a flat surface to simulate the effects of a sediment bed, 
while F&V constrained themselves to using semispheres in their simulations. Both D&Z and the 
present study utilize a single layer of whole spheres. To summarize, the present simulations should 
actually be better recreations of the original experiment and actual coastal environments than the 
recent simulations of F&V and D&Z due to the contact between spheres as well as the inclusion 
of sphere bottoms and the surrounding pore space. The latter advantage is bound to be partially 
compromised though, as the pore space was fully laminar in all of our simulations due to restrictions 
of the lower wall. It may be possible to use the instantaneous pore-space Reynolds number to 
estimate the transition to turbulence in the pore space: 

updp
Rep ≡ (5.1)

ν 
1 

up ≡ ūbdA, (5.2)
A 

where A is the cross-sectional area of the pores-pace channel, dp is the diameter of the channel, 
and up is the pore space velocity. The present Reδ = 200 case of 50 < Rep < 100 may breach the 
threshold of turbulence near Rep = 300 [27] if another layer of sediment were included the higher 
Reynolds numbers, depending on the specifics of the vertical packing alignment (see section 5.4). 

The transition to turbulence of oscillatory flow over a flat plate is reported by Vittori and Verz
icco (1998) to feature intermittent turbulence [60]. Specifically, turbulence occurs at peak velocities 
which decays to laminar flow as the velocity approaches reversal. For flat beds, K&S suggest that the 
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transition is gradual, and that the early stages of turbulence have mean-flow properties dominated 
by “laminar processes such as vortex formation and decay”. Here, turbulence is defined with respect 
to the phase-space-averaged flow properties, that is, a fully laminar flow is identical from cycle to 
cycle, but not phase to phase. A fully turbulent flow, for the purposes of this study, is one in which 
variations from the phase-space-averaged flow properties exist at all phases of the cycle, and an in
termittent regime, if one exists, would be characterized by variations from the phase-space-averaged 
properties near the peak velocities of the cycle and a return to average properties near flow reversal. 

Like experiment #41 of K&S, the simulation at Reδ = 95 produced laminar results. This stands 
in contrast to the turbulence noted by F&V. This disparity suggests that spacing between spheres 
must be a relevant length scale in characterizing the flow, specifically the transition to turbulence, 
signaling a possible subject for future study of addressing the flow differences as a function of this 
spacing. Efforts were made to perturb the flow at this Reynolds number; however, despite relatively 
strong forcing at a variety of wavenumbers, the solutions decayed back to a laminar state within a 
period or so. The lack of flow disturbances at Reδ = 95 in the present study does not conform to 
the empirical models suggested in equations 5 and 7 of Sleath (1988) [52] (see figure 5.1). This is 
likely due to the uniformity of the geometry in the present simulations. Particle irregularity should 
be able to sustain turbulence at lower Reδ. Regardless, the onset of turbulence in these simulations 
is more sudden than Sleath’s models would suggest; at D = 6.95, the models have a transitional δ 

range of approximately 200 Reδ , which is large when compared with the upper bound of 55 in be
tween the laminar Reδ = 95 and turbulent Reδ = 150 cases presented here. This sudden onset of 
turbulence is consistent with observations that a uniform sediment bed geometry may give rise to 
small transitional regimes [9, 29]. 

As mentioned in section 2.2, literature pertaining to this topic frequently uses an alternative 
frame of reference consistent with the experiments of K&S, in which an oscillating sediment bed is 
interacting with a stationary body of fluid, termed the fluid-frame here. Figures 5.2a, 5.2b, 5.3a, 

∗and 5.3b will be presented in this frame to allow for direct comparison with K&S. The use of u 

denotes the velocity in this frame. The transformation of frames of reference is only correct to an 
approximation for three-dimensional flows and should not be viewed as validation. 

Figure 5.2a, depicts the variation of the peak phase-space-averaged velocity (in the fluid frame) 
with respect to the height above the sediment crest. Data presented are from F&V, D&Z, K&S, and 
the present study, where this type of plot was first published. Based on this plot, the present data 
are a good fit for K&S and generally better than both F&V and D&Z. This is probably due to the 
use of touching spheres, which F&V and D&Z did not use. Figure 5.2b tracks the phase at which 
peak velocity is recorded (in the fluid frame) as a function of height above the sphere. An ideal 
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Figure 5.1: Recommended empirical relations of the transition to turbulence of oscillatory flow over 
sediment from Sleath (1988) [52]. 

Stokes flow over a flat plate oscillating in its own plane would have a linear dependence between the 
phase of the peak velocity and the height above the surface, so the vertical trend occurring in the 
range of 0.1 < δ

z < 0.3 is a clear departure from such a dependence and must be a direct result the 
inclusion of surface roughness of the sediment. The peak velocity of the vertically trending region 
corresponds to the secondary peak of the fluid-frame velocity being greater than the primary peak. 
The maximum velocity for which this is the case occurs somewhere in the range 0.25 < δ

z < 0.28, 
which can be compared to the fits of the maximum height in figure 5 of K&S. The present study’s 
value is lower than that of K&S yet conforms to the empirical fit nearly as well. This suggests that 
the departure from K&S is not in disagreement with their findings as a whole. 

Figure 5.3a shows phase-space-averaged velocity in the fluid frame as a function of phase at 
varying heights directly above the sphere crests. Because this plot is in the oscillating fluid frame, 

1the velocity should approach a sinusoidal temporal profile in the limit of βz → 0 (where β = isδ

adopted for consistency with K&S). In K&S (figure 2), varying degrees of waviness are observed 
as opposed to the distinct oscillations further from the wall during the decelerating phases in the 
present study; this discrepancy is most prominent far from the crest where the velocity approaches 
zero. Oscillations occurring at βz = 0.2, the closest probe to the wall, are another departure from 
the present findings in figure 5.3, where the velocity approaches a smooth sinusoidal profile. The 
oscillations closest to the crest are of approximately the same frequency as those occurring at later 
phases at all distances from the crests in the present simulation. The lack of this in the present 
findings may indicate insufficient resolution near the sphere surface; however, it should be noted 
that, according to K&S, the wall was estimated to have an unphysical impact on the measurements 
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(a) Peak fluid-frame velocity vs. height above sphere (b) The phase of peak fluid-frame velocity vs. height 
crests. above sphere crests. 

Figure 5.2: Peak velocity phase and amplitude in the fluid frame as a function of height above the 
sphere crests, Reδ = 95. Note that the phases are shifted by +π for these plots to be consistent 
with the notation of K&S, where U(t) ∝ −U∞Cos(ωt). 

of the hotwire anemometer beginning between βz = 0.2 and βz = 0.3 from the rough-bed surface, 
potentially calling into question whether the oscillations which grow approaching the wall are not 
simply from the growing influence of the wall on the measurement device. Also worth noting is the 
symmetry error apparent in this plot: To the extent that the experiment in question of K&S is an 
accurate representation of the geometry described, the velocity profiles should be identical from the 
first half cycle to the second, yet deviations on the order of 0.05δ are observed at all distances from 
the wall, and, at specific points, such as the βz = 0.75 probe near phases of 0 and π, they are on the 
order of 0.1δ. Although it is unlikely that errors in the symmetry of this experiment would induce 
the oscillations close to the crest or completely eliminate them far from it, it should further raise 
doubts about the details of their profile given that the magnitude of the oscillations is approximately 
the same as the errors observed between the half-cycles. It should be reiterated that the feasibil
ity crafting appropriate boundary conditions in oscillating plate experiments for comparison with 
oscillating fluid flows has been called into question by [32]. Finally, the validity of a comparison 
by transforming a flow solution to an oscillating frame of reference is based on the approximation 
that the non-linear terms of the Navier-Stokes equations are negligible, which is true for a laminar 
Stokes flow over an oscillating flat plate, but is only an approximation for more complex sediment 
geometries or turbulent flows. Whether the deviations between the experiments of K&S and the 
simulations are a result of an under-resolved flow or particle interface in the present investigation, 
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(a) Temporal fluid-frame velocity profiles of point 
probes above the sphere crests at Reδ = 95. 

(b) Temporal fluid-frame velocity profiles of point 
probes above the sphere crests at Reδ = 200. 

Figure 5.3: The phase-space-averaged fluid-frame streamwise velocity, ū, as a function of height 
1above the sphere crests. Note that β = is adopted for consistency with K&S. δ 

experimental error in K&S, or a breakdown of the approximation of the similarity of these flows is 
of relevance to the validity of the present findings and the usefulness of making such comparison. 
Careful observations of highly resolved simulations should be made to rule out or correct the first 
possibility. With the exception of these differences, the present plots describe flow characteristics 
similar to K&S, notably the double peak occurring at intermediate heights from βz = 0.575 to 
βz = 1.075. K&S showed that these secondary peaks were due to strong vertical velocities causing 
momentum transport from high to low-speed regions. 

Figure 5.3b depicts the velocity profiles in the oscillating-fluid frame at Reδ = 200. The velocity 
field immediately above the crest exhibits a greater departure from a sinusoidal profile which it 
should approach as βz goes to 0. This is to be expected given that the increased turbulence of the 
higher Reδ should impinge closer to the surface. The secondary peak and subsequent oscillations 
are also seen to be diminished at this Reynolds number. 
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(a) At Reδ = 95, Horseshoe vortices form regu
larly behind sediment elements during the accel
erating phase of each cycle, before being ejected 
at peak velocity into the surrounding fluid. This 
is thought to be a key mechanism in particle dis
lodgement [22]. 

(b) At Reδ = 150, the vortices can still be 
seen, but they periodically get pulled apart by 
the surrounding fluid. Later in the accelerat
ing phase of the cycle, oscillations arise reduc
ing the size and energy of the vortex; they are 
finally ejected at or shortly after peak velocity. 

Figure 5.4: Comparison of coherent vortex structures by means of streamlines at Reδ = 95 and 150. 
Note that while all of these images are in order and from the same sphere, period, and flow, they are 
not evenly spaced, but rather, are intended to convey the general trends of the cycle throughout the 
accelerating phase until shortly after the peak velocity, when the flow becomes especially chaotic. 
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(a) The Reδ = 200 case features early os
cillations and minor ejections of the vortex,
 
followed by violent vertical flapping of the
 
tails of the vortex, which wrap around in
dividual spheres and elongate in the flow.
 
These are finally ejected in a manner that
 
is less distinct in time than the Reδ = 150
 
case.
 

Figure 5.5: Comparison of coherent vortex structures by means of streamlines at Reδ = 200. Note 
that while all of these images are in order and from the same sphere, period, and flow, they are not 
evenly spaced, but rather, are intended to convey the general trends of the cycle throughout the 
accelerating phase until shortly after the peak velocity, when the flow becomes especially chaotic. 

(b) Isosurfaces of vorticity are used at Reδ = 
200 to clearly depict the flapping oscillations 
which characterize the flow and seem to have 
a consistent frequency. 
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2

5.2 Evolution of Vortex Structures 
Fornarelli and Vittori (2009) [22] noted the existence of horseshoe-shaped vortices in their 

Reδ = 95 case. These formed behind the spheres during the accelerating phases of the cycle and 
were released into the fluid around the peak velocity. Despite changes in geometry and turbulence, 
the present Reδ = 95 case also featured these vortical structures, which are shown in figure 5.4a. 
These structures are likely responsible for the “secondary peak” which received much attention in 
Keiller and Sleath’s 1975 study on this topic [30]. The ejection of these structures coincide with 
the peak lift experienced by the particles, and so it is likely that they are instrumental in particle 
erosion in this parameter range. 

Observations of videos of line probes at Reδ = 150 (figure 5.4b), indicate that the horseshoe 
vortices, which were present and totally regular at Reδ = 95, stretch out and experience vertical 
flapping with opposite ends out of phase. This behavior gets increasingly energetic until shortly 

πafter the peak velocity at φ when the vortex leaves the sphere with less energy compared to = 2

the punctuated symmetrical ejections at Reδ = 95. The Reδ = 200 case features flapping earlier on 
in the cycle as well as (at least one) noticeable early ejection of all of the vortex structure (figure 
5.5a). The flapping becomes violent around peak bed velocities, and the vortices continue to form 
even after a strong ejection has occurred at the peak velocity, so there is no longer a clear, single 
ejection event. Based on observations of this trend, it is expected that the ejection of the vortices, 
and therefore the vortices themselves, will have a diminished impact on the flow at higher Reynolds 
numbers. Of course, if D decreases, as it would for realistic coastal parameter ranges, then ejection δ 

events could remain important even at higher Reδ due to the vortex structures on the scale of the 
particles being smaller compared to the scales of viscous dissipation; as of yet, it’s unclear exactly 
how the flow will respond to smaller particle sizes. Figure 5.5b depicts the flapping more clearly 
than is apparent from streamlines via isosurface contours of vorticity leading up to the peak velocity 

πat φ = .2

Vertical profiles of the phase-space-averaged streamwise velocity at different points relative to 
the spheres are depicted in figures 5.7, 5.8, and 5.9. These are analogous to figure 11 of F&V; 
however, their line probes cannot be located with certainty due to an erroneous depiction of the flow 
direction in their particle guide, figure 10. See figure 5.6 for the positions of these probes relative to 
the sphere for this study. Because the spheres are not in contact with one another in the simulations 
of F&V, the flow at probe B, which is in the trough between the spheres, is not constrained as it 
is in the present case. Their case is also turbulent at Reδ = 95 due to the sediment spacing, as has 
been discussed. Finally, note that the phases included in the figures presented here are staggered 

πin between those depicted in figured 9 of F&V. The use of phases φ = 0 and φ for the line = 
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Figure 5.6: Locations of the line probes relative to the sediment elements used in figures 5.7, 5.8, 
5.9, 5.10, 5.11, and 5.12. 

probes in figures 5.7, 5.8, and 5.9 implies that u(z) should approach 0 and 1 at large z, respectively. U∞ 

u∞( π ) will be equal to u∞( 3π ), highlighting the hysteresis due to the presence of the bed. These 4 4 

advantages come at the expense of missing the inflection points of the profiles found in figure 11a 
13πat φ = of F&V, which is likely due to vortex ejection occurring at that phase and Reynolds 8 

15πnumber, as well as the moment of flow reversal of the bed velocity in figure 11b at φ = (note8 

that phases in F&V have a π lead over the system used here). The information presented in figure 2 

11 of F&V is in general agreement with the data presented here in figure 5.7. 

Looking at the line probes of the streamwise velocity found in figures 5.7, 5.8, and 5.9, the ver
tical extent of deviations in the velocity profiles from u∞(φ) increases with the Reynolds number, 
approaching the far-stream profile at approximately a = 11, 15, and 18 respectively. This might be 
explained by the increasing development of turbulence causing greater momentum exchange than it 
did in the laminar regime at Reδ = 95; it will not continue to increase with Reδ if D is held conδ 

2ν 
r 

stant as the boundary layer thickness δ = is independent of velocity and particle diameter (see ω 

equation 2.4). The trough probes in figures 5.7d, 5.8d, and 5.9d illustrate the extent of the phase 
lag in the pore space (see figure 5.21 for quantification of this); however, it also highlights the degree 
to which the phase lag on this probe is approximately the same above and below the sphere centerline. 

Figures 5.8c and 5.8d at Reδ = 150 and 5.9b, 5.9c, and 5.9d at Reδ = 200 all indicate a quadruple 
inflection in ū between z = 7 and 10. These may just be artifacts of fluctuations that have failed to 
average out given the sample size (16 for Reδ = 150 and 40 for Reδ = 200); however the flapping 
behavior seen at these Reynolds numbers in the time lapse of vorticity isosurfaces and streamlines 
may be responsible for producing the quadruple inflection, that is, it is possible that the flapping 
behavior yields two regions which attract flow with unstable feedback, resulting in increased veloc
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ities in these two regions more so than the flow between them. Furthermore, ū above the crest in 
figure 5.9b at Reδ = 200 has a double inflection which likely corresponds to an earlier, smaller vortex 
ejection occurring during the accelerating phase of the cycle, which is not present at lower Reynolds 
numbers. This hints at the possibility that ejected structures may continue to play an important 
role at higher Reynolds numbers; the peak lift on the particles leads the bed velocity in phase (figure 
5.13, discussion at the end of section 5.2), meaning that these structures, if ejected earlier during the 
accelerating phase, may be striking at just the right moment to dislodge a particle near the critical 
Shields parameter. 

As lift is primarily responsible for the ejection of embedded particles and is commonly modeled 
in relation to the dynamic pressure acting over the particle surface via the velocity squared, that is 

2CL ∝ ub , where ub is the bed velocity located in the log layer immediately above the effective bed 
¯ 2location, CL and ū  are plotted in figures 5.13a, 5.13b, and 5.13c at Reδ = 95, 150, and 200 respecb 

tively. Here, CL is computed with respect to U∞, making it a non-dimensional form of the lift force. 
The Reδ = 95 case features an early peak that is not present in figure 17 of F&V. Note that for the 
purposes of this investigation, ub is defined as the streamwise component of the velocity above the 
sphere crest as opposed to the magnitude of the velocity. The impact of vortex ejection, suspected 
of causing the secondary peaks apparent in figure 5.3a and figure 2 in K&S [30], ought to effect the 
lift a quarter cycle later where no distinct perturbation is noted. This suggests that vortex ejection 
has a minimal impact on particle lift and that some other flow mechanism, thus far unobserved, is 
responsible for the early fluctuation. The lift is found to lead the bed-flow velocity by approximately 
30◦ at Reδ = 95, in agreement with F&V, although this lead was found to diminish with increasing 
Reynolds numbers. The phase lead of the lift can be attributed the phase lead of the pore-space 
velocity pulling down on the sphere at reversal of the bed-flow velocity (see section 5.4). The di
minishing of this lead at higher Reδ is not due to a diminishing of the phase lead in pore space (see 
figure 5.21), but to a diminishing relative magnitude of pore-space velocity near bed-velocity reversal. 

Figures 5.10, 5.11, and 5.12 depict the vertical profiles of the mean turbulent kinetic energy 
at the probes from figure 5.6. TKE’s at Reδ = 95, as shown in figure 5.10, highlight the lack of 
turbulence at these parameters and reinforce the notion that the flow simulation features natural 
disturbances which would trigger turbulence in the appropriate parameter ranges, but that these 
perturbations are damping out at Reδ = 95, unlike the case of F &V . At Reδ = 150 and Reδ = 200, 
the double peaks above the crest are likely an indicator of the same phenomenon that is responsible 
for quadruple einflection of the ū probes, possibly a result of the flapping motion of the ejected vor
tices. One oddity is the clear double peak shown at the X-shoulder probe at φ = 0. At this phase, 
the fluid should have ejected all vortices formed behind sphere, which would have advected well 
beyond the shoulder of the same sphere given the relative magnitude of the free-stream velocities to 

http:figure5.21
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the particle diameters. Perhaps there are frequent vortices advecting at consistent heights from the 
spheres over multiple domain-lengths. The turbulent kinetic energy is highest relative to the mean 
flow for Reδ = 150 (figure 5.11). The decreasing trend is expected to continue into higher Reynolds 
numbers; just like the lift coefficient was expected to peak at intermediate Reynolds numbers as 
discussed in F&V and K&S, the TKE, related to the square of the velocity, will probably decrease 
into higher Reδ ’s. The TKE is seen to be significant in the trough between the center and crest of 

πthe sphere at Reδ = 200 at φ = but not Reδ = 150 (figure 5.12c). 2 

The line probes of Reδ = 200 also indicate a slight source of error in that simulation as the 
velocities do not appear to converge to zero at φ = 0 as z → ∞. The source of error is unknown, 
but it is almost certainly not part of the correct flow. The analytical flat-plate solution requires the 
velocity to exponentially decay with e 

z
δ , which is not happening in figure 5.9a [54]. The source of 

this error is unknown; one possibility is that a few erroneous data points of nonzero velocity got 
mixed into the set. Another problem, which is not apparent from the line probes, is that the data 
from one cycle to the next in the Reδ = 200 case (on eight different spheres) tends to be clustered 
together compared to the entire set of values, which is a clear sign that the domain is too small and 
that the solution is not an instantaneous representation of an infinite extent of spheres; however, 
the phase-space-averaged statistics still may be an accurate representation of the flow. It is difficult 
to confirm this without larger and longer simulations to compare it with. 

5.3 Probability Distribution Functions of Turbulent Properties 
The stochastic properties of turbulence have been investigated for the Reδ = 200 case exclusively. 

'As has been hypothesized in section 2.3, non-Gaussian u fluctuations were expected to be observed b 

in regions of rapid local increase of turbulent kinetic energy. Figures 5.12b and 5.12c indicate that 
this is happening directly above the sphere at phases from the middle of the accelerating cycle to 
peak velocity. At these phases, the local bed velocity leads u∞(φ) significantly (see figures 5.7b, 
5.8b, and 5.9b). In the present study, probability distribution functions of the bed-fluid parameters 
are attained by sampling a region of fluid on a line probe immediately above the crest of the spheres. 
The sampling range was fixed between 7.05δ < z < 8.05δ or 0.1δ to 1.1δ above the sphere crest. This 
range was chosen as a sample of the instantaneous log layer of flow; however the crest line probes 
of ub in figures 5.7d, 5.8d, and 5.9d as well as figure 5.7a experience a flow reversal within δ of the 
sphere crest. This poses a challenge for correlating the local bed velocity, ub, to the forces acting on 
the particles as the turbulence in the selected sampling region above the crest may not reflect that 
of the instantaneous log layer. For future simulations, it will be desirable to sample velocities over a 
smaller range of heights above the sphere and over a broader region in the streamwise and spanwise 
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(a) φ = 0 (b) φ = 0.125 (c) φ = 0.25 (d) φ = 0.375 

Figure 5.7: Vertical ūx profiles at different points above the spheres at Reδ = 95, indicated by figure 
5.6. 

(a) φ = 0 (b) φ = 0.125 (c) φ = 0.25 (d) φ = 0.375 

Figure 5.8: Vertical ūx profiles at different points above the spheres at Reδ = 150, indicated by 
figure 5.6. 
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(a) φ = 0 (b) φ = 0.125 (c) φ = 0.25 (d) φ = 0.375 

Figure 5.9: Vertical ūx profiles at different points above the spheres at Reδ = 200, indicated by 
figure 5.6. 

(a) φ = 0 (b) φ = 0.125 (c) φ = 0.25 (d) φ = 0.375 

¯Figure 5.10: Vertical TKE profiles at different points above the spheres at Reδ = 95, indicated by 
figure 5.6. 
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(a) φ = 0 (b) φ = 0.125 (c) φ = 0.25 (d) φ = 0.375 

¯Figure 5.11: Vertical TKE profiles at different points above the spheres at Reδ = 150, indicated by 
figure 5.6. 

direction (to increase the sample size). For the purposes of this thesis, the most important phase 
is near peak lift, and therefore potential ejection, and will still have a bed-velocity sampled within 
the instantaneous log-layer. It is possible that the use of an instantaneous log layer for this purpose 
is not necessary as the particle forces will be a reflection of the complex dynamics of the flow in its 
immediate vicinity regardless of its profile. 

Flow samples were sorted into ten bins per half cycle. In order to maximize the sample size 
of the bed-flow turbulence, statistics from the back half of the cycle were combined with the front 
half. Fluctuations of properties which are dependent on the sign of the flow, such as ub, ub |ub|, and 

2CD were multiplied by −1, while flow properties such as u and CL were used as they were. Even 
with this added data, typical sample sizes of the bed-flow properties did not exceed 10000 per 18◦ 

sampling period. 

Based on the profiles depicted in figure 5.12, the TKE is observed to increase substantially be
π πtween φ = and φ = above the surface of the spheres at Reδ = 200. A significant decrease 4 2 

'in TKE is observed a quarter cycle later; based on these ranges, turbulence samples of u fromb 

phases of 3π < φ < 4π and 8π < φ < 9π have been selected to compare the distributions. Skewed 10 10 10 10 
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(a) φ = 0 (b) φ = 0.125 (c) φ = 0.25 
(d) φ = 0.375 

¯Figure 5.12: Vertical TKE profiles at different points above the spheres at Reδ = 200, indicated by 
figure 5.6. 

(a) Reδ = 95 (b) Reδ = 150 (c) Reδ = 200 

FL=Figure 5.13: The phase-space-averaged lift coefficient, CL , evolutions over the cycle 1ρflU2 
∞A2

2̄ ubcompared with for different Reynolds numbers. U2 
∞ 
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distributions resulting from local surface-related instabilities generating turbulent kinetic energy are 
depicted in figures 5.14a, while the expected symmetrical distributions resulting from non-local tur
bulence dissipation are displayed in figure 5.14b. This, in agreement with the predictions of section 
2.1, suggests that assumptions of Gaussian distributions of the bed velocity are not instantaneously 
accurate and should not be used as the basis of theoretical derivations of forcing distributions as a 
function of phase as is commonly done in steady flows. 

Given that it is the aim of this investigation to develop improved stochastic sediment transport 
models, and that such models are often (and most successfully) built via relations of FL and FD 

' 2to the bed velocity (see equations 2.2 and 2.3), it is of interest to see how PDFs of u comparesb 
'to those of F . The lift is chosen in favor of the drag due to its relative importance in dislodging L

' 2 'embedded particles. Figures 5.15 and 5.16 show PDFs of u and C , respectively, at Reδ = 200.b L

In this case, CL is defined with respect to the maximum velocity far from the bed, U∞, and is thus 
' 2a non-dimensional measure of the instantaneous lift force, FL. The PDFs of u exhibit positive b 

15πskewness during the accelerating phase of the cycle and briefly Gaussian behavior at φ = , before 20 
17πcompressing into highly peaked distributions at φ = and 19π (figures 5.15i and 5.15j). It is not 20 20 

clear from visual inspection whether these trends are reflected in the lift PDFs. Focusing on the 
' ' 4π 2phases investigated for the u distributions, in can be seen that at 3π < φ < , u features a b 10 10 b 

'similar distribution to u in figure 5.14a; however, the PDF of lift at this phase does not reflect the b 
' 2bed velocity intensity and actually has a skewness of opposite sign. The PDF of u at 8π < φ < 9π 

b 10 10 
'is much more peaked than that of u in this phase range. The lift fluctuations in this sampling b 

' ' 2range, C , can be seen to be peaked, although not nearly to the extent of u .L b 

While a straightforward correspondence between the PDF’s of the fluctuations in the bed velocity 
intensity and lift coefficient CL were not demonstrated, the observations can be explained. PDFs of 

' 2 ' u can only be expected to be similar to those of u if the relative turbulence intensity, σub goes to b b µub 

0, as discussed by [26] and in section 2.1, otherwise, the PDF is significantly transformed. In the case 
2of a Gaussian PDF of ub, the PDF of u should become a non-central χ2 distribution which is more b 

' 2peaked and skewed. The fluctuating component, u will follow these trends. Figure 5.18a displays b 

the velocity in the center of the range 8π < φ < 9π , corresponding to the highly peaked PDF of the 10 10 

bed velocity intensity in figure 5.15i; flow reversal immediately at the crest can be seen to occur at or 
immediately after this sample. At this moment, the mean bed velocity goes to zero while turbulence 
is still present (see the TKE in figure 5.18b). Thus, it is not surprising that in the sampling range 

2of this PDF, the relative turbulence intensity of 1.2 results in a more peaked distribution of u and,b 
' 2 2therefore, of u . The PDF of u is fit with χ2 and log-normal distributions in figure 5.17. This plot b b 

shows better agreement between the χ2 fit and the data than the Gaussian distribution in figure 
5.15i. It is possible that some error may have been introduced at this phase due to the reversal 
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of the fluid immediately above the sphere: the instantaneous region of linear velocity profile may 
expand to above 0.1δ above the sphere crest, where the bed velocity is computed; however, resizing 
the sampling height failed to significantly reduce the kurtosis at that phase. 

' The skewness and kurtosis of the PDFs of u2 
b and C ' are plotted as a function of phase in figure L 

5.19. These moments indicate a weak correlation in a few parts of the cycle, namely, the signs and 
approximate magnitude of the changes in skewness at phases from 19π 

20 
' 

4< φ < π 

are, however, of opposite signs 
as well as the values 

of kurtosis in the range of 7π 
20 < φ < 3π 

of one another for significant portions of the cycle. A large peak in kurtosis and skewness occurs in 
' 

4
'. The skewnesses of C and 2uL b 

the PDF of u2 
b , which is the phase discussed in detail due to its high relative turbulence intensity 

at local flow reversal. If the fluctuations in lift were a reflection of the fluctuations occurring in 
the bed velocity intensity (and therefore pressure) immediately above the sphere crest, the higher 

' moments of the lift fluctuations would also reflect those of the u2 
b distribution. The poor quality of 

correlations shown in figure 5.19 demonstrates that this is not the case. This can be explained by the 
rigid particle acting as a low-pass filter, smoothing out low wavenumber fluctuations occurring over 
its surface and possibly reducing the extremity of the higher moments of its fluctuations. It is also 
likely that the fluctuating velocity intensity is characterized by different distributions at different 
points around the surface of the sphere, so the bed-velocity should be sampled from a wider region 
than immediately above the crests. The vertical and spanwise components of velocity are also likely 
relevant in the resulting lift fluctuation, so the bed velocity should be defined as the sum of all three 

2 2 2 2components for better results: u + u + u= u .b,better x y z 

2Again, a straightforward correspondence between the fluctuations of and CL was not observed ub 

in the higher moments of the PDFs displayed in figure 5.19; however, the many discrepancies may be 
explained by a failure to properly sample the bed velocity and to account for natural spatial filtration 
of high-wavenumber velocity fluctuations. The kurtosis of the bed velocity intensity fluctuations 
appears to be correlated with the lift fluctuations near peak velocity, where the relative turbulence 
intensity is smallest and the intensity of flow is dominated by the intensity of the x-component of 
velocity (the bed-velocity). This suggests the peaked distribution occurring at flow reversal above 
the sphere crest may be highly localized and washed out by relatively normal distributions occurring 
on the shoulders of the sphere and even beneath the sphere. In general, the possibility of relating 
the PDF moments of the velocities in the flow to those of the lift force still appears attainable if the 
suggested issues are addressed. 
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(a) 3π ≤ φ < 4π (b) 8π ≤ φ < 9π 
10 10 10 10 

Figure 5.14: The PDF of ub at Reδ = 200. The bed velocity is taken to be the region directly above 
the crest of the sphere in the range 7.05δ < z < 8.05δ or 0.1δ to 1.1δ above the crest. The inclusion 
of a gap of 0.1δ eliminates the instantaneous linear boundary-layer region, which otherwise produces 
and excessively peaky distribution. 

5.4 Pore Space Flow Properties 
Understanding the phase lag and turbulence properties of the pore space will be necessary for 

accurate modeling of the lift force distribution across realistic parameters ranges of coastal flow. 
For instance, if the pore-space velocity (equation 5.2) peaks later in the cycle at more energetic 
parameter ranges than it does here, it will serve to reduce the net lift on the sphere when it is at its 
peak, which would reduce the chances of ejection. This is because the moving fluid pulls down on 
the sediment from below, as demonstrated in the brief period of negative lift preceding flow reversal 
in figure 5.13c. At the same time, if the absolute size of the turbulent fluctuations in the pore space 
becomes significant compared to the magnitude of the lift, the PDF of the turbulent properties in 
the pore space will need to be known to predict the overall PDF of the lift on the sediment and the 
probability of its ejection. The phase of flow reversal in the pore space and bed velocity are shown 
in figure 5.21, which indicates little appreciable change in phase lag at these parameters; however, 
the pore-space flow is not yet turbulent in any of the present simulations. Based on velocity profiles 
found at line probes to the side of the spheres in the spanwise direction of the Reδ = 200 case, 
the pore Reynolds number, Rep, defined in equation 5.1, can be estimated to be in the range of 
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(a) 0 ≤ φ < π (b) 1π ≤ φ < 2π (c) 2π ≤ φ < 3π 
10 10 10 10 10
 

(d) 3π ≤ φ < 4π (e) 4π ≤ φ < 5π (f) 5π ≤ φ < 6π 
10 10 10 10 10 10
 

(g) 6π ≤ φ < 7π (h) 7π ≤ φ < 8π (i) 8π ≤ φ < 9π 
10 10 10 10 10 10
 

(j) 9
10 
π ≤ φ < π 

' 2 'Figure 5.15: PDFs of u at Reδ = 200. As with the u distribution in figure 5.14, the bed velocity b b 
is taken to be the region directly above the crest of the sphere in the range 7.05δ < z < 8.05δ 
or 0.1δ to 1.1δ above the crest. The inclusion of a gap of 0.1δ eliminates the instantaneous linear 
boundary-layer region, which otherwise produces and excessively peaky distribution. 
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π(a) 0 ≤ φ < (b) 1π ≤ φ < 2π (c) 2
10 
π ≤ φ < 3

10 
π 

10 10 10
 

(d) 3π ≤ φ < 4π (e) 4π ≤ φ < 4π (f) 5π ≤ φ < 6π 
10 10 10 10 10 10
 

(g) 6π ≤ φ < 7π (h) 7π ≤ φ < 8π (i) 8π ≤ φ < 9π 
10 10 10 10 10 10
 

(j) 9
10 
π ≤ φ < π 

Figure 5.16: PDFs of C ' at Reδ = 200.L 
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2Figure 5.17: The probability distribution function of instantaneous u (not the fluctuating compob 
9πnent) at 8π ≤ φ < at Reδ = 200. This corresponds to the highly peaked distribution of the 10 10 

2fluctuating component of the u in figure 5.15i. The discrete distribution is then fitted with appro-b 
priate χ2 and log-normal continuous distributions. The inverse of the relative turbulence intensity 
was used to determine the appropriate non-centrality parameter of the χ2 distribution, as suggested 
by [26], which is 1.2 in this sample when determined with respect to the bed velocity in the boundary 

zlayer thickness directly above the sphere crests, 7.05 < < 8.05. The log-normal distribution was δ 
fit directly with the mean and standard deviations of the bed-velocity intensity during the phase 
sample. The validity of this fit was suggested by [39] to be a function of the 2-point correlation 
length of the velocities, which were not measured for this sample. 

50 < Rep < 100 at peak velocity, which is well below the approximate threshold to full turbulence in 
steady porous flows described by Horton and Pokrajac (2009) [27] of Rep = 300 for regular packing 
configurations. If the present simulations were to feature an additional layer of stacked spheres be
neath the surface layer, the pore space flow might be affected. If a hexagonal pattern were used and 
stacked in a staggered manner, the pore-space flow would feature a more consistent channel diame
ter, but would not have a much larger Rep; however, if an orthogonal pattern of spheres were used, 
as done by D&Z [16], the dp would approximately double, and Rep would increase by O(d2) = O(4), 
in addition to aligning the channels, potentially resulting in turbulent flow around Rep = 300, or 
otherwise disturbed laminar flow, as opposed to the linear laminar flow of the present study. This 
is, of course, assuming that the steady flow model will provide a useful estimate of the instantaneous 
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(a) ub 
2 (b) TKE 

Figure 5.18: The phase-space-averaged ub and turbulent kinetic energy profile above the sphere crest 
' 17π 2at Reδ = 200 at φ = , the phase of the highly peaky PDF of u in figure 5.15i. 20 b 
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I(a) Skewness of the CL
I and u 2 PDFs vs phase in b

radians. 

I(b) Kurtosis of the CL
I and u 2 

b PDFs vs phase in 
radians. 

' 2Figure 5.19: Skewness and Kurtosis of PDFs of lift coefficient, CL 
' , and bed velocity squared, u atb 

Reδ = 200. These appear to follow u∞(φ)2 . 

turbulence properties. The turbulent disturbences leaking from the bed flow above may serve to 
quickly stimulate flow conditions resembling steady flow. Future studies should aim to characterize 
the transition of turbulence in the pore space and its potential effect on lift as well as the phase lag 
of this portion of the flow. 

5.5 Future Simulations and Analysis 
The new solver will soon be used to simulated larger arrays of particles, and, eventually, their 

suspension, collision, transport, and deposition. It will also be used to parameterize probability 
distribution functions of bed velocity intensity and particle lift and drag as a function of phase, 
and the local flow properties D and σub . In order to test the proposed PDF dependencies, and Lu ūb 

extra layer of spheres will need to be stacked atop the existing one so the pore space turbulence 
and the influence on the forces experienced by the sediment may be observed. Many more spheres 
will need to be added so that the statistics of the particle forces and, eventually, motions, will be 
significant. This will serve the secondary purpose of widening the domain and addressing the issue 
encountered in the present simulations in which statistics were more strongly correlated from sphere 
to sphere than from cycle to cycle. Such large simulations might involve hundreds of millions even 
1 or 2 billion cells and will be made possible by the new structured solver, which is expected to 
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2(a) Standard deviation of the CL 
I PDF vs phase in (b) Standard deviation of the ub 

I PDF vs phase in 
radians. radians. 

' 2Figure 5.20: Standard deviation of PDFs of the lift force, CL 
' , and the bed velocity squared, u atb 

Reδ = 200. 

Figure 5.21: Phase lag of flow reversal between the bed and pore velocities as a function of Reδ. 
Flow reversal in the pore space was computed by averaging ū over the lower portion of a vertical 
line-probe tangent to the spanwise extrema of a sphere and observing a change of signs in this value. 

zThe same technique was used in the region of 7.05 < < 8.05 for bed-velocity reversal. δ 
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increase the size of problems which can be addressed per processor by a factor of 10 to 50 while only 
decreasing runtime marginally once new pressure solving options are implemented. 

Careful temporal flow-force correlations as a function of fluid position will be conducted to vi
sualize which regions have the greatest impact on the flow and ensure more accurate sampling of 
the bed-flow velocity. This will be accomplished via post processing of the flow-field directly in 
Fortran, a necessary step for the computational difficulty of running spatially dependent temporal 
correlations and utilizing large sets of data. The additional option of running spatial filters on the 
bed velocity will have to be weighed against the practical use of such a filtered velocity; such in
formation is unlikely to be available to large sediment-transport models. The bed-flow velocity can 
then be sampled and fit with log-normal, Gaussian, and χ2 distributions. The quality of the fits 
can then be compared with the parameters of interest as described in section 2.1: D and σub . It is δ ūb 

the ultimate aim of this effort to find a generalized PDF model which can be integrated to give the 
instantaneous sediment load supported by the flow, which is expected to vary throughout the cycle. 
Once an instantaneous model is achieved, the effects of transience can be built upon this. 
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Chapter 6 Conclusions and Future Work 

A new incompressible-flow, finite-volume solver was developed. This was designed to be suitable 
for use with fully resolved sediment-laden flows. This solver was shown to perform accurately on 
problems of O(106) cells per processor. It was also validated with periodic, wall, moving wall, and 
slip boundary conditions on a Taylor-Green vortex and a lid-driven cavity. It was shown to be 
second-order accurate in space on the Taylor-Green vortex case. A turbulent channel flow was run 
to validate the solver with turbulent flows. Despite errors of order of 1%, the general trends of the 
solution were in agreement with a benchmark case [31]. 

A rigid-body solver, an immersed-boundary method known as the fictitious domain method, was 
also implemented to simulate sediment particles in the incompressible fluid by imposing fluid rigidity 
within the particle volume. A grid-refinement study on a confined cylinder subjected to channel flow 
showed the rigid-body solver to be spatially second-order accurate in the vicinity of the rigid-body 
interface. The rigid-body solver was validated on cylinders in open flows at Re = 40, 100, 300, and 
1000. 

Fully resolved simulations of oscillatory flow over a single layer of hexagonally packed spheres 
were run at Reδ = 95, 150, and 200, the intent being the acquisition of insight leading to improved 
sediment transport models for coastal environments. The Reδ = 95 and D = 6.95 case shed light on δ 

recent simulations ([16, 22]) due to its improved geometry, which includes pore space and contact 
points between the spheres. The present characterization of fluid-frame peak velocities above the 
sphere crests (figure 5.2) appeared to be a better fit of the original experiment than the recent studies 
of [16, 22]. This case was shown to be fully laminar, in contrast to the simulation of Fornarelli and 
Vittori (2009) [22] but in agreement with Keiller and Sleath (1975) [30]. Discrepencies in the form of 
high-wavenumber oscillations were found between the fluid-frame velocity profiles above the spheres 
in the present Reδ = 95 case and #41 of [30] (see figure 5.3a). This may suggest an under-resolved 
flow or particle interface in the present simulation; however, a number of other possible causes of 
these discrepancies have been suggested, most notably that the transformation of oscillating fluid 
cases to an oscillating referencing frame may not produce an accurate approximation of the oscil
lating plate case when the flow is three dimensional, as with roughness elements. Lift profiles were 
produced (figure 5.13); an unexplained peak in the lift force was found just after flow reversal at 

2 ubReδ = 95, while the relative magnitude of CL was shown to decrease with respect to as the U2 

Reynolds number increased. 
∞ 
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The three cases run were used to observe changes in characteristic flow structures at different 
Reynolds numbers and their effects on the lift and drag of the spheres. Specifically, the horseshoe 
vortices prominent at Reδ = 95 diminish with increasing Reδ due to their being elongated around 
the sides of the sediment particles and pulled apart. The flow at Reδ = 150 still featured semistable 

2vortices with mild flapping and a weaker, less distinct ejection near peak velocities at π 

Reδ = 200 case showed at least one complete early ejection and reformation of the structure behind 
the sphere as well as the development of violent vertical flapping near the peak velocities (see figure 
5.5). The line probes of ūb at this Reynolds number (figure 5.9b) featured a set of inflections indi
cating a consistent event across the samples, perhaps the early vortex ejection observed during the 
accelerating phases of the cycle. This suggests the possibility of a trend of earlier vortex ejections 
with increasing Reδ 

Asymmetrical velocity profiles were observed immediately before peak velocities as local tur
bulent kinetic energy was rapidly increasing. The proposed explanation for this is that turbulent 
kinetic energy is primarily generated due to flow instabilities at particle surfaces and that velocity 
distributions tend to be skewed down gradients of the turbulent kinetic energy. Likewise, symmetri
cal, nearly Gaussian distributions of the local streamwise velocity were observed shortly before flow 
reversal, when turbulent kinetic energy was rapidly dissipating. This should provide a context for 
when the assumption of Gaussian velocity profiles may be appropriate as the basis for stochastic 
models of particle forces in oscillatory flows. 

' 

, while the 

' The dependence of the relationship between the probability distribution functions of u2 
b and CL 

on the phase of the cycle was explored. The higher moments of the normalized PDFs did not exhibit 
general correlations between the two parameters; however, the kurtoses appeared correlated near 
peak velocities, where relative turbulence intensities are expected to be minimal. It is suggested 
that the single line probe above the crest of the spheres used in this study to sample the bed velocity 

' was too small a sampling region. The probability distribution functions of u2 
b approaching flow re

versal above the sphere crests exhibited strongly peaked and skewed distributions due to their high 
relative turbulence intensity; this is unlikely to be exhibited by the whole of the body of turbulent 
fluid surrounding the spheres, thus the sampling of one specific point line probe for the bed velocity 
appears to periodically display overly extreme higher moments of the PDFs compared to those of 
CL 

' . It is also suggested further discrepancies may be due to a lack of high-wavenumber filtering in 
the bed velocity sampling, which would occur naturally in the integration of dynamic pressure forces 
acting on the surface of the rigid sediment. The phase difference of flow reversal between the bed 
velocity and pore velocity across Reynolds numbers was considered and no substantial differences 
were found, yet it should be noted that turbulence did not develop in the pore space. 
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