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A presumed pdf model for droplet
evaporation/condensation in complex flows

By S. Apte AND S. Ghosal}

1. Motivation and objectives

In many multiphase flow problems, the condensed phase (liquid or solid) exists in
the form of a cloud of droplets of heterogeneous size in an ambient gas undergoing
time dependent (often turbulent) motion. One example is the problem of the formation
and growth of ice crystals in the “contrails” of aircraft [Paoli et al. 2002 - henceforth
cited as CTR-SPQ]. Other examples include, atmospheric aerosols (Binkowski & Shankar,
1995), rain drops in clouds (Shaw 2003), and, the fuel vapor from evaporating drops of
hydrocarbon fuel in spray combustion engines (Moin & Apte 2005). In order to be specific,
we shall assume here that the condensed phase is a liquid that undergoes evaporation.

The need for modeling the spray arises in both LES and DNS. In DNS; the size of a
computational grid is typically within an order of magnitude of the Kolmogorov scale.
However, if particle sizes and the average distance between particles is much smaller
than this, then clearly some kind of a statistical description of the particles need to be
adopted so as not to increase the computational effort by many orders of magnitude. In
LES the size of the computational grid is somewhere intermediate between the integral
scale and the Kolmogorov scale. Here once again some statistical modeling is needed if
particle sizes and the distance between them are much smaller than the LES grid.

In this report the statistical description based on a ‘presumed pdf’ (henceforth PPDF)
outlined in CTR-SP02 is worked out in detail for a specific evaporation model and for a
lognormal form of the presumed pdf. The predictions are checked against a full numerical
simulation that does not involve any statistical modeling. The general formalism had been
presented in Sec 4.1 of CTR-SP02 and need not be reported here. We will assume the
results presented in that earlier report and also adopt the notation used there.

2. The Model

The simplest nontrivial model follows from assuming that the “presumed pdf” is a two
parameter distribution depending on the first two moments m; and my in addition to the
droplet density N, = mg. Then the time evolution of N, m; and my are described by
equations (4.2) and (4.3) of CTR-SP02} with the series of moment equations truncated at
k = 2. In order to obtain explicitly the source terms we need to specify (a) the analytical
form of the presumed pdf and (b) the evaporation/condensation model.

2.1. FEwvaporation Law

We will assume that the fluid droplets are spherical and at a fixed temperature Tj.
Further, the local thermal field around a droplet is described by spherically symmetric
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solutions of V2T = 0 with the far field temperature matched to T'(x,t), the temperature
at the location of the particle in the absence of the drop. Any cooling effect on the gas due
to particle evaporation is neglected. The rate of inflow of heat to the droplet can then be
easily calculated. If one assumes that this energy is expended in raising the temperature
of the liquid to its boiling point and evaporating some of the liquid, then, the change of
droplet radius is given by

dr A(T — To)

Rl ik St (2.1)
dt r
where A is a constant determined by properties of the gas and the liquid:
kg /pe (2.2)

L+Cg(T To)

where k, is the thermal diffusivity of the gas, L is the latent heat of vaporization, p, is
the liquid density, C; is the liquid specific heat and T is the temperature at the boiling
point.

2.2. The Presumed PDF

The form of the presumed pdf ¢ for the distribution of particle sizes will be assumed
lognormal;

5z (n(r/ry))” (2.3)

where the parameters Np,r, and o? are easﬂy seen to be related to mg,m; and may
through the relations

mo = Np; m1 = N,r, exp(c?/2); me = Nprf, exp(20?). (2.4)

np = ¢(r;mo, mi,ma) =

The mean particle radius (r) and the variance of the particle radius (Ar?) may be easily
shown to be related to r, and o by the relations

> (Ar?)] . a_ ()
c°=1In [1 + BE ] ; T, = T+ (A (2.5)

If (Ar?) < (r)* we get r, & (r) and o® = (Ar?)/r2 = (Ar?)/(r)?; the variance normal-
ized by the square of the mean.

2.3. Time Evolution of Distribution Parameters

The right hand sides of equations (4.3) in CTR-SP02 may be explicitly evaluated using
the presumed pdf (2.3) and the evaporation law (2.1). Further, using (2.4) the equations
can be transformed into a form that uses N,, r, and o? in place of mo,m; and may as
dependent variables:

D (N, Dr, Do?
~\— = = Or, = Og) 2.
Dt ( p ) 0, Dt S Dt S (26)
where the source terms S, and S, are given by
AT —Tp) 2A(T — T
S, =— AT =To) {2 —exp(-20%)}, S, = ¥ {1—exp(—=20%)}. (2.7)

p

Using the continuity equation, the equations (2.6) can also be expressed in conservative
form, which may be more suited for numerical methods such as finite volume approaches.
Equations (2.6) determine the value of the parameters N,, 7, and o2 at any time.
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Knowing these three parameters at any given point in space, “P”, the PDF of drop sizes in
the neighborhood of “P” is determined by (2.3). Thus, any desired quantity related to the
interaction between the gas phase variables (resolved) and condensed phase (unresolved)
may be calculated. For example, if droplet evaporation is a source of combustible vapors,
then we may write
DY,

thF =—w+V-(krVYr)+ S (2.8)
where YF is the vapor mass fraction, w is the rate of removal of vapor mass due to chemical
reaction, kp is a diffusion coefficient and the source term due to liquid evaporation from
the droplets is

S = —/ npt(4rr?) py dr = 4w Ape(T — To) Nprp exp(a? /2). (2.9)
0

To obtain the expression on the right hand side, 7 and n, was substituted from (2.1)
and (2.3) the integral was evaluated in order to sum the contributions from all droplet
sizes. Equations (2.6) and (2.8) may be solved together to account for the gas as well as
the condensed phase without the need for following the motion of each particle in the
condensed phase.

2.4. Physical Interpretation

The first of equations (2.6) simply means that the total number of droplets in a material
volume of fluid does not change. The density in the denominator takes account of the
fact that the volume of the material element could vary if the flow is compressible. At
first sight this conclusion may seem to be in conflict with the fact that droplets may
evaporate completely! However, this paradox is only superficial since in the language
of PDFs droplets never evaporate “completely”, rather, the distribution function n,
shifts continuously towards smaller and smaller particle sizes (r, — 0) so that the total
mass in the condensed phase goes arbitrarily close to zero. Thus, the right hand side of
(2.9) would be “machine zero” after sufficient time has evolved; whether one describes
this situation by saying “all droplets have evaporated” or the “distribution function has
become extremely localized around r = 0” is of course just a matter of linguistics.

The interpretation of the second of equations (2.6) is clearest if one considers the initial
PDF of drop sizes to be narrowly peaked around the mean size: {(Ar?) < (r)2. In this
case, as pointed out before, r, & (r) and o> & (Ar?)/r2 = (Ar®)/(r)*> < 1. Therefore,
the source terms of the equations for r, and o2 in (2.6) may be simplified:

Dr AT - T, Do? AN(T - T

LU _%(1 +20%), =8~ %02. (2.10)
Thus, if o = 0 initially, it remains zero and the mean droplet size remains exactly equal
to the size of any droplet in the monodisperse cluster since the evolution equation for
rp is the same as (2.1) for an individual drop. However, if ¢ is small but nonzero,
these equations predict (a) the mean of the distribution shifts to the left faster than the
radius of an individual droplet of radius r, (b) the variance of the distribution increases
rapidly. The physical reason behind these predictions may be found in the evaporation
law (2.1) according to which small droplets get smaller faster than large ones. Indeed, if
one considers three droplets of radii r; < ro < 73 then since r; decreases faster than rs,
r1 — r3 would get larger with time, that is the spread of the distribution increases. Also,
if initially ro was the mean of r; and r3, at later times the mean would be less than rs,
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FIGURE 1. Temporal evolution of total mass of droplets in a Taylor-vortex flow for ¢ = 0.1:
o DNS, — — — model with S, given by equation (2.6), model with S, given by equa-
tion (3.5).

that is the average of the distribution decreases faster than an average sized drop. This
is indeed what equations (2.10) predicts.

3. A Problem with the model and its resolution

Figure 1 shows the change of total mass in the liquid phase as predicted by equations
(2.6) in a swirling ‘Taylor-vortex’ flow with an inhomogeneous initial temperature dis-
tribution. The details of the simulation are discussed in the following section. Here it
suffices to point out that the predicted liquid mass is in close agreement with the full
DNS of the system until very late times when apparently some kind of instability de-
velops causing the liquid mass to increase rapidly - a completely unphysical prediction -
since each individual droplet is evaporating!

3.1. Physical mechanism for anomalous growth
The instability is not a numerical one but its source is in the equations (2.6) themselves.

To see this, first note that the total volume of liquid in the condensed phase in the entire
domain () at a given instant may be expressed as

V(t)= / dv/ npgr® dr = ‘”/ av Nyrdexp ( 0° (3.1)
Q 0 3 3 Ja 2

where the second equality follows on substituting the expression (2.3) for n, and per-
forming the radial integration. As a particular case, suppose that system is homoge-
neous (N,,rp,0 are position independent). Further suppose there is no flow so that
D/Dt = §/0t in (2.6). In this case it is easy to show that

1dV  3AM(T —Tp) )
2 = 0 9exp(—202)] 2
V@ " [1 — 2exp(—207)] (3.2)

When ¢ <« 1 the right hand side is negative (assuming T' > T, everywhere) but as o
becomes large the sign of the term in [ ] changes and the volume of the condensed phase
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starts to increase! This is the source of the observed late time instability apparent in
figure 1.

3.2. Resolution of the difficulty
First note that V (¢) is related to the third moment ms(x,t) of the distribution:

4
V(t) = gw/ dV ms(x,t). (3.3)
Q
Now according to equation (4.3) of CTR-SP02 m3 actually has an evolution equation:
oo
% + V- (mzu) = 3/ r’nyt dr (3.4)
0

with a source term that is always negative as long as 7 < 0. The problem with our model
is that we discarded this moment equation (together with all higher moments) in order
to achieve a “closure”. Thus, in the current model, the behavior of “ms3” is a derived
quantity determined by the dynamics of mg, m1, ms and the presumed PDF, and there is
nothing in those lower order equations to ensure that V would decrease for evaporating
droplets.

The nature of the difficulty also suggests a resolution. If one were to adopt a moment
closure at the level of m3 and assume that the presumed PDF ¢ = ¢(mg, m1,ma, m3),
then the equation for mg3 would ensure that V' does not increase. Actually we can achieve
the same result within the lognormal formalism itself, if we notice that the lognormal
form of the presumed PDF with three independent parameters requires that we retain
any three of the equations of the moment hierarchy, not necessarily the first three! We will
therefore modify our closure assumption by enforcing the moment equations for mg,my
and ms and dropping all the rest. This is no more or no less justified than our original
closure but it does have the advantage that the physically important moment mg is
calculated directly from its evolution equation.

With this modification, the form of our basic model (2.6) remains unaltered, except
for the formula for the source term which now becomes:

Sy = AT -T) {2 — exp(—20?) — exp(—40?)} . (3.5)

2
3 T,

If the calculation leading up to (3.2) is repeated with the modified source term, it is
readily verified that this time V' < 0. In fact one need not assume statistical homogeneity
or that u = 0, in general,

f%z—h/wMA@—%wayﬁﬁ (3.6)
Q
which implies that V < 0 as long as T > Ty everywhere. Thus, stability is assured
and indeed when the simulation is repeated with the new source term (3.5), the liquid
mass decreases monotonically and in good agreement with experimental data as shown
in figure 1.

Another interesting property of equation (3.5) is that when 2 < 1, both the right
hand side of (3.5) and the second of equations (2.10) evaluate to

AT - Ty)

2
Tp

S, o2. (3.7)
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Thus, at low dispersions, enforcing the equation for mg automatically enforces the equa-
tion for me, until the dispersion gets very large.

4. Numerical Experiments

The PPDF model (2.6) with the modified source term (3.5) is used to simulate a cloud
of evaporating droplets in the presence of a temperature gradient in a two-dimensional
decaying Taylor vortex flow. Preliminary results are also presented for the case of forced
isotropic turbulence in a box. The flows considered here are periodic and solved in a
periodic box of dimensionless length 27. The reference length and velocity scales used in
the computation are 1 m and 1 m/s, respectively, giving a reference time-scale of 1 s.
Results are compared with direct numerical simulations using Lagrangain tracking of all
droplets.

4.1. Decaying Taylor Vortex
The initial conditions for the velocity components are:

u(z,y,0) = —mcoszsiny (4.1)
v(z,y,0) = wsinz cosy (4.2)
and initial temperature distribution is
T = Tpin + AT |1 — z/7| (4.3)
AT = Thae — Thnin (4.4)

We use isopropyl alcohol as the liquid phase, and we take Ty, = 355 K (the boiling
point of isopropyl alcohol) and AT = 2250 K, representative of the typical temperatures
achieved in turbulent combustion. Figure 2 shows the initial streamlines and the tem-
perature field. The Reynolds number is Re = 50,000 and we use 32 x 32 grid points for
this two-dimensional calculation. To test the model’s predictions we performed a DNS
by tracking 122880 droplets which were initially randomly distributed over the computa-
tional domain. Approximately 120 droplets were obtained per control volume providing
statistically meaningful results. For DNS, the initial droplet sizes in each control volume
were sampled from the lognormal distribution (2.3) with a mean droplet radius of 250
microns. Two cases with different variances (c = 0 and 0.1) were investigated. Using
the properties of isopropyl alcohol (Reid et al. 1987) the droplet life-time of a ro = 250
micron size drop can be estimated as,

2
- "o

2A (Tmam - TO)
This is shorter than an eddy turn over time (~ 1 s) and much shorter than the viscous

decay time of the eddies (~ 157,000 sec), so that for the duration of the computation,
the vortices are essentially stationary in time.

te ~0.23s (4.5)

41.1. Case 1: 6 =0

For this case, at the initial time, the computational domain was seeded with droplets
of a uniform size (250 pm). Figure 3 shows the time evolution of the droplet radius
averaged over the entire domain, the total liquid mass in the droplets, and the fuel vapor
mass fraction obtained from DNS and the model. All of these global averages are seen
to be predicted very accurately by the model.
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FIGURE 2. Initial streamlines and temperature distribution in a 2D Taylor-vortex flow:
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FI1GURE 3. Temporal evolution of global quantities for & = 0: o DNS, PPDF, (a) Volume
average of mean droplet radius (b) total liquid mass (both normalized by respective initial
values) and (c) fuel mass fraction, Y.

4.1.2. Case 2: 0 = 0.1

Keeping the flow conditions the same as in case 1, we introduce a small variance (o = 0.1)
in the initial droplet size distribution. For DNS, droplets in each control volume were
sampled from a lognormal distribution giving a scatter of £50 pum around the mean
droplet radius of 250 pum. Figure 4 shows the instantaneous distribution of fuel mass
fraction obtained from DNS and the model at a later time. The time-evolution of the
total liquid mass and fuel mass fraction in the computational domain (figure 5) also
show good agreement with the DNS. However, at large times, the mean droplet radius
obtained using PPDF is lower than that of DNS (figure 5). This could be an artifact of
our sampling procedure, since in DNS particles that have become too small are discarded
so they are no longer counted in the calculation of the mean. The loss of these small values
could upwardly bias the mean.

Next we calculate the average droplet radius within each control volume. Figure 6
shows the scatter plot of the mean droplet radius at each control volume obtained from
the DNS and the model. At ¢ = 0, the mean droplet radii in all control volumes obtained
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FIGURE 4. Contour plot of fuel mass fraction Yz at ¢t = 2.5 for ¢ = 0.1: (a) DNS, (b) PPDF
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FIGURE 5. Temporal evolution of global quantities for o = 0.1: o DNS, PPDF, (a) Volume
average of droplet radius, (b) total liquid mass (both normalized by respective initial values)
and (c) mean fuel mass fraction in volume, (Yr).
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FIGURE 6. Correlation analysis between the DNS and PPDF for droplet radius averaged over
a control volume. Scatter plot shows mean radius at each grid cell: a) t = 0, b) ¢t = 0.75, ¢)
t=15,d)t=2,e)t=25

from both DNS and model are the same. The small scatter is due to discrete sampling
of droplet sizes in DNS. With time, the mean droplet size in certain control volumes
decreases more rapidly due to evaporation and the scatter plot shifts to the left towards
zero radius, but the predictions from the two simulations are closely correlated. At large
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FIGURE 7. Test of the validity of the lognormal distribution of droplet radius; plot of
z = (Inr — Inrp)/o (x-axis) against PDF (y-axis), o PPDF: at (a) t = 0 (b) t = 0.75 (¢)
t=15(d)t=2(e) t =2.5, Standard normal distribution (zero mean & unit variance).

F 1.0E-06 7.6E-03 1.5E-02 2.3E-02 3.0E-02 3.8E-02 4.6E-02 5.3E-02 6.1E-02

(a) (b) (c)
J

X X X X

FIGURE 8. Instantaneous profiles of fuel mass fraction. Comparison of PPDF predictions with
standard Lagrangian Parcel Tracking (LPT) at t = 2.4: a) DNS, b) PPDF, c) LPT1; 6144
parcels, d) LPT2; 256 parcels.

times, the mean droplet radius from DNS is generally higher than that obtained from
the model. This is partly because of the fact that droplets smaller than a threshold were
removed in the DNS resulting in higher mean of the droplet radius. Local liquid mass, on
the other hand, shows good correlation between the model and the DNS mainly because
droplets of size less than the threshold contribute little to the mass in a control volume.

Figure 7 shows the pdf of the variable z = (Inr —In,) /o which should follow the unit
normal distribution if r is distributed lognormally. The data was obtained from the DNS
at times corresponding to those in figure 6. From the DNS, we collect all droplets in a
control volume, and use the data to determine r, and o for that control volume. Then
the variable z is calculated for each particle, the results binned and plotted. The same
procedure is repeated for each control volume. As shown in figure 7, initially the pdf
collapses on top of the standard normal distribution. With time, there are some small
deviations but the distribution does remain close to lognormal until most of the liquid
has evaporated.

4.1.3. PPDF or Lagrangian Parcels Tracking (LPT)?

In simulations of practical gas-turbine combustor, the spray is represented by compu-
tational particles or ‘parcels’ each representing a fixed number of droplets. Each parcel
carries with it properties: velocity, mass, radius, temperature etc. equal to that of some
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FIGURE 9. Instantaneous profiles of liquid mass dispersed in isotropic turbulence: a) DNS, b)
PPDF

‘average’ particle in the cloud that it represents (Apte et al. 2003a, Apte et al. 2003b).
Replacing a large clump of particles by a single ‘proxy’ in this way reduces the compu-
tational cost to manageable levels. The accuracy of the algorithm as well as its compu-
tational cost is inversely correlated to the number of particles that a parcel represents.
In order to compare the PPDF model with the LPT approach in regards to accuracy
as well as computational cost, two separate simulations were run with the LPT method
using the conditions corresponding to case 2 of the Taylor-vortex flow. We will call these
cases (a) LPT1: 3072 parcels each representing 40 droplets and (b) LPT2: 128 parcels
each representing 960 droplets. They both correspond to the same number (122,880) of
droplets present in the DNS. These numbers are typical of a realistic spray simulation in
complex combustors (Moin & Apte 2005). Figure 8 shows the instantaneous distributions
of fuel vapor mass fraction obtained from DNS, PPDF, LPT1, and LPT2. It is seen that
the accuracy in predicting the evolution of fuel mass fraction degrades considerably as
one goes from 40 to 960 drops per parcel. Table 4.1.3 shows the comparison of CPU time
per 100 iterations on a single processor of Origin2000 for the four different approaches.
It should be noted that the PPDF and LPT1 have comparable computational cost, with
the PPDF approach actually producing somewhat better agreement with DNS at a cost
that is slightly lower than the LPT1 simulation.

Method

CPUs in second per 100 iterations [1200| 75 85 50

DNS ‘ PPDF ‘ LPT1 ‘ LPT2 ‘

4.2. Forced Isotropic Turbulence
The PPDF model was used to simulate forced isotropic turbulence with temperature
gradients at Rey = 40 on a 643 grid. The initial temperature profile was chosen as

where AT = Ta0 — Tinin = 2000 K and T),,;,, = 700 K. The configuration is represen-
tative of the interaction between a turbulent flame and a sprinkler system. The droplets
that are introduced in a narrow band of thickness Ay = 0.03 x (27) around y = 0.
They may be thought of as originating from a sprinkler at y = 0 and being subsequently



Droplet evaporation/condensation in complex flows 219

convected by the turbulent flow as they evaporate and cool the system. Figure 9 shows
an instantaneous map of the liquid mass in droplets obtained from the DNS and the
model. Preliminary results show good agreement with the DNS data. A more systematic
analysis for this turbulent flow case is in progress.

5. Discussion

The model developed here is based on certain assumptions which are valid to a greater
or lesser approximation depending on the physical system being described. Let us bring
together here these various assumptions, discuss under what conditions they are valid
and how the current theory may be expanded (if possible) when the assumptions fail to
be valid.

First, we wrote down a continuity equation in phase space for the PDF n,(x,r,t): (4.3)
of CTR-SP02. This equation is valid provided that

(a) the external field u varies on a length scale that is very much larger than A, the
scale on which n,, itself varies.

(b) there exists no processes that would result in abrupt changes in particle radii (i.e.
collisions, coalesence and break up of droplets).

(¢) the particles move with the local flow velocity.

Both (a) and (b) are reasonable if a < d < 1 where a is a characteristic particle radius,
d is a typical separation and 7 is the Kolmogorov scale. If d ~ 1 and one is solving a
DNS then the PDF approach is of course superfluous since one has only a few particles
per grid and one might as well track them individually and not rely on any modeling. If
on the other hand one is describing the system at a courser level, such as an LES then
A > dand d ~nord> n. In this case the velocity in (4.3) of CTR-SP02 need to be
decomposed into a slowly varying part and a second rapidly varying term. If one assumes
that the latter (the rapidly varying part) has a net diffusive effect (the “Fokker-Planck
Approximation”) then the moment equations get modified through the appearance of a
term aV2my, (where a > 0) on the right hand side and u is identified as the smooth part
of the velocity field. Thus, such a modification of the theory would extend it to situations
such as LES where u has a smooth and a fluctuating component. If a ~ d then assumption
(b) is no longer valid because of collisions between particles. Unlike the case of collisions
between rigid spheres, there exists no simple “collision operator” for the coalescence and
break up of fluid drops. In a turbulent fluid statistical break up models such as those due
to Kolmogorov predict an equilibrium distribution ng? that is lognormal (Kolmogorov
1941, Gorokhovski 2001). If the system is not very far from equilibrium a linearized
collision operator (n, —ns?)/7 (where 7 is a timescale parameter) may be used and the
moment equations should be modified to account for such a term. The approximation is
not likely to be valid far from equilibrium. Fortunately in many combustor systems there
are separate zones characterizing droplet break up and evaporation and the current model
might be useful in the latter zone while the break up region is handled by a different
approach. The third assumption is the assumption of zero particle inertia. Its accuracy
depends on the Reynolds number based on particle radius being small. The violation of
this assumption leads to important phenomena that are well known (Reade & Collins
2000).

Secondly we assumed that the system has a “universal behavior” in the sense that the
PDF has a certain prescribed form (such as lognormal) the only thing that varies with
position and time are the finite set of moments my, ..., m, that specify the distribution.
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Such ‘self-similarity’ is well known in systems with many degrees of freedom, the case of
an ideal gas being a familiar example. In that case, the velocity distribution is “locally
Maxwellian” everywhere, the parameters of the Maxellian obey certain moment equations
which are the familiar Navier-Stokes-Fourier equations of classical gas dynamics. The
self-similarity in the gas dynamic example follows from the smallness of the duration of
collisions compared to the time between collisions. The smallness of the ratio of these two
time-scales imply a collapse to a center manifold the evolution on which is described by
the Navier-Stokes-Fourier equations. In our case, we do not have an asymptotic formalism
such as the Chapman-Enskog development to systematically prove such a self-similar
behavior but rather such behavior is assumed apriori, an assumption that is open to
critique and subject to experimental test.

Thirdly we assumed lognormality and the evaporation law (2.1). These assumptions are
the least fundamental and are only incidental to the particular test cases we chose to run.
Both statistical arguments as well as experimental data exists to support the hypothesis
that in dense two phase turbulent flows, the distribution of droplet sizes is well approx-
imated by the lognormal distribution. Therefore, if we wish to model the zone beyond
the break up zone where droplet evaporation dominates droplet break up, the lognormal
assumption is a reasonable one at least for the particles entering our computational zone.
Subsequently, evaporation could change the shape of the distribution, and the accuracy
of the model would depend on whether or not droplet evaporation is essentially complete
before substantial departure from lognormality becomes an issue. If it does become an
issue, then one will need to replace ¢ by a more detailed model. Finally, equation (2.1)
was chosen for illustrative purposes only. Models that capture much finer details of the
particle evaporation or condensation process are well known in atmospheric physics. A
modified evaporation law may also be desirable for a technical reason: equation (2.1) has
the feature, that the radius of a droplet goes to zero in finite time ¢ = ¢, which leads to
a small denominator problem in equations (2.6) unless the droplet radius is artificially
prevented from going to zero. However, a better way of avoiding the singularity is to
modify the evaporation law (2.6), for example:

AT — T,
> _¥ {1 — exp(—r/b)} (5.1)
eliminates the finite time singularity. Here b is to be chosen as a length so small that the
mass of liquid droplets of radius less than b is essentially zero for all physical purposes. The
incorporation of these more complicated evaporation models involves only the practical
difficulty of evaluating more complicated integrals for the source terms.
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