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A multilevel formulation to simulate particulate
flows

By S.V. Apte

1. Motivation and objectives

Many engineering problems involve two-phase flows, where particles of different shapes,
sizes, and densities in the form of droplets, solid particles, or bubbles are dispersed in
a continuum (gaseous or liquid) fluid. Numerical simulations of these flows commonly
employ Lagrangian description for the dispersed phase and Eulerian formulation for the
carrier phase. Depending on the volumetric loading of the dispersed phase two regimes
are identified: dilute (dp, << I) and dense (d, =~ l), where dj, is the particle diameter,
and [ the inter-particle distance. Furthermore, the grid resolution (A) used for solution
of the carrier phase could be such that the particles are subgrid (d, << A) or resolved
(A < dp) (cf. figure 1). Clearly, different numerical approaches are necessary to simulate
various regimes of the flow. In addition, these regimes may occur in the same simulation,
e.g. DNS or LES of wall-bounded turbulent flows with moderate particle loadings. Near
the wall, the grid resolution in the wall-normal direction is extremely fine (d, > A) to
capture the small scales of turbulence, and the particles move slowly thus increasing
their residence time and number density near the wall and decreasing the inter-particle
distance (I = d,), whereas away from the wall the grid resolution is coarse and the
inter-particle distance is large. A multi-level approach capable of addressing all regimes
is needed.

Typical simulations involving millions of dispersed particles employ “point-particle”
approach for dilute particle-loadings (Apte et al. 2003a; Apte et al. 2003b; Segura et al.
2004) where the forces on the dispersed phase are computed through model coefficients
and the effect of particles on the carrier phase is represented by a force applied at the
centroid of the particle. Although this approach has been shown to give good results
for swirling, separated flows (Apte et al. 2003a), it fails to properly capture turbulence
modulation in wall-bounded flows (Segura et al. 2004). If the volumetric loading is high or
the particle size is greater than Kolmogorov scale, simple drag/lift laws for particle motion
(used in the point-particle approach) do not capture the unsteady wake effects (Burton
& Eaton 2003). Apte et al. (2003c) (henceforth CTR-ARBO03) performed simulations
of Poisuille flow with large spherical particles arranged in layers at the bottom of the
channel. It was shown that the point-particle approach was unable to provide any lift
to the particles in this shearing flow. Accounting for volumetric effects of the spherical
particles was important to obtain lift and fluidization of the channel as observed in
fully resolved DNS studies (Choi & Joseph 2001; Patankar et al. 2001). The formulation
developed in Apte et al. (2003c) is applicable to dense as well as dilute regimes (here the
effect of volume fraction will be negligible). However, it requires that the size of particles
is less than the grid control volume.

If d, >> A, the particle-domain is completely resolved by the grid, and forces on the
particle should be computed directly. A variety of approaches based on distributed La-
grange multipliers (DLM)/fictitious domain method (Glowinski et al. 1999; Patankar et
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FIGURE 1. Regimes of particulate flows in Eulerian-Lagrangian simulations: a) dilute, b)
dense, c) resolved
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FIGURE 2. Use of material points to describe the particle domain: a) original sphere, b) sphere
replaced by material points. Each material point has an associated volume (and thus a length
scale) so that the total volume of all material points is equal to the original particle.

al. 2000), arbitrary Lagrangian-Eulerian (ALE) formulation (Hu et al. 2001), immersed
boundary based direct forcing method (Kajishima & Takagi 2002), fast computation
techniques based on DLM (Patankar 2001; Sharma & Patankar 2004) have been devel-
oped and applied to simulate these types of “resolved” particulate flows. For turbulent
flow simulation of large number of particles, two approaches stand-out because of their
easy implementation and fast computation: a) Kajishima & Takagi (2002) (henceforth
KT02) and b) Patankar (2001). The formulation due to KT02 is explicit in terms of par-
ticle momentum coupling and is first-order accurate in time, however, has been shown
to give good results for particle-turbulence interactions. Patankar (2001) developed a
formulation which is implicit for particle momentum coupling. We attempt to extend the
framework developed in CTR-ARBO3 by investigating the resolved particle regime. The
emphasis in this work is to develop a formulation for resolved particles, which can be
directly used in conjunction with formulation described in CTR-ARBO03, and thus can
be used to compute all regimes encountered in particulate flows. We first investigate the
formulation based on KT02 and propose modifications/improvements.

2. Governing equations

We assume that the particle size, d,,, is much larger than the grid spacing, A, as shown
in figure (1c). We also assume that the particles are rigid. The grid used is kept fixed
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and part of the control volumes occupy the particle domain. Following the notation used
in CTR-ARBO03, ©, and ©, represent the carrier and dispersed phase volume fractions,
respectively, and ©, + ©, = 1. We define the composite velocity as,

u=0,u,+(1-0,)u, (2.1)

where u, is the fluid velocity vector, and u, = U, 4+ w, X r the particle velocity. Here,
U, is the translational velocity and w, the angular velocity of rigid body rotation. Equa-
tion (2.1) represents the volume-weighted velocity at the interfacial control volumes.
For no-slip and non-permeable interface, u, = u,, the Navier-Stokes equations for an
incompressible fluid with rigid particles become:

v-u=0 (2.2)
611 T

po( G+ vw) = =V p+ 1ty v - (Vu+ (vu)") +pyg + F (2.3)
where 11, is the dynamic viscosity of fluid, g the gravitational force, and F the force acting
to enforce the rigid-body motion within the particle domain. If the particle is moving
with a velocity of u,, the fluid velocity inside the particle domain (©, = 1) should be
u = u,. The force imposing this condition is given as F;,, = ps(u, — u)/At. In KT02, a

first order approximation is used for the force in the region 0 < ©, < 1 to give,

u, —u
At

This force is applied to the centroid of the grid control volumes. In this work, we present
a better representation of the force to impose rigid body motion in the particle domain
as shown below.

F = py0p (2.4)

2.1. Volume fraction and interphase force

In order to compute the volume fraction (©,) we replace each particle by N, “material
points” distributed over the entire particle domain as shown in figure 2. Each material
point has an associated volume such that the total volume of the material points is equal
to the particle volume. The centroid of a material point cannot be inside the volume of
another. The volume fraction is easily obtained as

N
0, (%) = > ViGo (x — xx) (2.5)
k=1
where the summation is over all material points IV,,. Here xj, is the particle location, x
the centroid of a control volume, and V}, the volume of each material point. The function
G, is the interpolation operator given as

202

Go(xp) = %emp l_ i1 (@i — mp,z')ﬂ ) (2.6)
(0 271')

The Gaussian interpolation operator is normalized to satisfy fV G (§ - §”) dv =1,
where V is the grid control volume and the filter-width (o) is proportional to the grid
size. This enforces mass (or volume) conservation over the material points. It should be
noted that, the particle surface is diffused by this procedure over a length-scale of the
order of the grid spacing (A), and its effect on the flow is reduced with increased grid
resolution. We believe that for the purpose of capturing unsteady wake effects in turbulent
flows with many particles, this approximation is sufficient and is verified later. In KT02,
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volume fraction is computed by approximating the sphere by a polygon enclosing the
sphere and obtained by drawing tangents to the spherical surface in each control volume.
In turn, the effective total volume of the sphere is increased. Similar, error is introduced
at the particle interface.

The force acting on the fluid phase is given as

Nm
F(x) =) VipyGo (Lgt ") : (2.7)
k=1

This interpolation procedure gives a smoother force field near the particle surface. The
main advantages of using Gaussian interpolation and material points are: a) the inter-
phase force and volume fractions can be readily evaluated for arbitrary shaped particle,
b) the material points move as a rigid body, thus they do not change their positions rela-
tive to each other and recomputing volume fraction field does not require any expensive
computation of finding the intersections of particle surface with grid nodes, and c) same
interpolation scheme was used to compute force and volume fraction in simulations of
dilute and dense particulate flow (CTR-ARBO03).

3. Numerical Algorithm

The above system of equations is solved using the fractional step algorithm on un-
structured grids as described by Mahesh et al. (2004). The steps are summarized below:

e Step 1: Compute the volume fraction field using equation 2.5.

e Step 2: Advance the fluid momentum equations without the interphase force, F.

A el 2 n w2y o L Qui;  Ouiy A
At v Z iy + s on I~y Z b 0z * 0z !
facesofcv facesofcv
(3.1)

where f represents the face values, N the face-normal component, gy = pyun, and Ay
is the face area.
e Step 3: Compute the force on material points:

F _ u;‘ — u;p’k 5
ey = 0 (i (32)

where u* is interpolated to the material point k of a particle.

e Step 4: Project force from material points onto the grid control volume using equa-
tion 2.7.

e Step 5: Correct the velocity field within the particle domain by imposing the force:

polli = pgui + F;At (3.3)

e Step 6: Interpolate the velocity fields to the faces of the control volumes and solve
the Poisson equation for pressure:

1 —
VA= Y piidy (3.4)
facesofcv

e Step T: Reconstruct the pressure gradient, compute new face-based velocities, and
update the cv-velocities using the least-squares interpolation used by Mahesh et al.
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FIGURE 3. Distribution of particle volume fraction field for a single sphere on uniform grid.

(2004):

At - _6.71,' (35)

e Step 8: Advance the particle velocity. The total force F acting on a particle is simply
the summation (EkN;"l F,Vi) over all material points. Similarly, torque acting at each
material point is given as, T = EkN:ml (Fp x rp ) Vi, where rp; is the position vector of
the each material point from the particle centroid:

mpuy £t = mpuy ; — AtF, i + mpg; (3.6)
Lpwp it = Lywy; — AtTy; (3.7)

where m, is the particle mass, I, the moment of inertia, u,; and wp; the particle

translational and angular velocities, respectively.
e Step: 9 Advance the particle positions:
A

= S () (3.8)
The above formulation is similar to the one given in KT02 with some key differences: a) we
compute the volume fraction and force acting on the particle as described in section 2.1.
The forces acting at the material points within each particle are interpolated onto the
Eulerian grid by a Gaussian interpolation operator to give smoother representation of the
field (see equation 2.7), b) the rigid body motion to the fluid velocity is imposed before
the incompressibility constraint (KT02 impose Step 3 after solving the Poisson equation).
This way the flowfield over the computational domain satisfies the incompressibility
constraint exactly, however, rigid-body motion within the particle domain is imposed
only approximately, and c¢) the volume fraction computation is applicable to any arbitrary
shaped particle.

X

4. Results

We investigate the above formulation by simulating flow over a fized sphere at different
Reynolds numbers and compare the predicted drag coefficients with experimental data.
The computational domain is a rectangular box of dimension 8 x 8 x 8 m and the sphere
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FIGURE 4. Instantaneous streamlines for flow over a stationary sphere at different Reynolds
numbers: a) Re=20, b) Re=40, ¢) Re=100, d) Re=600, and e) Re=1000. Also shown are the
contours of particle volume fraction, ©,.
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FIGURE 5. Comparison of drag coefficient for flow over a fixed sphere:
law Clift et al. (1978), o present.

non-linear drag

diameter is d, = 0.8 m with its centroid located at [2,0,0]. The computational grid
consists of uniform, cubic elements of size 128 x 128 x 128 giving approximately 11 grid
cells in each direction over the particle domain (d,/A = 11). We impose uniform fluid
velocity at the inlet, convective boundary condition at the exit and periodic conditions
in the y and z directions.

Figure 3 shows the distribution of particle volume fraction together with the sphere
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surface. It shows that ©, is smoothed over the particle boundary and covers a domain
larger than the actual particle size by one grid cell. Increased resolution reduces this
spread. We used 5000 material points uniformly distributed over the particle domain
to compute the volume fraction field, however, out tests indicate that fewer material
points are enough to provide the volume fraction field. Flow over the fixed sphere was
simulated at six different Reynolds numbers (Re = p,d,U/u,) over a range of 20 — 1000.
The particle was fixed by specifying uj = 0 in Step 3 of the formulation and the equations
for particle motion are not necessary (Steps 8 and 9). Figure 4 shows the instantaneous
streamlines at different Reynolds numbers. The flowfield is symmetric for low Reynolds
numbers and unsteady vortex shedding is observed for higher Reynolds numbers (>
200). Figure 5 compares the drag coefficients at different Reynolds numbers with the
experimental curve fit, Cq = 2% (1 + 0.15Re®%87) obtained from Clift et al. (1978). The
drag coefficient obtained from present simulations is within 5-15% of the experimental
data with maximum error obtained at Re = 1000. Overprediction of drag is due to the
spreading of the particle domain as shown in figure 3. Similar results have been reported
in KT02.

5. Discussion

A formulation for simulating resolved particles (d, >> A) is developed based on the
work by Kajishima & Takagi (2002). Regions where particles are subgrid (d, < A), can
be captured by using the formulation developed in CTR-ARBO03. Thus, different regimes
encountered in particle-laden flows in the same simulation can be handled. The resolved
particle domain is replaced by material points which do not move relative to each other.
Forces acting at the material points are interpolated to the Eulerian grid using a Gaussian
interpolation operator. It was observed that the present formulation predicts the drag on
a fixed sphere correctly and captures unsteady wake effects with grid resolution (d,/A)
of the order 10.

Based on this work, a simple extension to the standard point-particle approach can be
devised. In LES or DNS of particle-laden channel flows the typical grid resolution in the
wall-normal direction is 3 —10 d,, (see Segura et al. 2004). With point-particle approach,
all of the interphase force is applied at the particle centroid. In regions with high grid
resolution, one may use material points to represent the particles. This will distribute
the interphase force over a length scale comparable to the particle diameter. In addition,
flow modification due to wake-effects can be captured by material points with sufficient
grid resolution.

The formulation presented here is explicit for momentum coupling and first order
accurate in time. The temporal accuracy can be increased by performing iterations per
time-step over the fluid and particle equations, however, is costly. Explicit coupling is
undesirable as it may give rise to instabilities and unphysical oscillations in drag/lift
forces. As shown by Patankar 2001 (also Sharma & Patankar 2004) an implicit momentum
coupling with little increase in computational time is possible and should be used. Our
future effort will focus on combining the present approach with their implicit algorithm
to develop a robust and accurate numerical scheme for simulations of particle/turbulence
interactions in complex flows.
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