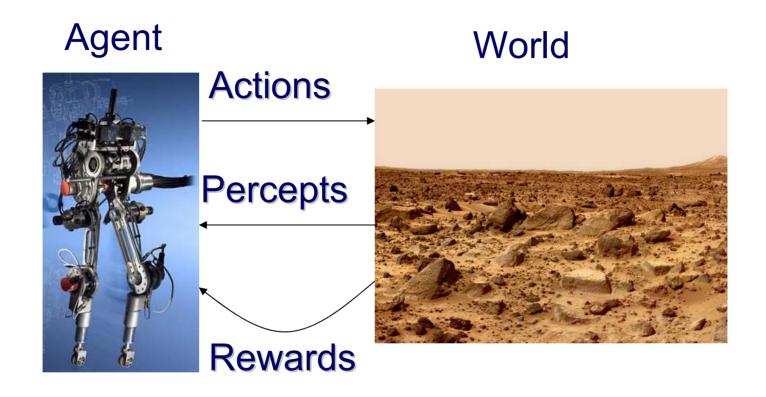


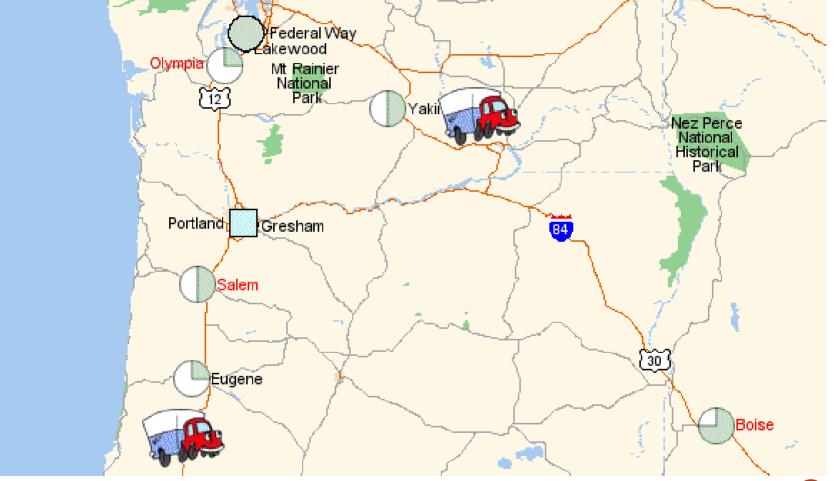
Reinforcement Learning: From Foundations to Advanced Topics

Prasad Tadepalli Sridhar Mahadevan Vivek Borkar

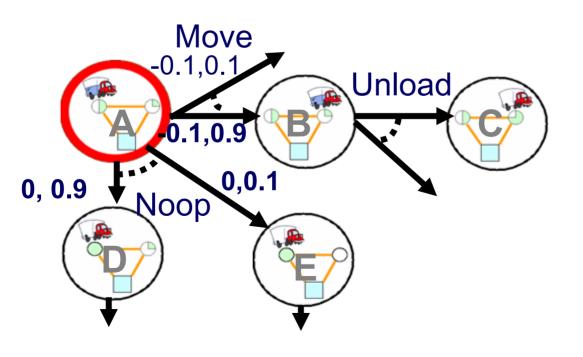
- 1. Markov Decision Processes (MDPs) (Tadepalli and Borkar)
 - Introduction to Reinforcement Learning (30 m)
 - Stochastic Approximation Theory (60 m)
- 2. Scaling Issues (Tadepalli) (60 m)
 - Function Approximation
 - Hierarchical Reinforcement Learning
 - Approximate Policy Iteration
- 3. Learning Representations (Mahadevan) (90 m)
 - Spectral Methods
 - Solving MDPs using Spectral Methods



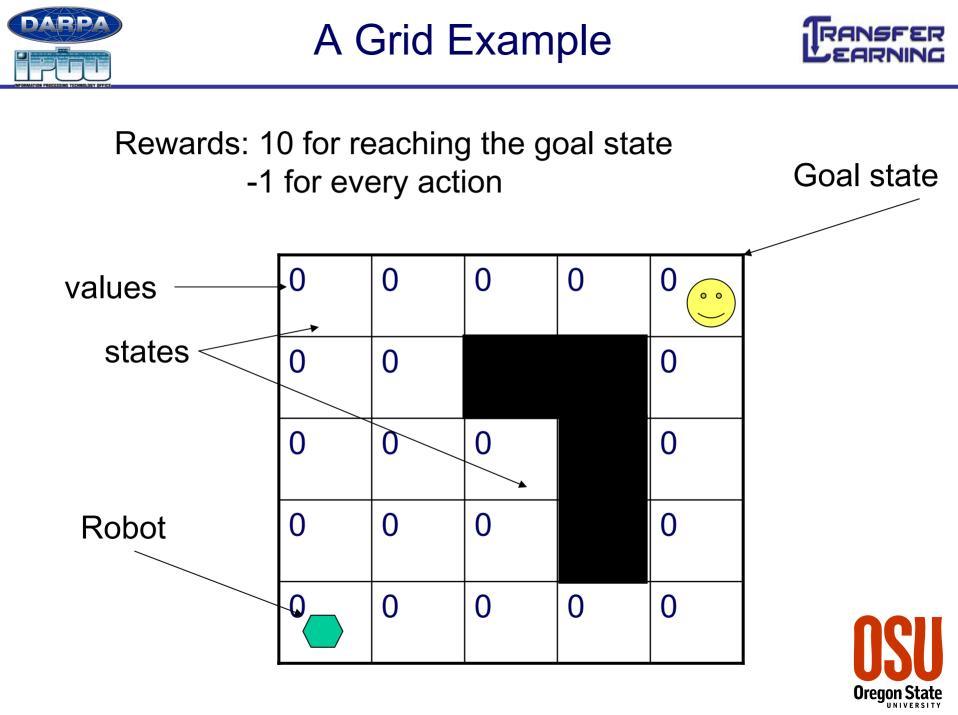
The goal is to act to optimize a performance measure, e.g., expected total reward received



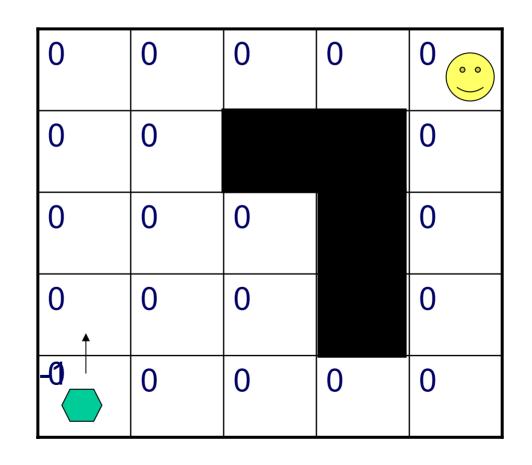
- A Markov Decision Process (MDP) consists of a set of states S, actions A, Rewards R(s,a), and a stochastic state-transition function P(s'|s,a)
- A *policy* is a mapping from States to Actions.
- The goal is to find a policy π^* that maximizes the total expected reward until some termination state the "optimal policy."



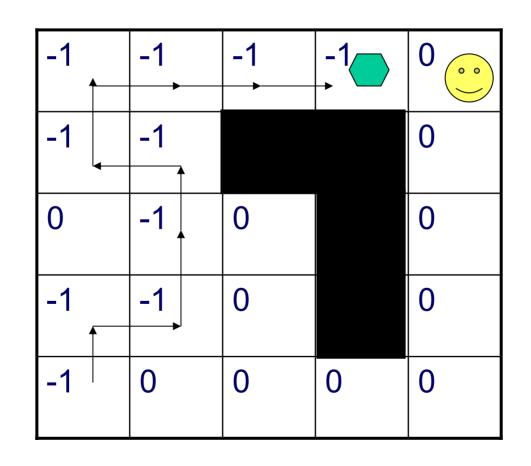
- For a fixed policy π, there is a real-valued function V^π that satisfies V^π(s) = R(s, π(s))+E(V^π(s')) (BellmanEqn) V^π(s) represents the expected total reward of π from s
- Theorem: \exists an optimal policy π^* : $\forall s \forall \pi V^{\pi^*}(s) \ge V^{\pi}(s)$
- An optimal policy π^* satisfies the Bellman Equation: $V^{\pi^*}(s) = Max_a \{R(s,a) + \sum_{s'} P(s'|s,a) (V^{\pi^*}(s'))\}$
- Value iteration: Solve the equations for *V* by iteratively replacing the l.h.s with the r.h.s for all states
- Temporal Difference Learning: Update V for states encountered along a trajectory
- If every state is updated infinitely often, V converges to $V^{\pi*}$
- Assumption: All policies terminate, i.e., reach an absorbing state.



Choose an action $a = argmax_a (R(s,a)+V(s'))$ Update $V(s) \leftarrow Max_a R(s,a)+V(s')$

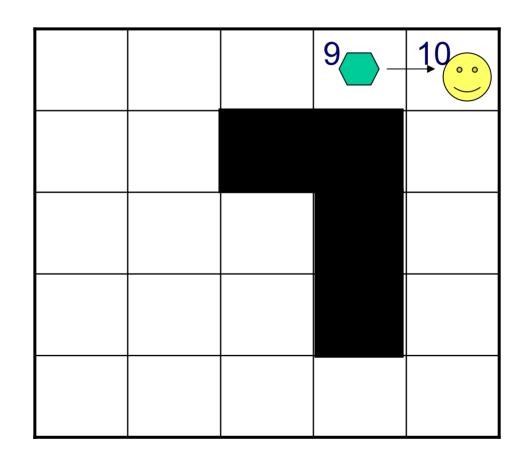


Choose an action $a = argmax_a R(s,a)+V(s')$ Update $V(s) \leftarrow Max_a R(s,a)+V(s')$

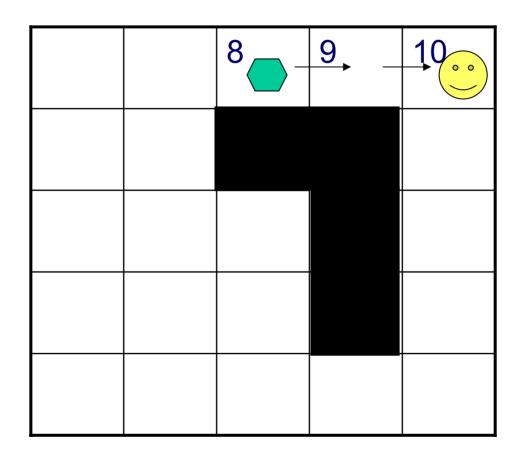


Rewards: 10 for reaching the goal state

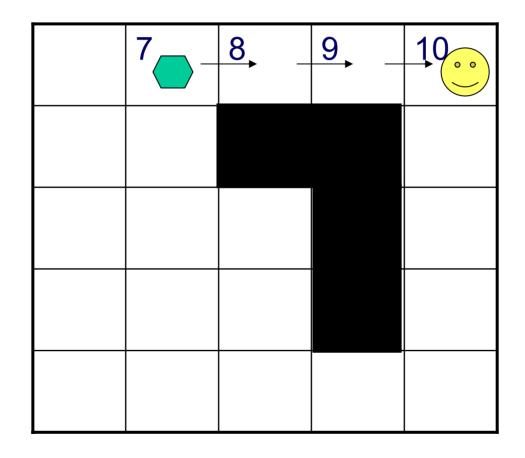
-1 for every action



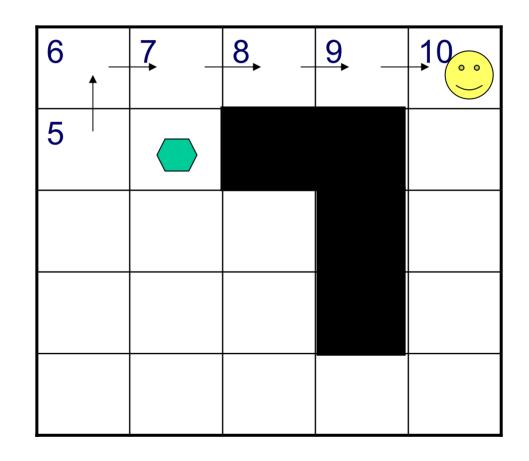
Update: $V(s) \leftarrow Max_a R(s,a) + V(s')$



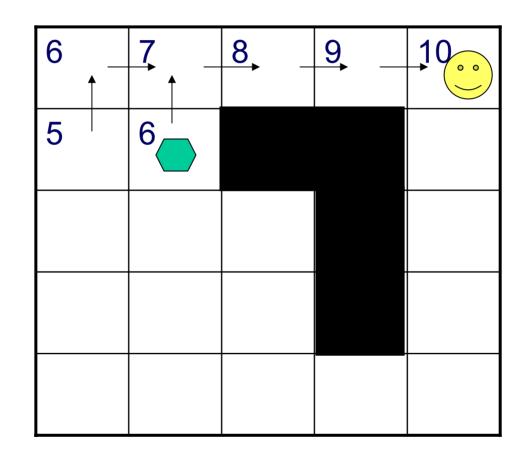
Update: $V(s) \leftarrow Max_a R(s,a) + V(s')$

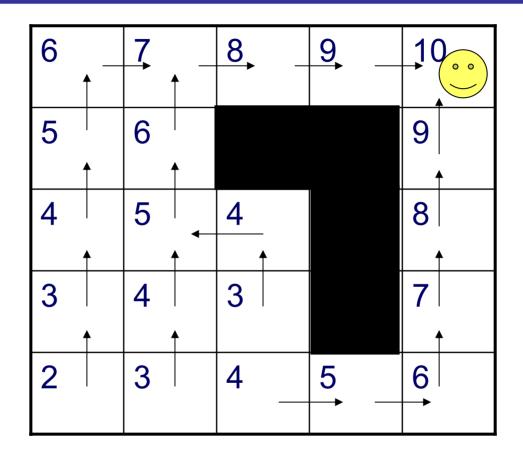


Choose an action $a = argmax_a R(s,a)+V(s')$ Update $V(s) \leftarrow Max_a R(s,a)+V(s')$



Choose an action $a = argmax_a R(s,a)+V(s')$ Update $V(s) \leftarrow Max_a R(s,a)+V(s')$





The values converge after a few trials if every action is exercised infinitely often in every state

- Taking action a from the same state s, results in possibly different next states s' with probability P(s'|s,a)
- Choose $a=argmax_a [R(s,a) + \sum_{s'} P(s'|s,a)V(s')]$
- Update $V(s) \leftarrow Max_a R(s,a) + \sum_{s'} P(s'|s,a) V(s')$
- Converges to the optimal policy if every action is exercised in every state infinitely often
- Problem: To choose an action, one needs to know not only V(.) but also the action models:
 - Immediate reward R(.,.)
 - State transition function P(.|.,.)
- Method is called "model-based."

- Motivation: What if *R*(*s*,*a*) and *P*(*s*'|*s*,*a*) are unknown?
- An optimal policy π^* satisfies the Bellman Equation: $V^{\pi*}(s) = Max_a \{R(s,a) + \sum_{s'} P(s'|s,a) V^{\pi*}(s')\}$ $= Max_a Q(s,a),$ where $Q(s,a) \equiv R(s,a) + \sum_{s'} P(s'|s,a) V^{\pi*}(s')$ $\equiv R(s,a) + \sum_{s'} P(s'|s,a) Max_b Q(s',b)$
- $\pi^*(s) = Argmax_aQ(s,a)$
- If we know the Q-function, we know the optimal policy!
- But, we still need *P* and *R* to update *Q* or do we?
- Use sample update instead of full model update!

Q-Learning

S

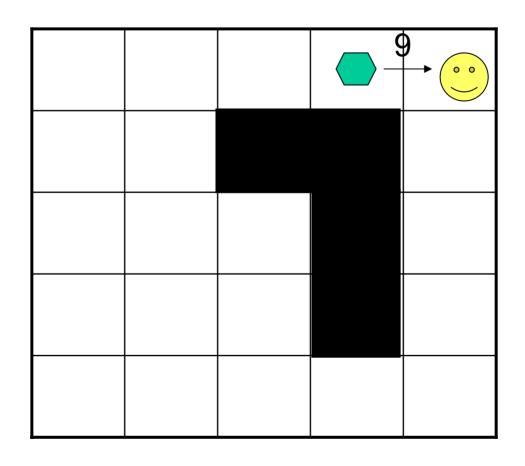
a

s'

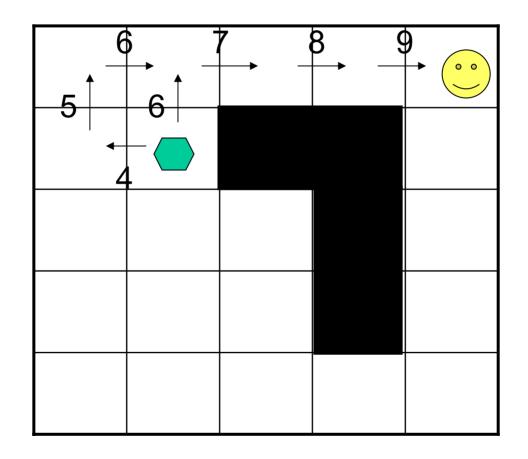
 $Q(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) (Max_b Q(s',b))$

- Initialize Q-values arbitrarily
- When in state s, take some action a
 - Usually a greedy action argmax_a Q(s,a)
 - With some probability explore different actions
- Observe immediate reward r and next state s'
- *r* is a sample of *R*(*s*,*a*); *s*' is a sample of next state
- Q(s,a) is updated towards r + Max_b Q(s',b) (stochastic approximation or sample update instead of a full model update)
 - $Q(s,a) \leftarrow (1-\alpha) Q(s,a) + \alpha (r + Max_b Q(s',b))$, where α is a learning rate
- If every *Q*(*s*,*a*) is updated infinitely often, the *Q*-values converge to their true values.

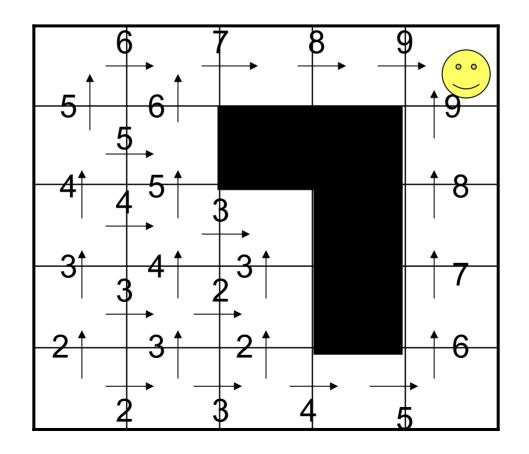
Rewards: 10 for reaching the goal state -1 for every action. α is set to 1 for simplicity. Update: $Q(s,a) = r + Max_b (Q(s',b))$



Choose an action $a = argmax_a Q(s,a)$ reaching s' Update $Q(s,a) = r + Max_b Q(s',b)$

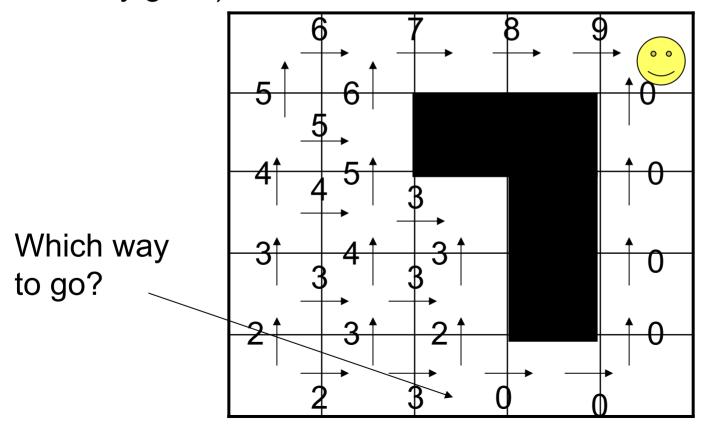


Choose an action $a = argmax_a Q(s,a)$ reaching s' Update $Q(s,a) = r + Max_b Q(s',b)$



Exploitation: Take the best action according to the current value function (which may not have converged).

Exploration: Take the most informative action (which may not be very good).



- Epsilon-Greedy Exploration: Choose greedy action with 1-ε probability. With ε probability pick randomly among all actions.
- **Optimism under uncertainty**: Initialize the Q-values with maximum possible value Rmax. Choose actions greedily. "Delayed Q-Learning" guarantees polynomial-time convergence.
- **Explicit Explore and Exploit (E³):** Learns models and solves them offline. Explicitly chooses between following optimal policy for the known MDP and reaching an unknown part of MDP. Guarantees polynomial-time convergence.
- RMAX: Model-based version of optimism under uncertainty – Implicit Explore and Exploit

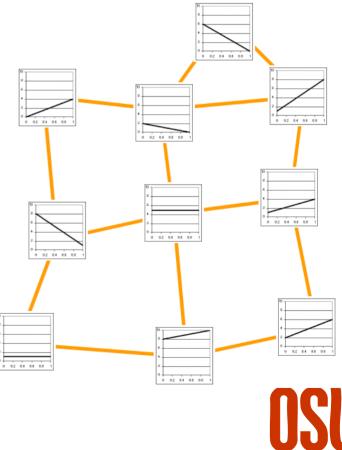
The Curse of Dimensionality

- Number of states is exponential in the number of shops and trucks
- 10 locations, 5 shops, 2 trucks = (10²)(5⁵)(5²) = 7,812,500 states
- Table-based RL scales exponentially with the problem size (number of state variables)

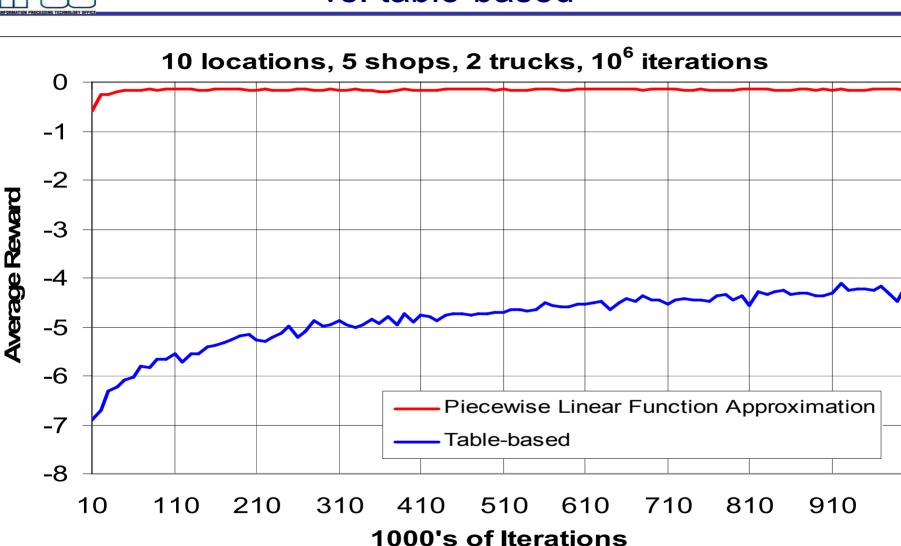
- Function Approximation
 - Represent value function compactly using a parameterized function
- Hierarchical Reinforcement Learning
 - Decompose the value function into simpler components
- Approximate Policy Iteration
 - Represent the policy compactly using approximation

- Idea: Approximate the value function V(s) or Q(s,a) using a compact function
 - A linear function of carefully designed features
 - A neural network
 - Tabular linear functions
- Compute the temporal difference error in *s* (TD-error)
 - $TD(s) = Max_a (R(s,a) + V(s')) V(s)$
 - $TD(s,a) = R(s,a) + Max_b Q(s',b) Q(s,a)$
- Adjust the parameters of the value function to reduce the (squared) temporal difference error
 - $W \leftarrow W + \alpha TD(s) \{ \partial V(s) / \partial W \}$
 - $W \leftarrow W + \alpha TD(s,a) \{ \partial Q(s,a) / \partial W \}$

- Use a different linear function for each possible 5-tuple of locations I₁,..., I₅ of trucks
- Each function is linear in truck loads and shop inventories
- Every function represents
 10 million states
- Million-fold reduction in the number of learnable parameters
- $W \leftarrow W + \alpha TD(s) \{ \partial V(s) / \partial W \}$
- $W_i \leftarrow W_i + \alpha$ TD(s) $F_{i,k}(s)$, where s belongs to the k^{th} linear function, and $F_{l,k}(s)$ is its i^{th} feature value

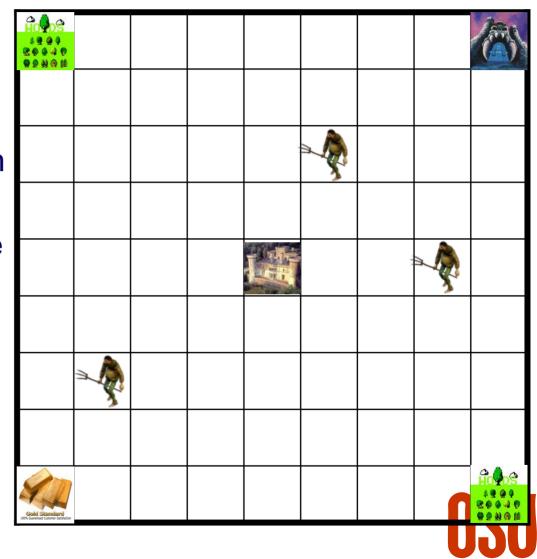


Tabular linear function approximation vs. table-based

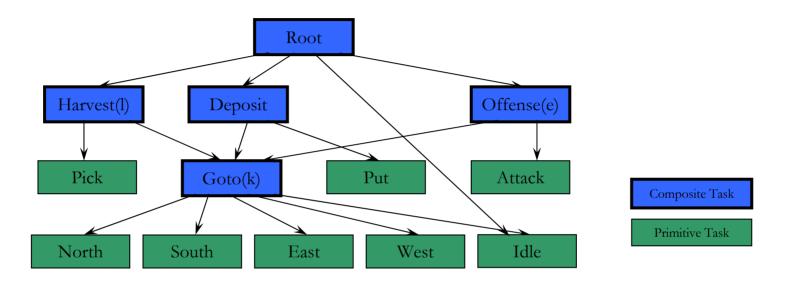


- Many domains are hierarchically organized.
- Tasks have subtasks, subtasks have sub-subtasks and so on.
- Searching the policy space at the lowest level of the action space may be intractable.
- How can we exploit task hierarchies to learn efficiently?
- Many formalisms exist
 - Options (Precup, Sutton, and Singh)
 - MAXQ (Dietterich)
 - ALisp (Andre, Murthy, Russell)

- Grid world domain
- Multiple peasants harvest resources (wood, gold) to replenish the home
- Attack the enemy's base any time it pops up
- Number of states exponential in the number of peasants and resources



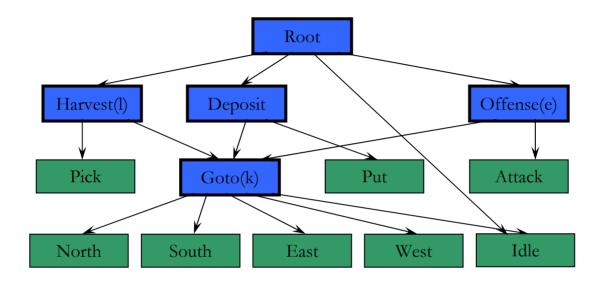
MAXQ Task Hierarchy



- Each subtask M_i is defined by Termination (goal) predicate G_i, Actions A_i, and State Abstraction B_i
- The subtasks of task M_i are its available actions or subroutines it can call.
- Control returns to the task M_i when its subtask finishes.
- Each M_i learns a policy π : S \rightarrow Subtasks(M_i)

- V_i(s) = Total optimal expected reward during task *i* when starting from state s
- Q_i(s,j) = Total expected reward during task *i*, when starting from state *s* and task *j* and acting optimally
- $V_i(s) = Max_j Q_i(s,j)$
- C_i(s,j) = Completion reward = Total expected reward to complete task *i* after *j* is done in *s*.
- $Q_i(s,j) = V_j(s) + C_i(s,j)$

Choosing Actions



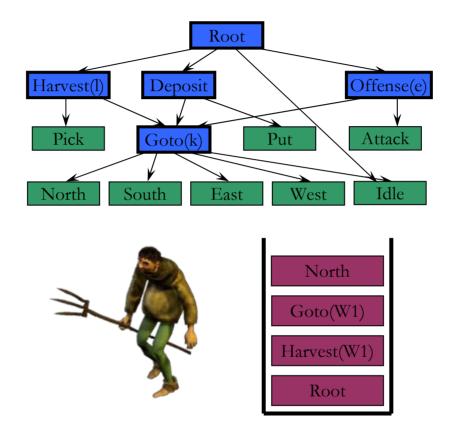
 $\begin{aligned} Q_{root}(harvest) &= V_{harvest} + C_{root}(harvest) \\ &= Max_a \left[V_a + C_{harvest}(a) \right] + C_{root}(harvest) \\ &= Max_a \left[Max_b \left[V_b + C_a(b) \right] + C_{harvest}(a) \right] + \\ C_{root}(harvest) \end{aligned}$

Learn completion functions $C_i(j)$ for internal nodes and value functions V_j for the leaf nodes. Let *s* be current state and s' be the state after subtask *j*

 $-C_{i}(s,j) \leftarrow (1-\alpha) C_{i}(s,j) + \alpha V_{i}(s')$ $\leftarrow (1-\alpha) C_{i}(s,j) + \alpha Max_{k} Q_{i}(s',k)$ $\leftarrow (1-\alpha) C_{i}(s,j) + \alpha Max_{k} \{V_{k}(s') + C_{i}(s',k)\}$

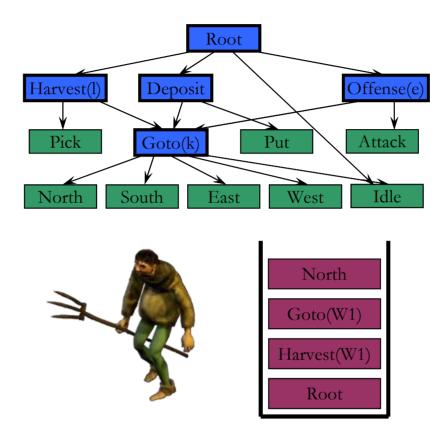
- Temporal Abstraction
 - Reduces the number of decision/update points (search depth)
- State Abstraction
 - What the peasants carry is irrelevant to the Goto actions
 - Other agents' locations are irrelevant to the Goto and the Deposit actions
- Funneling
 - The high level tasks, e.g., Harvest, are considered only in a small number of states (special locations)
- Subtask Sharing
 - The same subtask, e.g., Goto, is called by several other tasks; hence knowledge transfers between the tasks
- Sharing among multiple agents

Single Hierarchical Agent (effector)



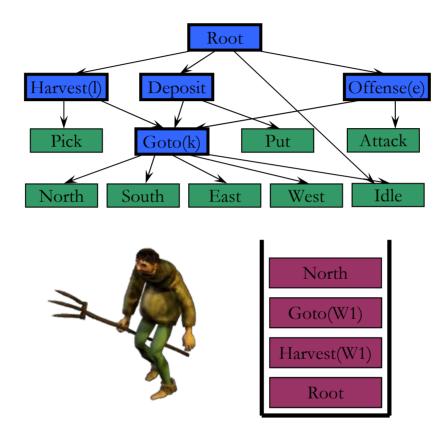
- The agent has a decomposed value function
- The agent has a task stack
- Each subtask is given appropriate abstraction

Simple Multi-Effector Setup



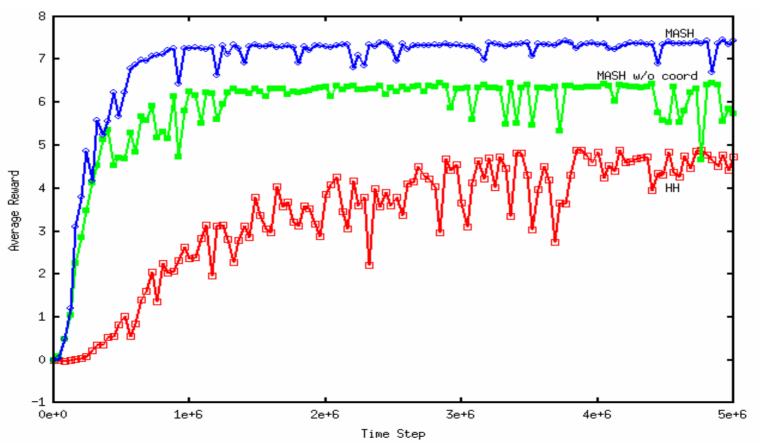
- Every effector has its own decomposed value function (depicted by the separate task hierarchies)
- Every effector has its own task stack

Multiple Agents with Shared Hierarchy (MA

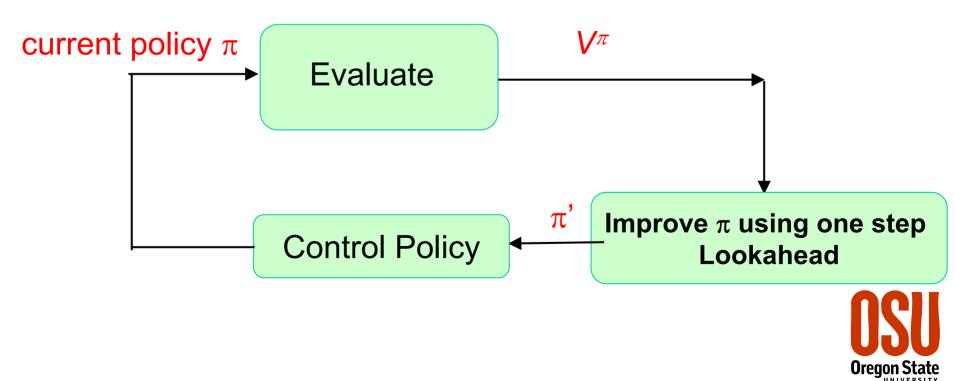


- The effectors share one decomposed value function
- Every effector still has its own task stack (control thread)
- Effectors may coordinate by sharing task information

4 agents in a 25 × 25 grid (30 runs): Rewards: Deposit = 100, Collision = -5, Offense = 50 Unable to run this setup for coordinating agents with separate value functions



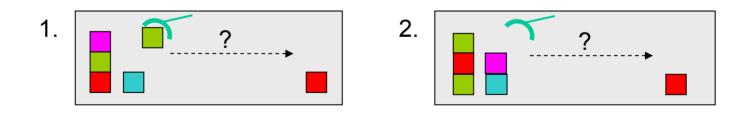
- Based on Policy Iteration
- Converges to globally optimal policies in enumerative state-spaces
- Represents the policy explicitly



Yoon, Fern, and Givan, 2002

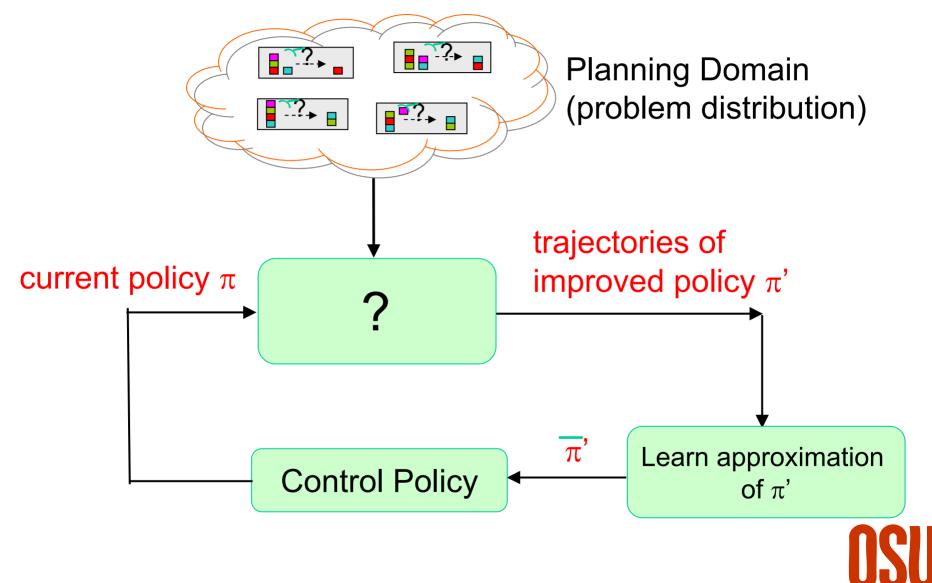
A simple policy to clear a goal block Taxonomic Syntax

1. Putdown blocks being held1. holding : putdown2. Pickup clear blocks above gclear
blocks (those that are clear in the goal)2. clear \cap (on* gclear) :
pickup

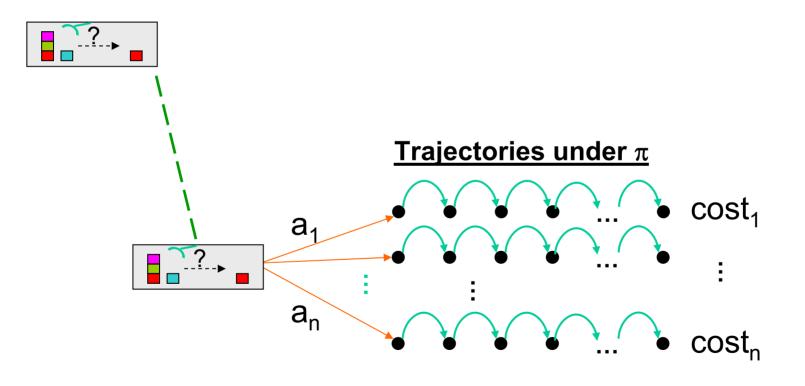


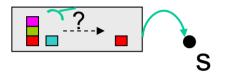
Approximate Policy Iteration (Fern, Yoon and Givan, 2003)

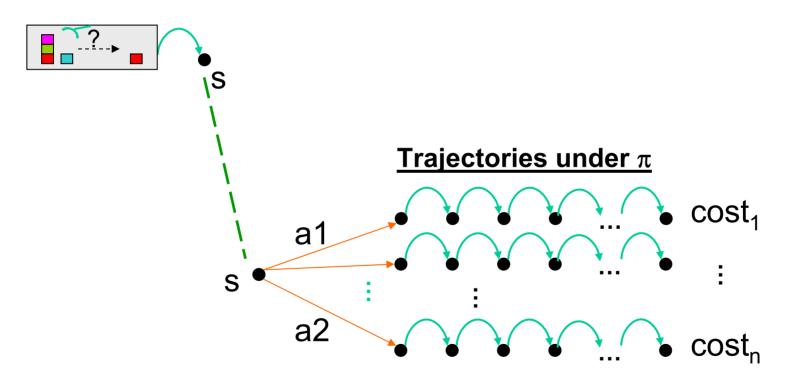
Oregon State

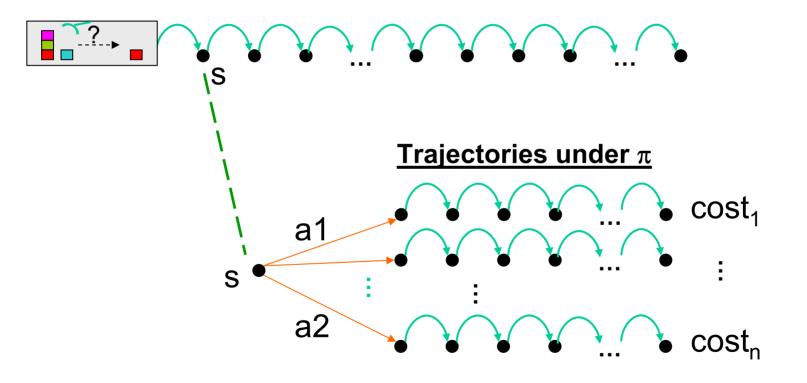


ן ביייי בייי

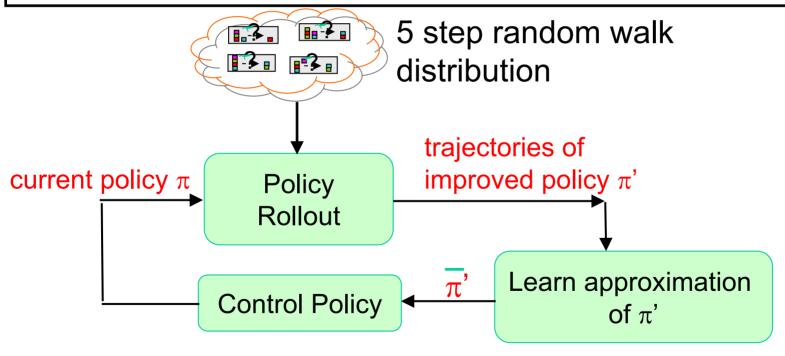




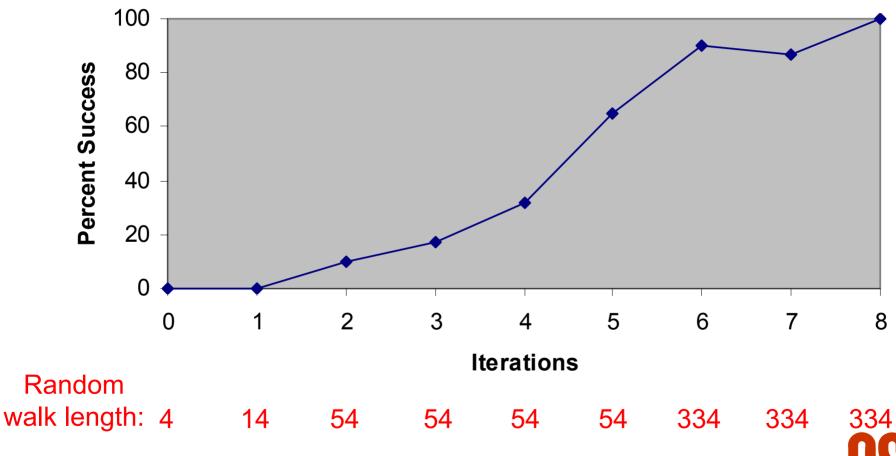




Objective: Learn policy for long random walk distributions by transferring knowledge from short random walk distributions



Blocks World (20 blocks)



Success Percentage

	Blocks	Elevator	Schedule	Briefcase	Gripper
API	100	100	100	100	100
FF- Plan	28	100	100	0	100

Typically our solution lengths are comparable to FF's.

Success Ratio					
	Freecell	Logistics			
API	0	0			
FF- Plan	47	100			

- Function approximation can result in faster convergence if chosen carefully.
 - But there is no guarantee of convergence in most cases.
- Task hierarchies and shared value functions among agents leads to fast learning
 - The hierarchies and abstractions are given and carefully designed.
- Approximate Policy Iteration is effective in many planning domains
 - The policy language must be carefully chosen to contain a good policy

- Learning the task hierarchies including termination conditions and state abstraction
- Theory of function approximation few convergence results are known
- Transfer Learning: How can we learn in one domain and perform well in a related domain?
- Relational Reinforcement Learning
- Combining planning and reinforcement learning
- Partially observable MDPs
- Game playing and assistantship learning

