



#### Reinforcement Learning: From Foundations to Advanced Topics

Prasad Tadepalli Sridhar Mahadevan Vivek Borkar





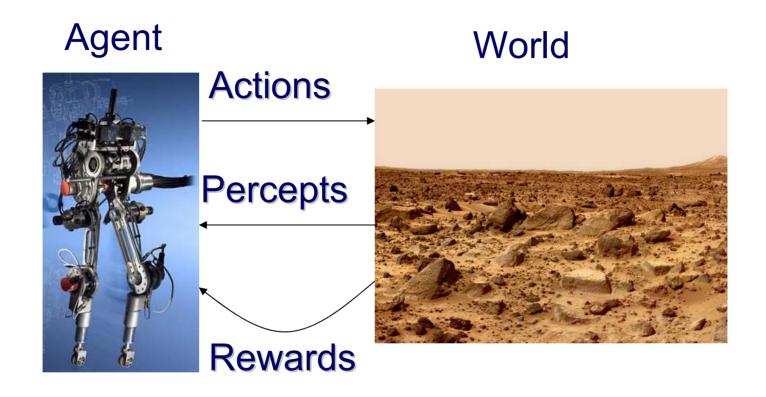


- 1. Markov Decision Processes (MDPs) (Tadepalli and Borkar)
  - Introduction to Reinforcement Learning (30 m)
  - Stochastic Approximation Theory (60 m)
- 2. Scaling Issues (Tadepalli) (60 m)
  - Function Approximation
  - Hierarchical Reinforcement Learning
  - Approximate Policy Iteration
- 3. Learning Representations (Mahadevan) (90 m)
  - Spectral Methods
  - Solving MDPs using Spectral Methods







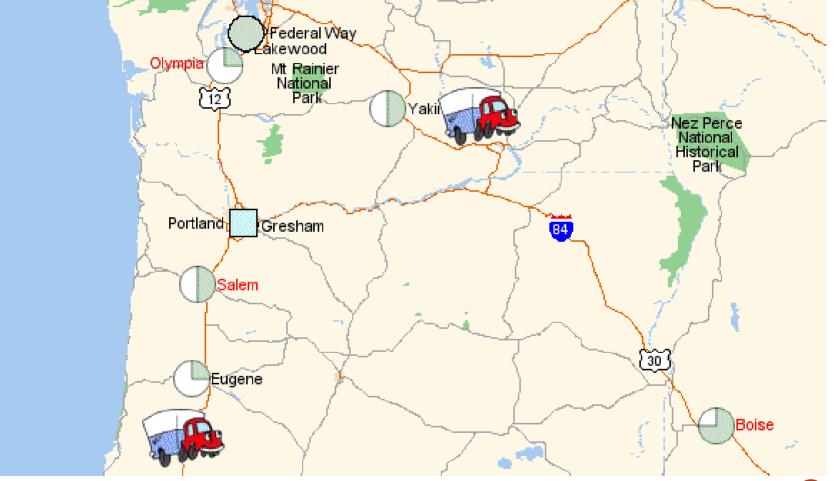


The goal is to act to optimize a performance measure, e.g., expected total reward received







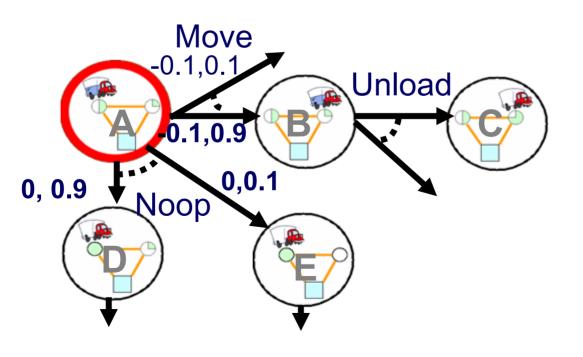








- A Markov Decision Process (MDP) consists of a set of states S, actions A, Rewards R(s,a), and a stochastic state-transition function P(s'|s,a)
- A *policy* is a mapping from States to Actions.
- The goal is to find a policy  $\pi^*$  that maximizes the total expected reward until some termination state the "optimal policy."



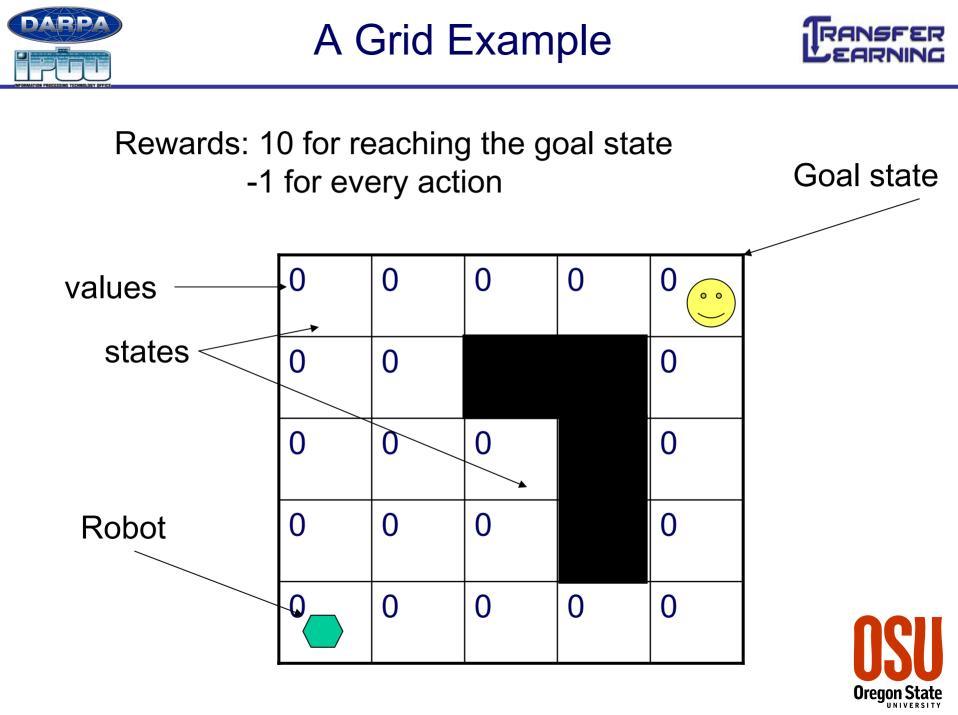






- For a fixed policy π, there is a real-valued function V<sup>π</sup> that satisfies V<sup>π</sup>(s) = R(s, π(s))+E(V<sup>π</sup>(s')) (BellmanEqn) V<sup>π</sup>(s) represents the expected total reward of π from s
- Theorem:  $\exists$  an optimal policy  $\pi^*$ :  $\forall s \forall \pi V^{\pi^*}(s) \ge V^{\pi}(s)$
- An optimal policy  $\pi^*$  satisfies the Bellman Equation:  $V^{\pi^*}(s) = Max_a \{R(s,a) + \sum_{s'} P(s'|s,a) (V^{\pi^*}(s'))\}$
- Value iteration: Solve the equations for *V* by iteratively replacing the l.h.s with the r.h.s for all states
- Temporal Difference Learning: Update V for states encountered along a trajectory
- If every state is updated infinitely often, V converges to  $V^{\pi*}$
- Assumption: All policies terminate, i.e., reach an absorbing state.

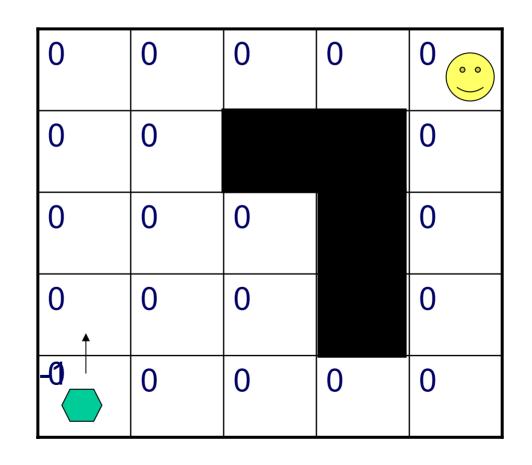








Choose an action  $a = argmax_a (R(s,a)+V(s'))$ Update  $V(s) \leftarrow Max_a R(s,a)+V(s')$ 

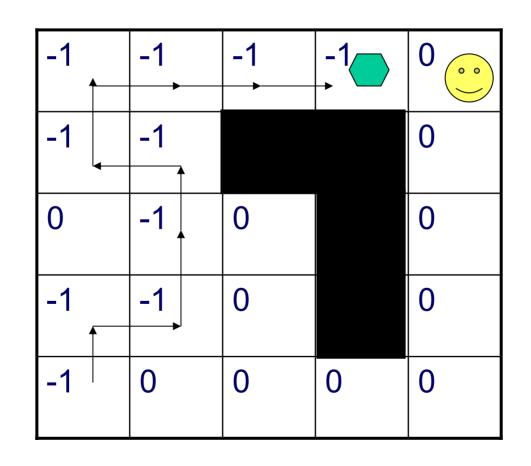








Choose an action  $a = argmax_a R(s,a)+V(s')$ Update  $V(s) \leftarrow Max_a R(s,a)+V(s')$ 



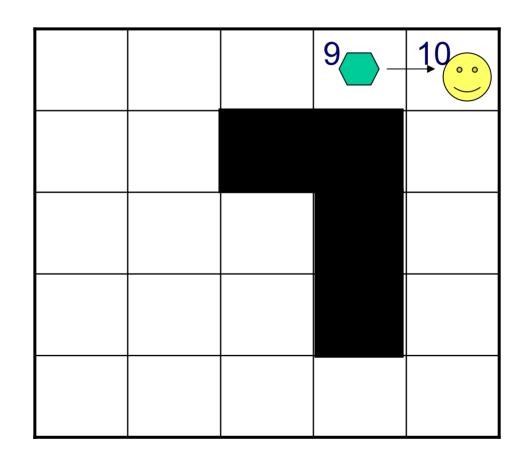






Rewards: 10 for reaching the goal state

-1 for every action

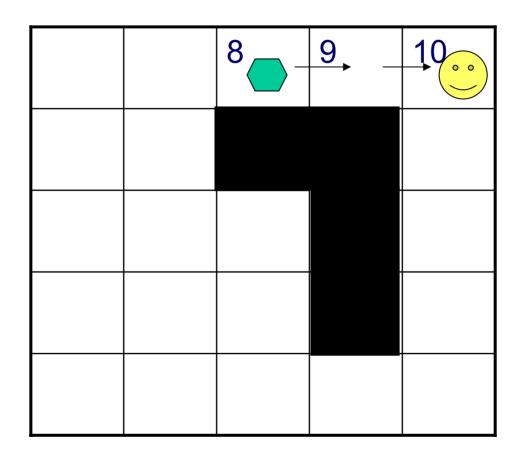








Update:  $V(s) \leftarrow Max_a R(s,a) + V(s')$ 

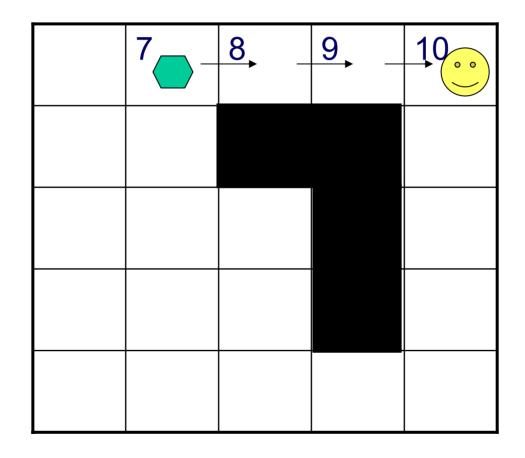








#### Update: $V(s) \leftarrow Max_a R(s,a) + V(s')$

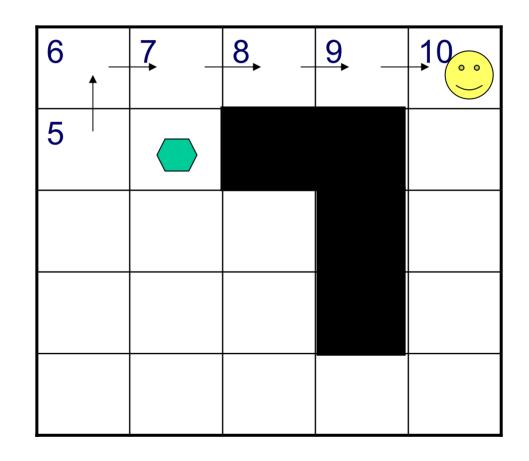








Choose an action  $a = argmax_a R(s,a)+V(s')$ Update  $V(s) \leftarrow Max_a R(s,a)+V(s')$ 

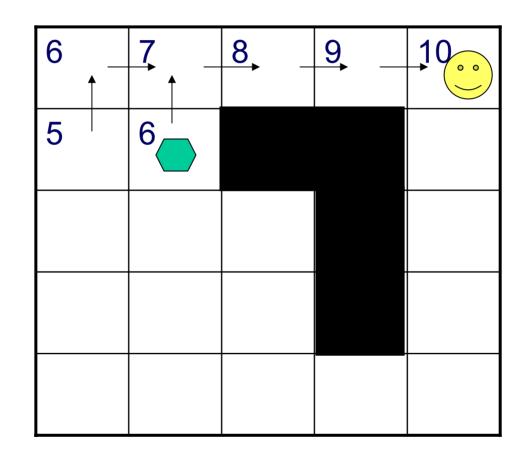








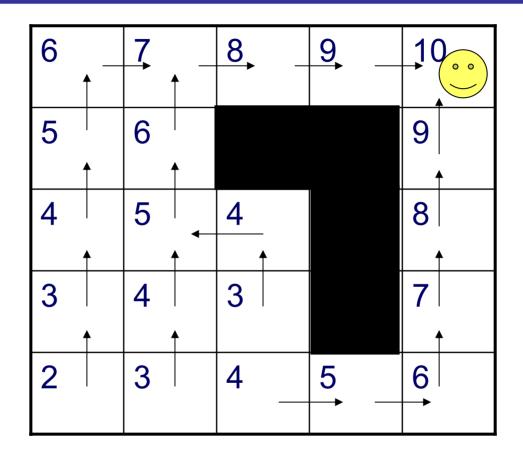
Choose an action  $a = argmax_a R(s,a)+V(s')$ Update  $V(s) \leftarrow Max_a R(s,a)+V(s')$ 











The values converge after a few trials if every action is exercised infinitely often in every state







- Taking action a from the same state s, results in possibly different next states s' with probability P(s'|s,a)
- Choose  $a=argmax_a [R(s,a) + \sum_{s'} P(s'|s,a)V(s')]$
- Update  $V(s) \leftarrow Max_a R(s,a) + \sum_{s'} P(s'|s,a) V(s')$
- Converges to the optimal policy if every action is exercised in every state infinitely often
- Problem: To choose an action, one needs to know not only V(.) but also the action models:
  - Immediate reward R(.,.)
  - State transition function P(.|.,.)
- Method is called "model-based."







- Motivation: What if *R*(*s*,*a*) and *P*(*s*'|*s*,*a*) are unknown?
- An optimal policy  $\pi^*$  satisfies the Bellman Equation:  $V^{\pi*}(s) = Max_a \{R(s,a) + \sum_{s'} P(s'|s,a) V^{\pi*}(s')\}$   $= Max_a Q(s,a),$ where  $Q(s,a) \equiv R(s,a) + \sum_{s'} P(s'|s,a) V^{\pi*}(s')$  $\equiv R(s,a) + \sum_{s'} P(s'|s,a) Max_b Q(s',b)$
- $\pi^*(s) = Argmax_aQ(s,a)$
- If we know the Q-function, we know the optimal policy!
- But, we still need *P* and *R* to update *Q* or do we?
- Use sample update instead of full model update!





#### Q-Learning



S

a

s'

 $Q(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) (Max_b Q(s',b))$ 

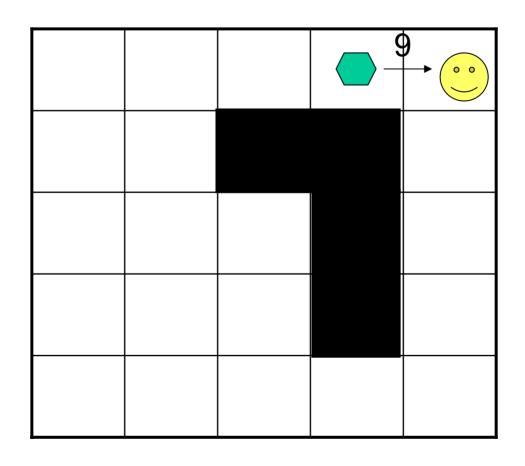
- Initialize Q-values arbitrarily
- When in state s, take some action a
  - Usually a greedy action argmax<sub>a</sub> Q(s,a)
  - With some probability explore different actions
- Observe immediate reward r and next state s'
- *r* is a sample of *R*(*s*,*a*); *s*' is a sample of next state
- Q(s,a) is updated towards r + Max<sub>b</sub> Q(s',b) (stochastic approximation or sample update instead of a full model update)
  - $Q(s,a) \leftarrow (1-\alpha) Q(s,a) + \alpha (r + Max_b Q(s',b))$ , where  $\alpha$  is a learning rate
- If every *Q*(*s*,*a*) is updated infinitely often, the *Q*-values converge to their true values.







Rewards: 10 for reaching the goal state -1 for every action.  $\alpha$  is set to 1 for simplicity. Update:  $Q(s,a) = r + Max_b (Q(s',b))$ 

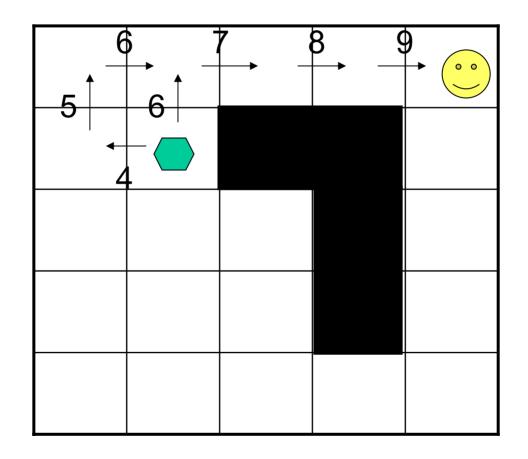








Choose an action  $a = argmax_a Q(s,a)$  reaching s' Update  $Q(s,a) = r + Max_b Q(s',b)$ 

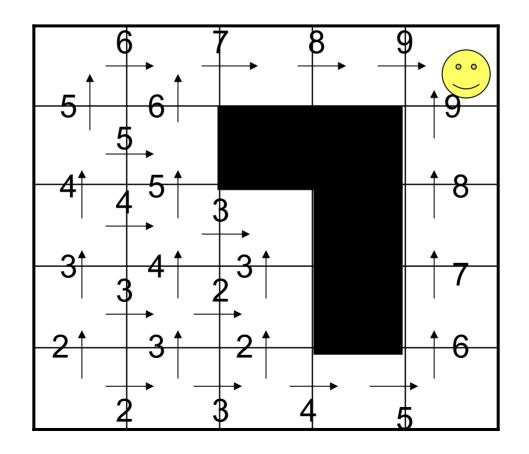








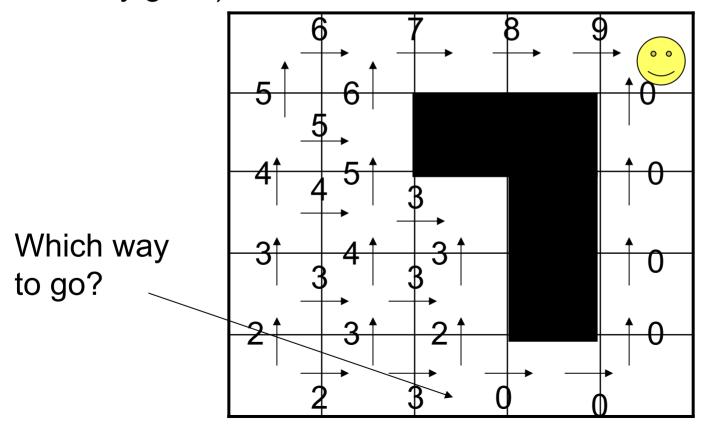
Choose an action  $a = argmax_a Q(s,a)$  reaching s' Update  $Q(s,a) = r + Max_b Q(s',b)$ 





**Exploitation:** Take the best action according to the current value function (which may not have converged).

**Exploration:** Take the most informative action (which may not be very good).









- Epsilon-Greedy Exploration: Choose greedy action with 1-ε probability. With ε probability pick randomly among all actions.
- **Optimism under uncertainty**: Initialize the Q-values with maximum possible value Rmax. Choose actions greedily. "Delayed Q-Learning" guarantees polynomial-time convergence.
- **Explicit Explore and Exploit (E<sup>3</sup>):** Learns models and solves them offline. Explicitly chooses between following optimal policy for the known MDP and reaching an unknown part of MDP. Guarantees polynomial-time convergence.
- RMAX: Model-based version of optimism under uncertainty – Implicit Explore and Exploit





### The Curse of Dimensionality





- Number of states is exponential in the number of shops and trucks
- 10 locations, 5 shops, 2 trucks = (10<sup>2</sup>)(5<sup>5</sup>)(5<sup>2</sup>) = 7,812,500 states
- Table-based RL scales exponentially with the problem size (number of state variables)







- Function Approximation
  - Represent value function compactly using a parameterized function
- Hierarchical Reinforcement Learning
  - Decompose the value function into simpler components
- Approximate Policy Iteration
  - Represent the policy compactly using approximation







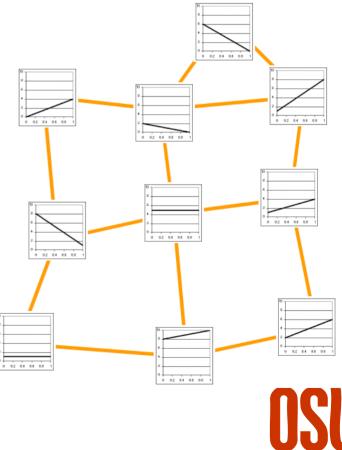
- Idea: Approximate the value function V(s) or Q(s,a) using a compact function
  - A linear function of carefully designed features
  - A neural network
  - Tabular linear functions
- Compute the temporal difference error in *s* (TD-error)
  - $TD(s) = Max_a (R(s,a) + V(s')) V(s)$
  - $TD(s,a) = R(s,a) + Max_b Q(s',b) Q(s,a)$
- Adjust the parameters of the value function to reduce the (squared) temporal difference error
  - $W \leftarrow W + \alpha TD(s) \{ \partial V(s) / \partial W \}$
  - $W \leftarrow W + \alpha TD(s,a) \{ \partial Q(s,a) / \partial W \}$





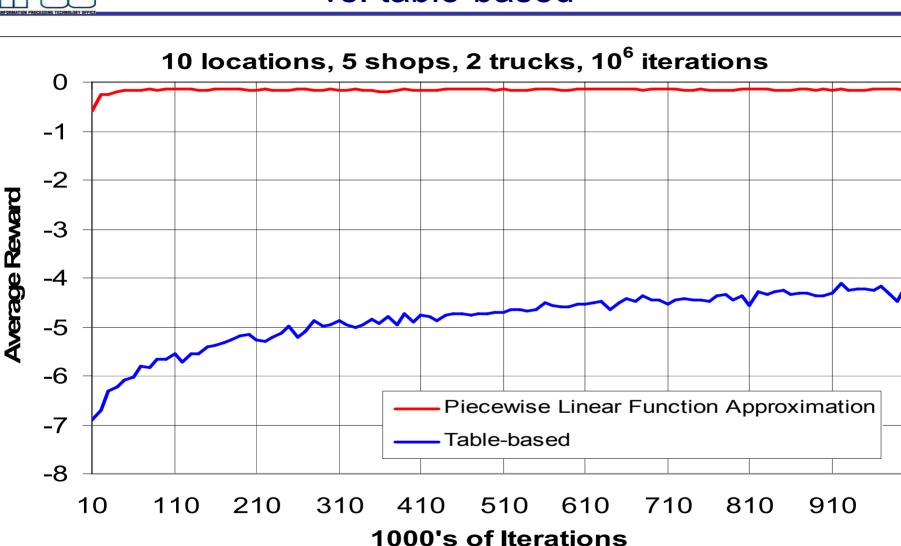


- Use a different linear function for each possible 5-tuple of locations I<sub>1</sub>,..., I<sub>5</sub> of trucks
- Each function is linear in truck loads and shop inventories
- Every function represents
  10 million states
- Million-fold reduction in the number of learnable parameters
- $W \leftarrow W + \alpha TD(s) \{ \partial V(s) / \partial W \}$
- $W_i \leftarrow W_i + \alpha$  TD(s)  $F_{i,k}(s)$ , where s belongs to the  $k^{th}$  linear function, and  $F_{l,k}(s)$  is its  $i^{th}$  feature value





# Tabular linear function approximation vs. table-based







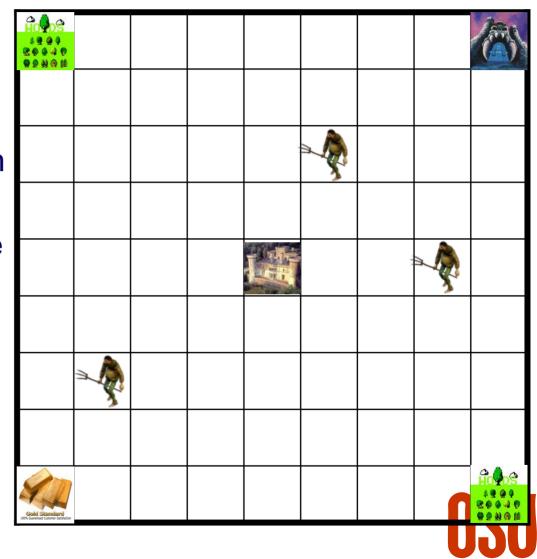
- Many domains are hierarchically organized.
- Tasks have subtasks, subtasks have sub-subtasks and so on.
- Searching the policy space at the lowest level of the action space may be intractable.
- How can we exploit task hierarchies to learn efficiently?
- Many formalisms exist
  - Options (Precup, Sutton, and Singh)
  - MAXQ (Dietterich)
  - ALisp (Andre, Murthy, Russell)







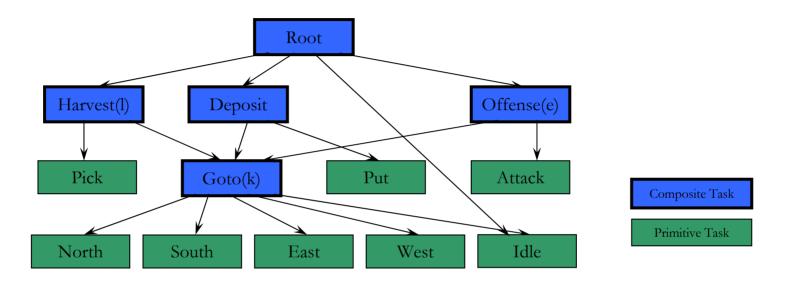
- Grid world domain
- Multiple peasants harvest resources (wood, gold) to replenish the home
- Attack the enemy's base any time it pops up
- Number of states exponential in the number of peasants and resources





#### MAXQ Task Hierarchy





- Each subtask M<sub>i</sub> is defined by Termination (goal) predicate G<sub>i</sub>, Actions A<sub>i</sub>, and State Abstraction B<sub>i</sub>
- The subtasks of task  $M_i$  are its available actions or subroutines it can call.
- Control returns to the task  $M_i$  when its subtask finishes.
- Each  $M_i$  learns a policy  $\pi$ : S  $\rightarrow$  Subtasks( $M_i$ )







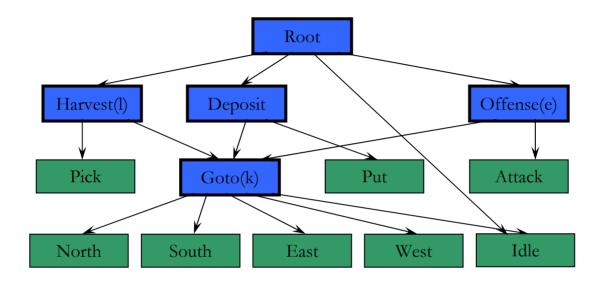
- V<sub>i</sub>(s) = Total optimal expected reward during task *i* when starting from state s
- Q<sub>i</sub>(s,j) = Total expected reward during task *i*, when starting from state *s* and task *j* and acting optimally
- $V_i(s) = Max_j Q_i(s,j)$
- C<sub>i</sub>(s,j) = Completion reward = Total expected reward to complete task *i* after *j* is done in *s*.
- $Q_i(s,j) = V_j(s) + C_i(s,j)$





#### **Choosing Actions**





 $\begin{aligned} Q_{root}(harvest) &= V_{harvest} + C_{root}(harvest) \\ &= Max_a \left[ V_a + C_{harvest}(a) \right] + C_{root}(harvest) \\ &= Max_a \left[ Max_b \left[ V_b + C_a(b) \right] + C_{harvest}(a) \right] + \\ C_{root}(harvest) \end{aligned}$ 







Learn completion functions  $C_i(j)$  for internal nodes and value functions  $V_j$  for the leaf nodes. Let *s* be current state and s' be the state after subtask *j* 

 $-C_{i}(s,j) \leftarrow (1-\alpha) C_{i}(s,j) + \alpha V_{i}(s')$   $\leftarrow (1-\alpha) C_{i}(s,j) + \alpha Max_{k} Q_{i}(s',k)$   $\leftarrow (1-\alpha) C_{i}(s,j) + \alpha Max_{k} \{V_{k}(s') + C_{i}(s',k)\}$ 



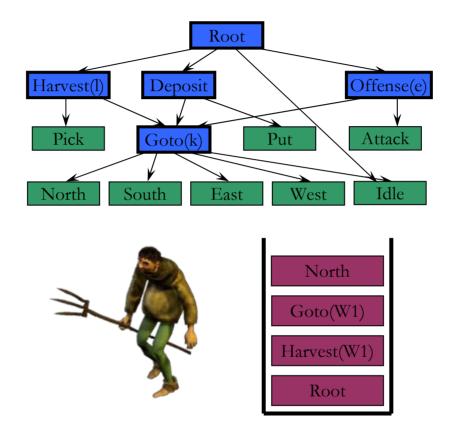




- Temporal Abstraction
  - Reduces the number of decision/update points (search depth)
- State Abstraction
  - What the peasants carry is irrelevant to the Goto actions
  - Other agents' locations are irrelevant to the Goto and the Deposit actions
- Funneling
  - The high level tasks, e.g., Harvest, are considered only in a small number of states (special locations)
- Subtask Sharing
  - The same subtask, e.g., Goto, is called by several other tasks; hence knowledge transfers between the tasks
- Sharing among multiple agents



## Single Hierarchical Agent (effector)



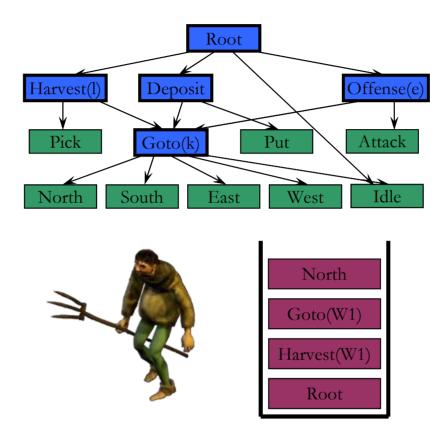
- The agent has a decomposed value function
- The agent has a task stack
- Each subtask is given appropriate abstraction





## Simple Multi-Effector Setup

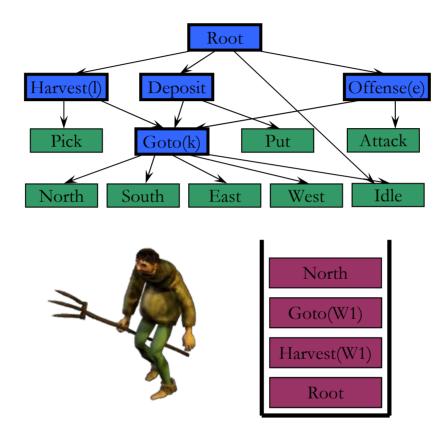




- Every effector has its own decomposed value function (depicted by the separate task hierarchies)
- Every effector has its own task stack



# Multiple Agents with Shared Hierarchy (MA

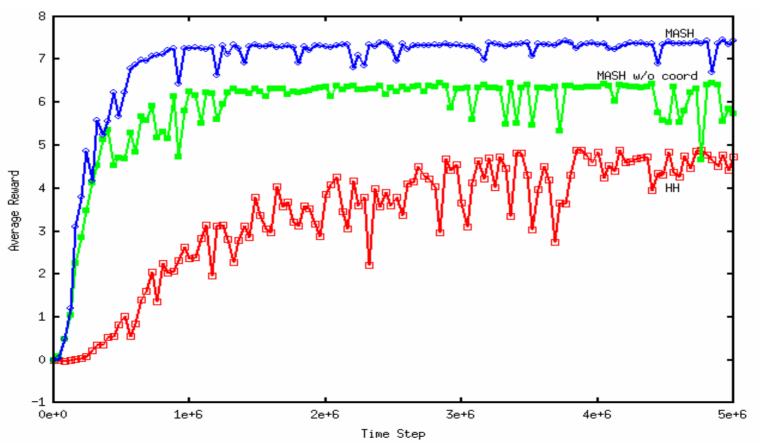


- The effectors share one decomposed value function
- Every effector still has its own task stack (control thread)
- Effectors may coordinate by sharing task information





4 agents in a 25 × 25 grid (30 runs): Rewards: Deposit = 100, Collision = -5, Offense = 50 Unable to run this setup for coordinating agents with separate value functions

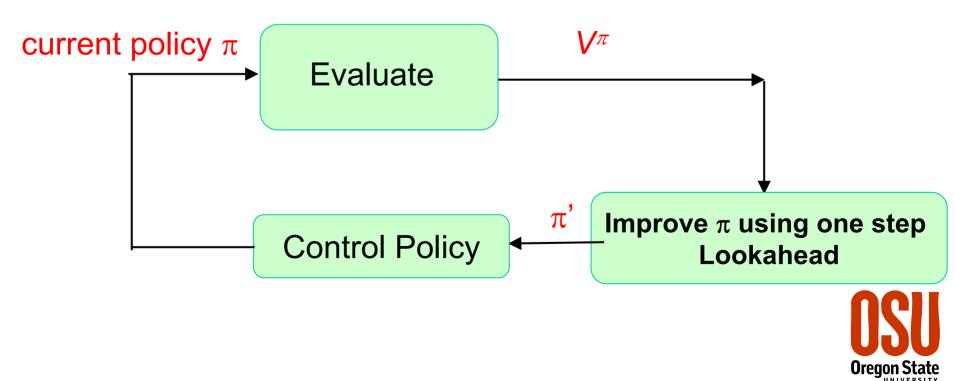








- Based on Policy Iteration
- Converges to globally optimal policies in enumerative state-spaces
- Represents the policy explicitly



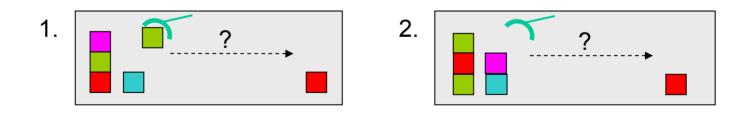




Yoon, Fern, and Givan, 2002

A simple policy to clear a goal block Taxonomic Syntax

1. Putdown blocks being held1. holding : putdown2. Pickup clear blocks above gclear<br/>blocks (those that are clear in the goal)2. clear  $\cap$  (on\* gclear) :<br/>pickup



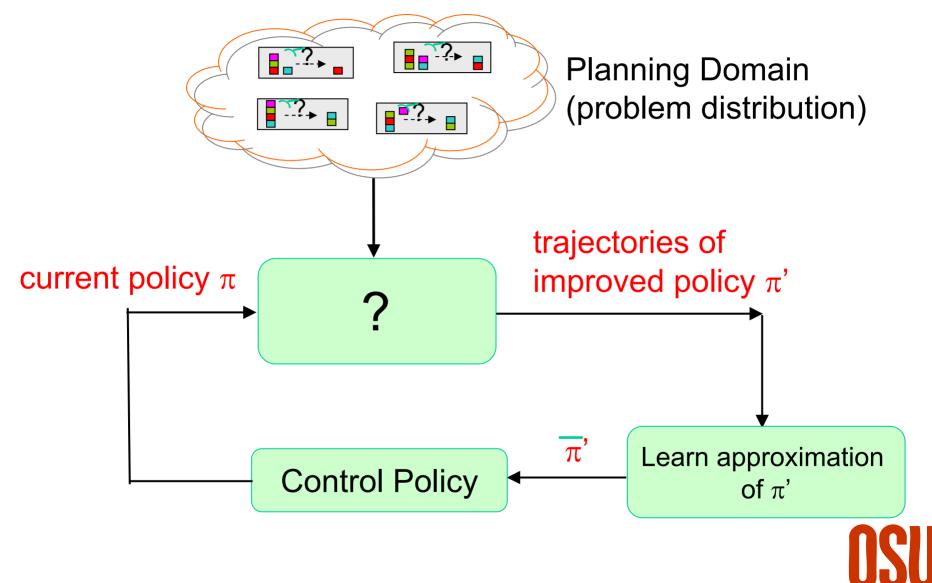




## Approximate Policy Iteration (Fern, Yoon and Givan, 2003)



**Oregon State** 

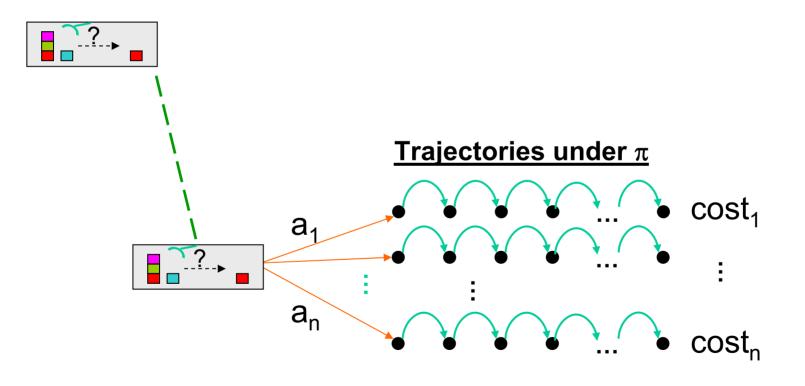




ן ביייי בייי







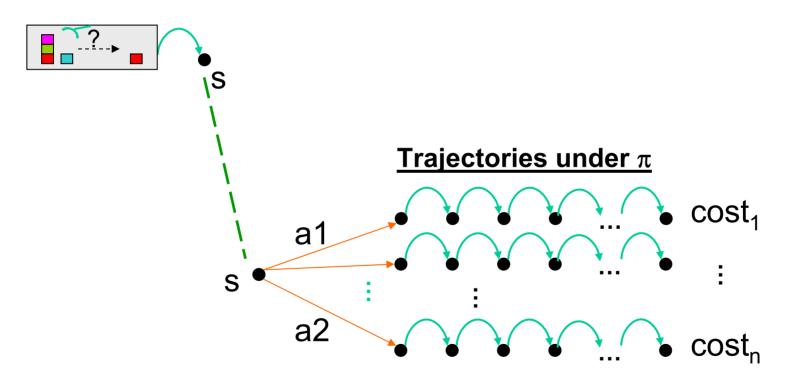






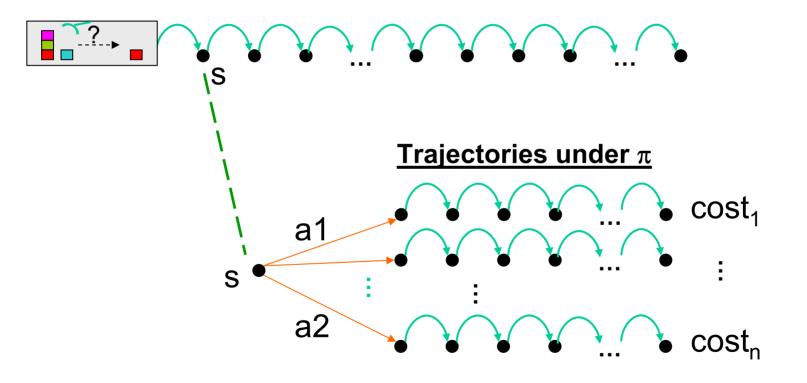










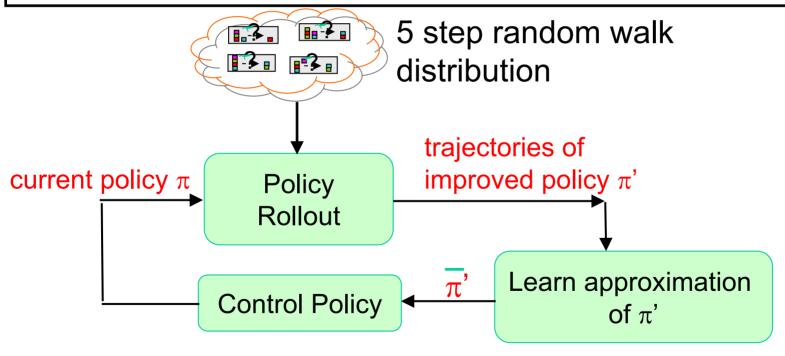








**Objective**: Learn policy for long random walk distributions by transferring knowledge from short random walk distributions

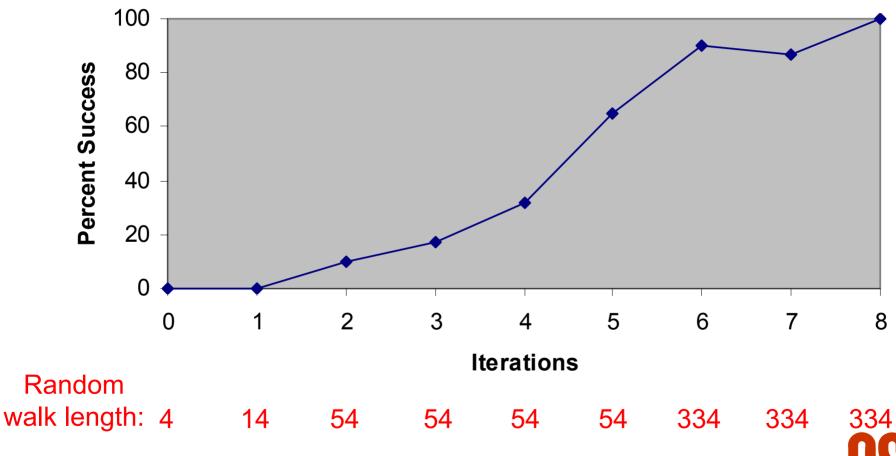








#### **Blocks World (20 blocks)**









### Success Percentage

|             | Blocks | Elevator | Schedule | Briefcase | Gripper |
|-------------|--------|----------|----------|-----------|---------|
| API         | 100    | 100      | 100      | 100       | 100     |
| FF-<br>Plan | 28     | 100      | 100      | 0         | 100     |

Typically our solution lengths are comparable to FF's.







| Success Ratio |          |           |  |  |  |
|---------------|----------|-----------|--|--|--|
|               | Freecell | Logistics |  |  |  |
| API           | 0        | 0         |  |  |  |
| FF-<br>Plan   | 47       | 100       |  |  |  |







- Function approximation can result in faster convergence if chosen carefully.
  - But there is no guarantee of convergence in most cases.
- Task hierarchies and shared value functions among agents leads to fast learning
  - The hierarchies and abstractions are given and carefully designed.
- Approximate Policy Iteration is effective in many planning domains
  - The policy language must be carefully chosen to contain a good policy







- Learning the task hierarchies including termination conditions and state abstraction
- Theory of function approximation few convergence results are known
- Transfer Learning: How can we learn in one domain and perform well in a related domain?
- Relational Reinforcement Learning
- Combining planning and reinforcement learning
- Partially observable MDPs
- Game playing and assistantship learning

